Reinforcement Learning for Active Model Selection

Aloak Kapoor
aloak@cs.ualberta.ca

Russell Greiner
greiner@cs.ualberta.ca

Department of Computing Science
University of Alberta
Edmonton, AB T6J 2E8

ABSTRACT

In many practical Machine Learning tasks, there are costs
associated with acquiring the feature values of training in-
stances, as well as a hard learning budget which limits the
number of feature values that can be purchased. In this
budgeted learning scenario, it is important to use an effec-
tive “data acquisition policy”, that specifies how to spend
the budget acquiring training data to produce an accurate
classifier. This paper examines a simplified version of this
problem, “active model selection” [10]. As this is a Markov
decision problem, we consider applying reinforcement learn-
ing (RL) techniques to learn an effective spending policy.
Despite extensive training, our experiments on various ver-
sions of the problem show that the performance of RL tech-
niques is inferior to existing, simpler spending policies.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning—Induction, Knowl-
edge acquisition, Parameter learning

General Terms
Algorithms

Keywords

budgeted learning, data acquisition, learning costs, training
costs

1. INTRODUCTION

Traditional learning theory assumes the existence of a suf-
ficient number of training examples for learning the target
concept. In practice, however, there are often costs for ac-
quiring the value of each feature for each training example.
Here, the actual quantity of training data is limited by the
learner’s finite budget for purchasing features. In this bud-
geted learning scenario, it is critical to develop an intelligent
purchasing policy which collects feature values in a way that
maximizes the expected accuracy of the resulting classifier.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

UBDM August 21, 2005, Chicago, Illinois, USA

Copyright 2005 ACM 1-59593-208-9/05/0008 ...$5.00.

17

To gain insight into the budgeted learning problem, we
examine a simpler variant known as active model selection:
Use a set of b “probes” to determine which of a given set of
n objects has the highest expected value, where each probe
of a specified object returns a value drawn from that ob-
ject’s distribution. Here we need to identify a strategy for
deciding when to probe each object, based on the results
of the previous probes and any prior knowledge of the ob-
jects. After exhausting the budget of b probes,' we select a
single object to return, and receive a reward corresponding
to the difference between true expected values of the object
returned and the best possible object — i.e., the one with
the highest expected value. This formulation allows pure
exploration of the objects with the budget, as it delays all
reward until the final time step. In addition, this budgeted
problem accurately captures the training phase of budgeted
learning in general, in which features of labelled training
instances can be purchased in any way, with a single one-
time reward (i.e., the classification accuracy) being received
once the budget is exhausted and the final learned classi-
fier is applied. Moreover, previous research has shown that
policies that perform well on active model selection trans-
late directly to effective spending policies for the budgeted
learning problem. As a result, active model selection can be
used as a way to prototype the performance of strategies for
general budgeted learning.

Our focus in this paper is on applying reinforcement learn-
ing (RL) techniques to the active model selection problem.
Although the existing (heuristic) purchasing policies for ac-
tive model selection perform well, we demonstrate in this
work that they still leave room for improvement. We also
show that RL is well-suited to the task because (from a
Bayesian viewpoint) the active model selection problem is
a finite Markov Decision Process with a completely known
environment model. We proceed to learn various purchasing
policies with RL, where each policy is learned using a differ-
ent set of features for function approximation. Despite the
variety of feature sets tested, we observe that the policies
produced by reinforcement learning are inferior to existing,
simpler policies. This provides evidence that RL techniques,
if they can be applied at all, will require a more sophisti-
cated choice of features in order to be effective for active
model selection, and hence for the more complex problem of
budgeted learning.

The remainder of the paper is organized as follows. Sec-

! Actually, we can assume different objects have different
probe costs; we require only that the total cost of the probes
be under b. See Section 2.

tion 2 presents the active model selection problem formally,
and introduces some of the simple purchasing policies from
previous research. Section 3 frames the problem as a Markov
Decision Process and discusses the reinforcement learning
techniques that we will use. Section 4 provides empirical
results comparing RL to the existing policies. In closing,
Section 5 discusses related literature and Section 6 provides
conclusions and a discussion of future work. All proofs can
be found in the Appendix.

We will assume the reader is already familiar with the
basic notions of reinforcement learning; if not, we refer the
interested reader to [17].

2. ACTIVEMODEL SELECTION
The input to the problem is:

e A set of n independent Bernoulli random variables
{C1,...,Cyr} with unknown success probabilities. For
simplicity of exposition, we can think of these C; as
a set of coins, where the unknown success probability
is the probability of the coin turning up heads when
flipped.

e A set of n prior distributions (i.e., density functions)
over the head probability of each coin C;. That is,
the head probability of each coin C; is itself treated
as a random variable X;, and a prior density function
f(X;) is provided as a distribution over the possible
head probabilities of coin C;.

o A set of n (known) costs {S(C;)} for flipping the coins.

e A finite (known) budget b > 0 that can be spent flip-
ping the coins.

Given these inputs, the active model selection problem
proceeds as follows. Any coin C; can be flipped at any time,
as long as the remaining budget, denoted by b’, satisfies
b > S(C;). We use the outcome of each coin flip to update
the density function for the flipped coin. For example, if coin
C; is flipped and turns up heads, then its density function
is updated to f(X;|C; = heads); of course, a similar update
occurs for a tails outcome. (We describe the exact format
of the density function and the updates in our simplifying
assumptions below.) Coin flips and density updates continue
until the budget is exhausted (b’ = 0). Once the budget is
exhausted, the learning period is over, and a single coin
must be chosen — this coin C* (and only this coin) will be
used in all future flips, for which we will receive rewards for
head outcomes. Of course, even when b’ = 0, we will still
not know the true head probability for this (or any) coin,
and so will not know whether coin C* actually has a better
head probability than the other coins. The best we can do
is to choose the coin that minimizes our future regret of
selecting it. To do this, we define a new random variable
Xomaz to be the maximum head probability over all of the
coins: Xmes = maz;(X;), and now the Bayesian regret of
choosing coin Cj is:

Regret(Ci) = L(Xmam - Xl) H f(XJ) dX (1)

j=1

Notice that we minimize regret by choosing the coin whose
mean head probability E(X;) is largest [10]. Let this max-
imum mean coin be C* = argmaxc; E[X;]. Thus, when

18

the budget is exhausted, C* should be selected. (We will
later use C* (o) = arg maxc; E[X;|o], as a function of the
observed coin flip outcomes o.)

Before introducing the overall (regret-related) objective
function we wish to minimize, we must first introduce the
notion of a policy. A policy 7 for active model selection
specifies which coin to flip at each time step. Formally, a
policy is a mapping 7: (b, f(X1), ..., f(X,)) — [1,n] that
specifies the index of the coin to flip, given the current state
defined by the remaining budget and the posterior distribu-
tions over the coins.

Since the result of every coin flip is stochastic, a policy for
flipping the coins can result in several different “outcome”
states in which the budget is exhausted. Thus, a policy =
for active model selection is scored based on its expected

regret:
>

ocoutcomes(m)

ER(w) = P(o) Regret(C* (o)) (2)

where the sum is over the various “outcomes” of the policy
when the budget b’ has been exhausted. The objective of
active model selection is to find the optimal policy 7* that
minimizes Equation 2.

Conveniently, minimizing Equation 2 is equivalent to max-
imizing the expected head probability of the chosen coin:

7° = argmax E
™

ocoutcomes(m)

P(0) max{E(Xilo)} (3)

Equation 3 is an easier objective to remember for active
model selection: flip the coins so that the expected: max-
imum expecteds head probability of the chosen coin is as
large as possible. (Note that both “expected” are required
as the first expectation; is over possible outcomes of the
policy, while the second expectations is over the head prob-
ability distribution of the chosen coin.)

2.1 Simplifying Assumptions

Coin C;’s head probability is represented as a random
variable X;. We assume that X; is a Beta random variable
with density function f(X;) = Z (X;)* *(1 — X;)? ! (here
Z is a normalizing constant and o and § are two positive
hyperparameters that define the Beta distribution).

For a Beta(a, 8) distribution, the mean is p = ;5 while
the variance is o> = g(igﬂ Loosely speaking, when a (3)

is much larger than 8 (a), it means that a coin is likely to
have a high (low) head probability. On the other hand, when
both o and 8 are 1, the distribution over head probabilities
is uniform.

One attractive property of the Beta distribution is that
it is computationally simple to calculate posterior densities.
After observing h heads and ¢ tails on coin C;, its posterior
density is just f(X;|h heads, t tails) = Beta(a+h,B+t).
For example, if a coin is initially a Beta(6, 2) and we observe
three heads and two tails, then it becomes a Beta(9, 4) coin.
In some sense, the Beta hyperparameters can be viewed as
simple frequency counts for a random variable with two pos-
sible outcomes.

Although the formal description allows for any coin costs,
in this paper we will assume that the costs are uniform:
S(C;) =1 Vi, and that the budget b is a positive integer.
Finally, as we are studying active model selection because
of its relationship to budgeted learning, we are typically in-

terested in values of b that are not much greater than n
(typically b = n x k, with k& a small positive integer), as
most budgeted learning algorithms will act reasonable when
b is much larger than n. In fact, in the case where b is very
large relative to n, even a simple policy (e.g. purchasing
every feature of every instance) will yield a training set that
can produce an accurate classifier, and so these scenarios are
not of great interest from a budgeted learning point of view.

2.2 Mappingto budgeted learning

As mentioned in Section 1, active model selection is highly
related to budgeted learning because it mimics the pure ex-
ploration phase (i.e., purchasing features of labelled train-
ing data), followed by the one-time reward phase (i.e., the
classification accuracy of the final learned classifier). In
addition to this relationship, optimal active model selec-
tion is equivalent to optimal budgeted learning of a depth-
one decision tree, albeit with some rather strict assump-
tions. Specifically, given a binary class Y and n candi-
date features {R;}i=1..n for a classification task, assume
P(R; = 1Y = 0) = 0 Vi. Then the best feature to use
as a depth-one decision tree is: argmaxg;, P(R; = 1Y =1).
Set coin C; to be feature R;, X; to be P(R; = 1Y = 1),
and let flipping coin C; be equivalent to purchasing feature
R; on a random Y = 1 instance. Then a policy 7* that
maximizes the expected head probability of the chosen coin
(Equation 3) also maximizes the expected accuracy of the
chosen depth-one decision tree.

2.3 Standard Policies

Previous research has considered some simple policies for
active model selection.

Round Robin (RR). The most intuitive algorithm is to allo-
cate flips evenly over the coins, proceeding in a round-robin
fashion. When b = n x k for an integer k, and all coins have
unit cost, RR will flip each of the n coins k times. Despite
its fair distribution of flips, the ratio of RR’s expected regret
to the expected regret of the optimal policy can be made ar-
bitrarily large [11]. Fortunately, more effective policies than
RR are known.

Biased Robin (BR). The BR algorithm repeatedly flips a
coin C; until a tail outcome occurs. Once a tail is observed,
BR moves to the next coin, Cit1, and repeats the process.
(Of course when the last coin turns up tails, BR moves back
to the first coin). This simple algorithm is well known in
statistics as “play the winner” [14] and has been previously
studied as a sampling method for clinical trials [6]. Its per-
formance on the coins problem has been very strong in the
case of identical starting priors. Despite its competitive per-
formance, BR is a suboptimal policy. In fact, we can show
that the number of suboptimal decisions made by BR can
be made arbitrarily large:

PROPOSITION 1. Given any positive integer K > 1, there
exists a problem with n = (K +2) Beta(1,1) coins, and bud-
get b= (2n + 3) such that the BR policy takes a suboptimal
action at least K times.

Sngle Coin Lookahead (SCL). The SCL algorithm com-
putes the expected regret (Equation 2) of the policy that

19

devotes all remaining flips in the budget to a single coin C;.
Whichever coin yields the policy with lowest expected regret
is flipped once, and then SCL repeats the previous calcula-
tion with its reduced budget to choose the next coin. Like
BR, SCL has strong performance, but is still suboptimal.
In particular, SCL suffers in situations where multiple coins
must interact heavily to produce the optimal policy. This
occurs because SCL computes a score for coin C; without
considering how the remaining n — 1 coins could interact
with C; to improve its policy. These deficiencies in the sim-
ple strategies offered by BR and SCL motivate the need for
a more robust policy.

3. THE MDP FRAMEWORK

The active model selection problem is a finite-horizon Markov
Decision Process [15] consisting of a set of states S, a set of
actions A, a reward function R, and a transition function
T. Specifically, we identify a state s € S of the MDP by the
remaining budget &', and by the collection of Beta hyperpa-
rameters over the coins. That is, a state is a 2n + 1 element
vector of the form: (b, a1,f1, ..., an,Bs). The complete
set of reachable states corresponds to all the possible pos-
terior Beta distributions that can occur over the n coins by
spending some portion x of the original budget b, with < b.
Since no more actions can be taken once the budget is ex-
hausted, the terminal states are those in which ¥’ = 0. The
actions of the MDP correspond to the n different coins that
can be flipped, where action a; € A corresponds to flipping
coin 3.

The reward function R(s, a, s') specifies the reward of tak-
ing action a from state s and reaching state s’. In the coins
problem, the reward received in any non-terminal state (i.e.,
where the remaining budget is positive) is zero, while the re-
ward at a terminal state is the regret of choosing a coin C*
that might not be the best: Regret(C™). Since our goal is to
minimize the expected regret, it makes more sense to think
of the rewards as costs (to be minimized) in our context.

In many MDPs, the reward at future time steps is valued
less than immediate reward, and so a discount factor v <1
is used to multiply future rewards to reduce their value. In
the coins problem, future rewards are no less valued than
immediate rewards (in fact the only reward that matters is
the one received on the last time step), and so we have y = 1
in our MDP formulation.

Finally, the transition function T'(s, a, s') specifies the prob-
ability of reaching state s’ after taking action a from state
s. In our Bayesian formulation, T(s,a,s’) can be conve-
niently computed using the mean of the Beta distributions
over the coins. For example, T'(Beta(4,2), C;, Beta(5,2)) is
calculated as the expected probability of coin C; turning up
heads: E(X;) = 4/6. As the transition function specifies
probabilities, we often use P(s,a,s’) in place of T(s,a,s’).

3.1 The Optimal Policy

Given the MDP formulation, there are a number of tech-
niques that can be used to solve for the optimal policy ex-
actly [17]. For example, a bottom-up dynamic program can
use the Bellman optimality equation to learn V"*, the ex-
pected value of each state under an optimal policy:

V™ (s) = max) P(s,a,8)[R(s,a,8") + V" ()] (4)

Beginning at the end states in which ' = 0 and performing

Table 1: Feature sets used for approximating the
value function

Features Groups Included In Set

1 Budget, Beta Hyperparameters

2 Budget, Means and Standard Deviations

3 Budget, Confidence Interval Stats

4 Budget, Mean Stats, Confidence Interval Stats
5

Budget, Lookahead Stats, Confidence Interval Stats

a backward sweep toward the initial state b’ = b, the op-
timal value function can be completely determined. With
the known transition and reward functions, the optimal pol-
icy #* then follows immediately via greedy one-step looka-
head. Unfortunately, the state space of active model selec-
tion grows exponentially with b and n, making it intractable
to compute the optimal policy using exact methods such as
dynamic programming. This leads to the natural alterna-
tive: approximate dynamic programming via reinforcement
learning.

3.2 Applying RL to Active Model Selection

The MDP formulation coupled with the known environ-
ment dynamics (i.e., the transition and reward functions)
motivates a reinforcement learning approach to active model
selection. Repeated episodes of the MDP can be simulated,
with an RL agent exploring the space of actions, observ-
ing the resulting rewards, and gradually learning a policy to
minimize the expected regret.

For our RL investigation, we use tile-coding [17] as our
function approximation method and combine it with a tem-
poral difference (TD) learner [16] using an epsilon-greedy
policy. In general the combination of epsilon-greedy TD(\)
and linear tile-coding is attractive because there are strong
guarantees that the mean squared error between the approx-
imate learned value function and the true value function will
be near minimal [18]. As with any RL-agent, the number of
free variables that must be manually set for a TD()) tile-
coding agent is extensive. The large number of degrees of
freedom makes any exhaustive investigation of the param-
eters infeasible. Still, in our experiments, we explored a
wide range of points in the parameter space, including var-
ious values for the learning step-size (), the probability of
exploration (€), and the weight of n-step backups ().

For function approximation, we collected the obvious fea-
tures (e.g. the Beta hyperparameters, the remaining budget,
the means and standard deviations of the coins), along with
some more subtle attributes (e.g. confidence intervals, bud-
get based confidence intervals, variation among the coins,
odds ratios). Although our experiments tested numerous
combinations of features, we focus here on five feature sets
that are representative of the general trends we observed.
For each one of the five sets, Table 1 gives the names of the
different feature groups that are included in the set. (The
interested reader should refer to the appendix to see exactly
which features are included in each feature group.) For our
experiments of the next section, we trained five different RL
agents, where each agent used one of the five feature sets for
its function approximation.

20

Table 2: Expected regret of various policies

Policy (n=5, b=15) (n=8, b=16) (n=10, b=20)
BR 0.05669 0.07544 0.07210
SCL 0.05413 0.07342 0.07211

RL(setl) 0.05747 0.07830 0.07473
RL(set2) 0.056791 0.07896 0.07390
RL(set3) 0.05555 0.07528 0.07385
RL(setd) 0.05545 0.07464 0.07248
RL(setb) 0.056537 0.07507 0.07280

Expected Regret Comparison (n=8,b=16)
0.076 T T T

0.0755 1

0075 f\s\/a/j

—=— RL(set5)
o BR q
—— SCL

0.0745

Expected Regret

0.074 b

0.0735 1

0.073, L L L
0 0.25 0.50 0.75 1.0

Lambda

Figure 1: Various values of lambda — BR and SCL
still superior to RL

4. EMPIRICAL RESULTS

We conducted experiments on three problems of increas-
ing difficultly, where each initial coin prior was a uniform
Beta(1,1). For each experiment, the expected regret (Equa-
tion 2) was calculated for BR, SCL, and the five different
policies learned using a TD(0) RL agent. The number of
training episodes for the RL agents was set to 1.8 million for
the two smaller problems and to 2.8 million for the larger
problem. The results are shown in Table 2.

The results indicate that for all problems considered, ei-
ther BR or SCL produced the smallest expected regret. In
fact, no RL policy is able to beat either of the simple poli-
cies in the case of ten coins and a budget of twenty, and no
RL policy is able to beat SCL on any of the problems. We
have observed that on larger problems (e.g. ten coins and a
budget of thirty), BR beats SCL and RL policies easily. The
results of the experiments reveal that despite the extensive
number of states observed during training, the RL policies
are not generalizing well enough between states to beat the
simpler policies.

Additional experiments were run on the n = 8, b = 16
problem with different values of A for the TD()) learner.
For example, Figure 1 shows the results of varying A when
using the fifth set of features for function approximation.
For all values of A considered, the policies learned by RL do
only slightly better than BR and are inferior to SCL. The dif-
ference between the various TD(A) learners is not dramatic,
but the expected regret is lowest with an intermediate value
of A =0.5.

Expected Regret Comparison (n=10,b=20)
0.0728 T T T

—&— RL(set5)
o BR
—— SCL

0.0727

0.0726 -

0.0725

0.0724

Expected Regret

0.0723

0.0722

0.0721

0.072
25

3 35 4 45
Number of RL Training Episodes (in millions)

Figure 2: Various amounts of training, RL still ex-

hibits lower performance than simple policies

Table 3: Resources used by each policy on n=10,
b=20

Policy Training time (mins) Memory Used (MB)
BR 0 0
SCL 0 0
RL(set 5) 630 760

A possible explanation for the lower performance of RL
is that not enough training episodes are being experienced.
Additional training should permit an RL agent to increase
its exploration of the state space, and yield a better policy.
To test the effect of increased training, we conducted exper-
iments on the n = 10, b = 20 problem in which we varied the
number of training episodes from two and a half million up
to an even more generous four and a half million. Learning
took place with a TD(0.5) learner, using one of the strongest
RL feature sets we tested, set number five. The downward
sloping trend of Figure 2 suggests that increased training
does improve the resulting policy; however, even after four
million episodes, the expected regret of the RL policy is still
larger than BR and SCL.

For further comparison, we consider the training time and
memory required by BR, SCL, and the RL policy after four
and half million training episodes. The memory considered
is only the policy specific storage (i.e., above and beyond
the basic elements such as the beta hyperparameters and the
budget that is generally required by all policies). Examining
Table 3, we see that even using almost 800 MB of main
memory, RL does not gain a significant advantage over the
virtually memoryless BR and SCL routines.

As these experiments show, the performance, speed, and
low memory requirements make the simper BR and SCL
policies preferable to the use of reinforcement learning. Al-
though it should be possible for an RL agent to do better
than these heuristic policies, the experimental results indi-
cate that (at least) more cleverly designed features or a bet-
ter type of function approximator will be required to achieve
this.

Perhaps the clearest argument against using RL for active

21

model selection (and hence general budgeted learning) is
the opportunity cost of conducting the necessary training.
That is, although experience is easy to generate, the time
and memory used to train RL methods could be equally
well spent running a bottom-up dynamic program (as in
Section 3.1) that solves for the optimal value of each state.
The dynamic program could compute the optimal policy
from some select set of states in the same amount of time it
takes a reinforcement learning agent to complete training. In
effect, the optimal values from this select set of states could
be easily combined with the BR or SCL policies to lower
their regret even further, and make it yet more difficult for
RL methods to compete with these heuristic policies.

Overall, the poor performance demonstrated by RL meth-
ods in our experiments suggests that when considering the
larger and much more complicated problem of general bud-
geted learning, the MDP formulation should be avoided, and
one should focus on more tractable heuristic policies that
have been shown to work effectively [7, 9].

5. RELATED WORK

Active model selection was originally introduced in [10],
although several similar problems have been previously stud-
ied. The well-known multi-armed bandit problem [14] is
concerned with finding the best object among a set, but
rewards are typically accrued throughout, without distin-
guishing training from testing phases. By contrast, active
model selection gives no reward until the final coin is se-
lected, and thus more accurately represents the pure training
phase of budgeted learning. Strategies from the adversarial
bandit formulation [1] could also be adopted for our prob-
lem, but the adversarial assumption is unnecessarily strong
for our case, and thus less defensive algorithms can usually
perform better on active model selection. A more recent
bandit-variant, the max k-arm bandit [3], shares our notion
of maximizing a single reward over the duration of the MDP.
However, [3] allows the single reward to occur on any time
step, as opposed to strictly at the terminal states.

Duff [5] studied the Bayesian MDP formulation in ac-
tive model selection, as a Bayes Adaptive Markov Decision
Process (BAMDP). That study also considers various RL
methods to approximate an optimal policy for BAMDPs,
and chooses some of the same types of features for function
approximation that we consider in this work. Moreover,
the experimental results concur with our findings, as [5]
also reports a gap between the reward of the learned RL
policies and the optimal policy. Besides RL, another po-
tential strategy for active model selection is online sparse
lookahead [19, 8]. Unfortunately, given the size of the state
space, we have found that any tractable (truncated) looka-
head usually yields a higher regret than the simple BR and
SCL policies.

Numerous results from Machine Learning are related to
the coins problem, as they too are concerned with the no-
tion of costs at training time. There are too many works
to mention here, but some relevant examples include bud-
geted learning [7, 9], active learning [4], active feature value
acquisition [12], and progressive sampling [13]. The field of
experimental design [2] is also related, as it deals with how
to make finite allocations among objects.

6. CONCLUSIONSAND FUTURE WORK

Despite their known shortcomings, the Biased Robin and
Single Coin Lookahead strategies yield low expected regret,
and thus an interesting open problem is determining their

approximability characteristics.

Since features will often

have different costs in the general budgeted learning prob-
lem, another avenue for future work involves removing the
assumption that coins have identical costs, and finding ef-
fective strategies in this context. Finally, the fact that the
optimal solution can be computed for small versions of the
active model selection problem may be useful in deriving an
approximation algorithm. One possibility worth exploring
is to use careful abstractions to transform large problems
into a more tractable, solvable size.

Contributions: This paper investigates the use of rein-
forcement learning to develop policies to address the active
model selection task. We describe deficiencies in the best
existing policies, which motivate the need for a more robust

solution.

We extensively train multiple RL agents using

different feature sets for function approximation. Our ex-
periments, on various size problems, demonstrate that the
simple policies are able to achieve lower regret with far less

computation than the learned RL policies.

These results

are most helpful when considering approaches for the general
problem of budgeted learning. Specifically, in the absence of
better features for function approximation, we recommend
not applying RL techniques to the higher dimensional and
more difficult budgeted learning problem, as we anticipate
they will prove ineffective.

Acknowledgments
Both authors wish to thank NSERC and iCORE for their

generous support.

We also thank Dan Lizotte and Omid

Madani for insights on various related problems, and the
anonymous reviewers for their comments. Russell Greiner
also thanks the Alberta Ingenuity Centre for Machine Learn-

ing.

7.
[1]

[5]

[6]

[7]

REFERENCES

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire. Gambling in a rigged casino: the adversarial
multi-armed bandit problem. In Proceedings of the
36th Annual Symposium on Foundations of Computer
Science, 1995.

K. Chaloner and I. Verdinelli. Bayesian experimental
design: A review. Statistical Science, 1995.

V. A. Cicirello and S. F. Smith. The max k-armed
bandit: a new model of exploration applied to search
heuristic selection. In AAAT, 2005.

D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active
learning with statistical models. In Advances in
Neural Information Processing Systems, 1995.

M. Duff. Optimal learning: computational procedures
for Bayes-adaptive Markov Decision Processes. PhD
thesis, University of Massachusetts Amherst, 2002.

D. Hoel and M. Sobel. Comparisons of sequential
procedures for selecting the best binomial population.
In Sizth Berkeley Symposium on Mathematical
Statistics and Probability, 1971.

A. Kapoor and R. Greiner. Learning and classifying
under hard budgets. In Furopean Conference on
Machine Learning, 2005.

22

[8] M. Kearns, Y. Mansour, and A. Y. Ng. A sparse
sampling algorithm for near-optimal planning in large
markov decision processes. Machine Learning, 2002.
D. J. Lizotte, O. Madani, and R. Greiner. Budgeted
learning of naives-bayes classifiers. In Proceedings of
Uncertainty In Artificial Intelligence, 2003.

0. Madani, D. J. Lizotte, and R. Greiner. Active
model selection. In Proceedings of Uncertainty in
Artificial Intelligence, 2004.

0. Madani, D. J. Lizotte, and R. Greiner. Active
model selection. Technical report, University of
Alberta, 2004.

P. Melville, M. Saar-Tsechansky, F. Provost, and

R. Mooney. Active feature-value acquisition for
classifier induction. In ICDM, 2004.

F. Provost, D. Jensen, and T. Oates. Efficient
progressive sampling. In International Knowledge
Discovery and Data Mining Conference, 1999.

H. Robbins. Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical
Society, 1952,

S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2002.

R. S. Sutton. Learning to predict by the method of
temporal differences. Machine Learning, 1988.

R. S. Sutton and A. G. Barto. Reinforcement
Learning. The MIT Press, 1998.

J. N. Tsitsiklis and B. V. Roy. An analysis of
temporal-difference learning with function
approximation. IEEE Transactions on Automatic
Control, 1997.

T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans.
Bayesian sparse sampling for on-line reward
optimization. In International Conference on Machine
Learning, 2005.

APPENDIX
A. PROPOSITION ONE

PRrROOF. Proposition 1. There are numerous ways to prove
the proposition; we use a simple subproblem to obtain the
result. Consider a state, Q, in which & = 1, there exists
two Beta(3,2) coins, and (n — 2) Beta(2, 2) coins. It is easy
to verify (using Equation 3) that the optimal action in Q is
strictly to flip a Beta(3,2) coin. To prove the proposition,
we show that BR encounters at least K different variants of
Q in which it chooses to flip a Beta(2,2) coin.

Let there be n = K + 2 coins, and a budget of b = 2n +
3. Notice the budget is such that state QQ is guaranteed
to occur under BR'’s strategy. In fact, Q occurs multiple

9
[10]
[11]
[12]
[13]
[14]

[15]
[16]
[17]

18]

[19]

times because there are distinct ways to place the two

n
2
Beta(3,2) coins. We also note that since the number of
tails on all n coins is equal, we are guaranteed that BR will
be currently flipping the first coin in the set. Thus, BR
will make a suboptimal decision whenever it reaches state
Q with the first coin being one of the Beta(2,2)s. Observe

that there are distinct versions of state Q in which

n—
2
the first coin is a Beta(2,2). Now the proposition follows

from the fact that: (n; 1) = (n—1)2(n—2) = (K+21)K > K

forall K >1. O

B. FEATURE GROUPS

Budget

e remaining budget (b')
Beta Hyper Parameters

e a; Vi=1l.n

e 3 Vi=1l.mn

Means and Standard Deviations

o u; Yi=1l.n

® J; Vi=1.n
Mean Stats

® maX; Wi

e min; p;

® 27, i
Lookahead Stats

e max; #"ﬁb,

° E’ (&1+5i+b’>
n

Confidence Interval Stats

e max; (u; +1.9605) (95% interval)
e max; (pu; + 1.280;) (80% interval)
e max; (u; +0.670;) (50% interval)
e max; (u; +0.1260;) (10% interval)
o > . (pi +1.960;)

> (i +0.12607)
max; (u; +b' x o)

o > (pi +b x0v)

23

