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Preface 

Early work in predictive data mining and machine learning rarely addressed the complex circumstances in 
which knowledge is extracted and applied. It often assumed that training data were freely available and 
focused on simple objectives, namely predictive accuracy. Over time, there has been a growing interest in 
the machine learning and data mining communities in research addressing economical data acquisition, 
utility-based methods for knowledge induction and application and methodologies for evaluating the 
utility derived from data mining techniques.  

This workshop explores the notion of economic utility and how it can be maximized throughout the data 
mining process. As of today much of the work focuses on a single aspect data mining. The workshop 
aims to bring together researchers from data mining and machine learning to share their perspective on 
key challenges in utility-based data mining and how individual contributions made thus far can be 
combined towards a comprehensive utility-based methodology.  

We believe the very positive response we have had from both academia and industry indicates the 
importance of utility-based data mining research and hope that the workshop will promote a fruitful 
exchange of ideas to further advance the field.  

We would like to thank all the researchers that submitted their recent work, our Program Committee, and 
our invited speakers, Naoki Abe, Robert Holte, and Foster Provost for their generous contributions to this 
workshop. 
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Utility-based Data Mining 

 

Foster Provost 
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ABSTRACT 

Data mining requires certain information—for example, 
supervised learning requires training data.  Some prior research 
has recognized that this information often does not simply present 
itself for free, but involves various acquisition costs. In addition, 
applying the learned models involves costs and benefits.  I 
introduce a general economic setting that includes as special cases 
the settings of many different streams of prior research, such as 
cost-sensitive learning, traditional active learning, semi-
supervised learning, active feature acquisition, progressive 
sampling, and budgeted learning, which are interwoven 
inextricably.  For data mining in the general setting I suggest a 
strategy of maximum expected-utility data acquisition. Finally, I 
discuss how there are many open research issues that must be 
addressed.  As a simple example, we must be able to deal with the 
seemingly straightforward problem of handling missing values in 
induction and inference. 

See http://pages.stern.nyu.edu/~fprovost/ for more details 
(forthcoming). 
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Machine Learning Paradigms for Utility-based Data Mining ∗
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ABSTRACT
In this talk, I will describe a number of machine learning
paradigms that are relevant to utility-based data mining,
and review some key techniques and results in each.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning - Induction; H.2.8
[Database Management]: Applications - Data Mining

General Terms
Algorithms

Keywords
Machine Learning, Cost-sensitive Learning, Reinforcement
Learning, Active Learning, Data Mining

There are a number of ways to introduce utility in machine
learning, depending on the application scenario. One nat-
ural way to introduce utility is in terms of the cost assigned
to misclassification errors, and this is the so-called cost sen-
sitive learning [4]. Another way in which utility can be in-
troduced is by considering the cost of data acquisition. This
aspect has been rigorously formulated as Economic Machine
Learning by Provost (c.f. [7].) One paradigm of machine
learning that pays special attention to the cost of data acqui-
sition, in addition to the predictive quality of the obtained
hypotheses, is active/query learning [2]. The standard active
learning paradigm assumes, in effect, that acquiring each
example is equally costly, but it readily admits generaliza-
tions to accout for general cost structure. Another machine

∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. UBDM ’05
, August 21, 2005, Chicago, Illinois, USA. Copyright 2005
ACM 1-59593-208-9/05/0008 ...$5.00.

learning paradigm, which we might collectively refer to as
active on-line learning addresses the issue of optimizing the
combination, and trade-off, of losses incurred during data
acquisition, and those associated with the predictive quality
of the final hypothesis. Some examples of learning para-
digms that fall within this general class include the classic
bandit problem [3] and its generalizations and associative
reinforcement learning [5, 1]. Theories have been developed
on these learning paradigms, which provide learning strate-
gies that come with theoretical guarantee on the total losses,
inclusive of the two types of losses. Finally, a comprehensive
paradigm of machine learning, which includes all of the ones
mentioned so far as special cases, is reinforcement learning.
Indeed, some authors have embedded instances of utility-
based data mining problems within the MDP framework
(e.g. [6]). While the MDP formulation is the most general,
it does not necessarily follow that it will be the most effec-
tive in practice. When the problem at hand falls into one of
the special cases discussed, the theory and methodology in
that special case may be the most effective. I hope to draw
some examples of real world applications, for which some of
these special cases have indeed proved to be satisfactory.

1. REFERENCES
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Reinforcement learning with immediate rewards and
linear hypotheses. Algorithmica, 37(4):263–293, 2003.
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[4] C. Elkan. The foundations of cost-sensitive learning. In
Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, pages 973–978,
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[5] L. Kaelbling. Associative reinforcement learning:
Functions in k-dnf. Machine Learning, 15(3):279–298,
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[6] A. Kapoor and R. Greiner. Reinforcement learning for
active model selection. In Proc. ACM SIGKDD
Workshop on Utility-based Data Mining, 2005.

[7] F. Provost. Economic machine learning. In Proc. ACM
SIGKDD Workshop on Utility-based Data Mining,
2005.

2



Cost-Sensitive Classifier Evaluation

Robert C. Holte
Department of Computing Science,

University of Alberta,
Edmonton, Alberta, Canada, T6G 2E8

holte@cs.ualberta.ca

Chris Drummond
Institute for Information Technology,
National Research Council Canada,
Ottawa, Ontario, Canada, K1A 0R6

Chris.Drummond@nrc-cnrc.gc.ca

ABSTRACT�����������
	���
���������������������������� �!��"���
#���$��
%�&���'�(	�)*����
�����	����'�$����	�	���
��
���+�(	��,�����'-.	�� �!��/0�
�,12���3	�-#�4�'�����,�
	���
��5���'
#1���	����'
#�768"&�����������������#)
���!	����'
9���'�(	��&�!
�1:����������1;���(	�����<���	����'
��,=>�!���?�#@;�A15��
#1:B;
��A/C
ED
FG-#��
H	�-#���+���+
#�!	I	�-#�%�A�!���'J����'�!���#�!	����'
K���AL.�#�������I�:"&��	�-#�M1
�!�N�M�������!����O���
���������������������������� �!��"���
#���>�!�����'���P	�-��Q� �#���R�,�!
#���$�!�
����������<#���0�'�����,�
	���
#�P���'
�1;��	�����
#��D�ST-����U���!�����U�����M����/C�U	�-#�V�������������
	����W-�
#��L.�#�T� �!�N���X�!�����������V������� �!��"���
����C�;�����#������OA�!	����'
ZYQ	�-��0[]\Q^
�������_�CY���
#1+�
���'�����0	�-��!	T��	C���0��
���1��AL.�#�!	��P�`���0	�-#�a
#����1��0���E����)
�����!���,-#�����0�!
�1Z�;�,����	���	����'
������T��
������_���,�!����"&������	,��
.	b������������	���D�c*	
	�-���
I��-��A/C�]	�-#�!	]�Z1;��de�W����
.	0/0��fI�!�g�M������������O���
#�&���X�!�����������a������)
�`����"��!
#���IY:	�-��h�����(	+�������_�h��
.	����M1������A1i<MfijP����"&"&�'
#1:��
�1
ka�'��	��Z�
	QlQj�j>m n!o'o'o&Yh�
�_�W�����'"&���]	�-#�����>1����#������
#��������Dqpr���!�`	�)
/T�!���b���!�WB������V�����#������	���
��C�����_	�-#�������(	U���;���_����
#����f;�����U1�����������<��A1
��
I	�-����]�#�������C���a�A�'�!�����!<#���Q<.f+���'
.	,����	���
��>	�-#�������(	]����	�-����AD

1. INTRODUCTIONcs
+	�-����C�#�������AtAJ��'�;�]�`�.���#�]���a��
I	�-#�P�;�����#������OA�!	����'
%�!�b�>�������()
�����#���Am �>�������`����"���
����'D%ST-����>���$��
#�����0	�-��?�!	�	��,���W	����'���`�A�!	��;�����
�!�][]\Q^r�!
��!��f;�����qY%	�-��Z	��,�'1;����d9<���	u/N����
v� �������+��������	����'���,�
	��
�!
�1I	������Q���'����	����_�q�,�
	��3�A��
w<�����
w������
%1��������W	���f.D0px�'�.�M1w�M������)
�!����O��!	����'
+���y���������������W�0������� �!��"���
����P�!�����A/C�C�!
&��@;��������"&��
.	����V	��
��"&"&�A1;���!	�����fh�����$-��
/2/T�����g�&�����!�������#���Q�������`����"&�P��
�1I	�������"Z)
�#�!����	u/N�4���X�!�������������$Y%	��%������/C-#��
EJb��
#1v<.fz-��
/{">���W-yJg�'
��
���X�!�����������P�'��	����W��� ����"&�0�!	�-#������D

Fz�7�����(	�������	I	�-#�v1;�������#�������'
K	��i���������������A�
	����'
|������<#����"&�+��

/C-����W-&	�-#�W���a�
���a��
#��f>	s/T�3��������������DNST-��a"��!��
Z���'��
.	T�!�y	�-����V�#�!)
���W�N���V	��3��-��
/9	�-��
	AJ.���_��
>��
Z	�-����V�����(	�������	��A1Z�������'JM[]\Q^:�������'���
�
���w
#�!	?�7�'�.�M19�;�����#������OA�!	����'
H�!�Q�������������#���I���W��� ����"��!
#����DGcu

�#�!��	��������X�
�AJM	�-#��fZ1��3
#�!	0�������A/K��
.f&�!�E	�-��0� �'�����A/C��
#�Z��"&������	,�!
.	
�W@����W����"&��
M	,�!�yLM�����(	����'
��C	��><��Q��
��(/T�����A1h�M�������!����fe}

~ /C-��
	U���R���X�!�����������b^am �U���W��� ����"��!
#���C68��@;�����W	��A1����'�(	W=e�'���_��

�����������#�Q"&�������X�!���������A�
	�����
%���'�(	��]��
#1I���������]������<��!<#������	������,�

~ � �!�a/C-#�!	C"&�����������������#�A�!	����'
%�����(	��]��
�1?���������]������<���<�������	������
1��.���]���X�!�����������Q^H����	��������`����"�	�-��P	������;���!�R�������������#�����,�

t pa
I���!����fI�'���������'
I�!�g	�-#���C���!�����]�������A�!���A1+��
z� �!��D

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UBDM’05, August 21, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-208-9/05/0008 ... � 5.00.

~ � ���C/C-#�!	]"&�������������������A�
	����'
%���'�(	��]�!
�1+���X�!���a�;���'<#��<#������	������
1��.���C�������������#���Q^a�3����	��������`����"������!�������#����^0n'�

~ /C-��!	U���E	�-#�T1;��de������
#���N��
3������� �!��"���
#���N<���	s/T����
q�������������#���
^a�3��
#1I���������������W�Q^0n��

~ /C-��!	����R	�-��T�A�_���,�!�'�T�!���������`����"��!
#���N�������#��	��U�`����"������_���,�!�
��
#1�������
�1���
M	U���'�!�����!	�����
#�g���������������������T^�68�'D ��DR	�-#�N����������	��
���b�A)*�`�'��1h���������()s��������1#�
	����'
�=��

~ /C-��!	>���$	�-#�?��o_�����'
���1���
�������
M	��W���'�!�N� �!�Z�������������#���+^am �
������� �!��"���
#���
�

~ /C-��!	$���q	�-���������
#��������
#���768���]��
.f#=����C	�-#��1;��de������
#���?<��W)
	u/T����
+	�-��P�������`����"���
������!�U�������������#���Q^a����
#1?	�-#�a������� �!��)
"���
#�������g���X�!�����������Q^0n'�

ST-#���#�������q���$�!���_�!
#��O��A15�!�����#
#17	�-#�����?L.�#���(	�����
#��D%pC�`	����$�
<��������y�����M����/H�!�R��������
M	����!�y<#���,BM�����'��
�1&"��!	��W���X�!�8J.	�-#�����a���T�3������)
	����'
w1;���_�!	��A1?	��Z�����,-h���U	�-������3L.�#���(	�����
#��D

2. BACKGROUND�#�!�?n
)*���������������!�������#�A�!	�����
H�����'<�����"&�Z[]\Q^����#�����w�����4	s/T�!)
1���"&��
������'
��!�E������	0/C��	�-+	����������'����	����_���,�!	��&6 �a�3=V��
+	�-��PfM)u�
@;���
��
#1h�8�������$���'����	����_�$�,�
	��+6��Q�3=0�'
w	�-#�3@M)s�!@;����D�p|����
#�����$���'
;� �;)
�����'
h"��
	�����@&	�-;���T�����M1;�#�����C�>����
#�'���Q������
.	C��
I[]\Q^i���������'DVpa

[]\Q^z���;���_�T���g� ����"&��1q�`����"��P���AL.�#��
����T�!�����#�,->������
.	���J'��
�������1M)
��
#�$6�o;J o_=U�!
�1�6(�'J��
=WJ����'
�
#���W	��A1q<.f3����
#�V�����'"&��
.	���DUST-#�T"&��	�-��M1
�#����1�	��q�'��
����,�!	��]	�-#�a���AL.�#��
����P�!�R������
.	��N�`���]�3�'���_��
?�������������#���
68���N���A�!��
���
��>�!���'������	�-�"?=V1�������
�1;�V��
�	�-��a���X�!�����������ADV�#�!�T��@���"Z)
�#���'Jy/C��	�-z�P�����_�&�T��f.���&� �.JU�
�T�!
7[]\Q^��������_�$���Q�����M1������A14<Mf
���!��f;��
#�>��	��0	�-�������-#�'��1I�#�!�,�!"&��	����AD

pa
?[]\Q^����;���_�P��"&�#��������	���f?���'
M�_��f;�T��
;� ����"��
	����'
w�!<��'��	C���W��)
� �!��"���
����w���W���'���������]���'������<#���h���'"><���
��!	�����
#�Z�!��"&���������������������!)
	����'
w�����(	����!
�1I�����!����1����(	�����<#�;	����'
#�,��DVFv�3�#����	�-��Q	�����"��u��������)
�!	���
��+������
.	��&	��&����� �W�P	��?�&�������������$���'"$<#��
��
	�����
w���V"&����������������)
�����!	����'
h���'�(	��a��
�1?���������a1����(	�����<#�;	�����
#��D

\P
#�+���'��
.	���
�[]\Q^{�����!���w1;�'"&��
��
	�������
���	�-#�W��������	�-#�����
-#����-#����	������>��������	����_�$�,�!	��&�!
�14�?���A/T���Q� �������&���'����	����_�>�,�
	��'Dqcs�
���'��
.	&p�1;�'"&��
��
	����>������
.	Z�aJbp{/C�����C-#�
�'�+�%���A/T���&�W@�������	��A1
�����(	a	�-#��
w�G� �!���!���U�'�����,�
	���
#�&���'��
.	���DC\P
��Q����	a�������'��
.	��apx���
1���"&��
��!	���1><.f&��
���	�-����T�:/C-#��
&�A���,-&���'��
.	T��
�pG���N1;�'"&��
��
	��A1
<.f����'"&�a���'��
.	C�G��
#1?
��$������
M	C��
+�����C1���"&��
#�!	��A1&<.f?�$������
M	
��
wpqD
���upa�����>1;���(	�����<���	����'
��T�!
�1Z�����(	��V/C��	�-�������	,����
��(	,��
#1#�
�,1>�����(	�������)	����'
���D5�#���Z���������&1;���(	�����<���	����'
��v�(�!�����7"&�A��
��Z��
.f:�;�������Z�;���'<;)��<�������	������Z�`���>	�-��+���X�!�������Z/C-#�����?B_��������
��w	�-#�����������()*����
�1���	����'
#���������<��!<#������	�������JV���>����B'������-��.�M1���JN���'
��(	,��
.	I�����!��D:�#�!�Z�����(	��v�(�!�����"&�A�!
#�&�!���]����"><#��
#�!	����'
��Z���Q���'�(	��&���#�,-5	�-��!	?�%"&���������������������!)	����'
h���C"&�����P���'�(	���fI	�-#��
I�>������������	]���������������A�
	����'
ED

3



^N���(	z�������_���w/N�����5��
.	����M1;�#���A12��
{� nA��D��U�����`����"���
����K68��@M)
������	��A1:���'�(	�
�����"��!����O���1:	��4<��?<���	u/N����
io7�!
�1G�
=q���>�#����	�	��A1
��
:	�-#�&fM)u�
@;����Dv\P�����,�
	���
��%���'��
.	��>�
���I�#���!	�	��A1v�'
:	�-#�&@M)s�!@;���
�
�`	����]<�����
��>
#�!��"�������O��A1&	��><��a<���	u/N����
ho$��
#1%�P<MfZ���'"$<#��
#��
#�
	�-��Q���
�,��"&��	������C1;����
���
#�&�!
h�'�����,�
	���
#�Z������
.	]��
I	�-#�a� �'�����A/C��
#�
/T��fy}

���>6��Q=�� � 6��Q=
	#6
�
� �Q=
� 6��Q=
	#6
�
� �Q=�� � 6
�a=
	#6���� �a= 6(�A=

/C-�������	����������A���N	�-#�C�����(	T���y"&�����������������Xf���
��>�Q���'����	����_�]��@���"&�����
�!�Z
#���_�!	����_��J�	��
�����������Z	�-������'�(	>���a"&�������X�!�������`f;��
#�7�%
����_�
	����_�
�W@#�!"&�#���%������������	����_��J � 6��Q=>���&	�-��w�����'<#��<�������	uf9���q�7���'����	����_�
�W@#�!"&�#���'JC�!
�1 � 6
�a=������ � 6��Q=WDKST-#�w"&�!	����'�
	�����
9�`���?	�-#���
�V^K1����#
#��	����'
EJ���
#1I���'�(	a���;���_���C"&����������
#�W�,������f.J��������'��
#�!	����a��

	�-��>����"&�#���q����	����!	�����
4/C-���
7"&���������!�������#�A�!	�����
z�����(	��Q�!���$�AL.�����8D
cs
:	�-#���>�A�!���w���>6��Q= � � 6��Q=q�!
�1v	�-#��fM)s�!@;���><�������"&���>�W�������
�,�
	��'J;���q	�-��C���'�(	0�������_�]�#����	��N-#�A/G�������!�T�,�!	��]���!�������0�Q� ��
#��	����'

�!�C	�-#�&�������'�!����
#�������C��������	����'�?�W@#�!"&�#������DhST-#�!�N^r1��W��
#��	����'

����
#�W�,������O����N	�-����b��1��A�P	��a	�-#�C�A�����0/C-���
Z/C-#��
>"&�������X�!���������A�
	�����

���'�(	��Z�
���&
#�!	>�AL.�#���8DhST-��!�N^x� �!��">���X�h���q��
M	���"��
	�����f4	����A1z	��
	�-��w1��W��
#��	����'
i���P	�-#�I���������w���Q�7����
��h��
9[]\Q^{���#�����'JN/C-#���W-
�����Af;�Q�&B_�Wfh���'���>��
%[]\Q^2�!
��!��f;������DqST-#�3@M)s�!@;���P���V�����(	Q�����!���
���+�u�����'���q��
w[]\Q^K���#��������
�����"�������O��A1I	��&<��3<���	s/T����
wo���
�14�
��
��(	��A�'14���T<�����
��+<��W	u/T����
vo?��
#14��
��#
#��	ufv68-#���(	��������A�!����f4	�-#�������
-��A/2���'�(	a�������_���T/T�����Q��
M�_��
.	��A1#=WD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e 
Po

si
tiv

e 
R

at
e

False Positive Rate

"�""�"##

C4.5

1R

$&%('*)�+-,/.10�2�3�4658789;:�4*%=<�>@?

ST-������0���N�a���'��
.	BA!����
#�]1��#������	ufq<���	u/N����
Z[]\Q^z���#�����]�!
�1$���'�(	
���#������J�"&����
#��
���	�-��!	N�Q���'��
.	T��
�[]\Q^5���#�����]���V�����;��������
.	��A1&<.f
�q����
��P��
?���'�(	C���#�����'J��3����
�����
+[]\Q^5�����!�������T��������������
.	��A1&<Mf&�
������
M	a��
h�����(	������!���'Je�!
�1I�M�����3�_�������MDCpx�����!�������#���P��������������
.	��A1
<.fh	�-��>������
.	&6��C�UJ SD�V=a��
7[]\Q^K���������Z���Q�+����
#�$��
4�����(	Q�����!���
	�-#�!	a-��!�&EF���Q��/C-#��
HGH�Ko&��
#1IEF�|�J�7�a��/C-#��
IGH���'D
ST-��+���W	Z���a���'��
.	��Z1;����
���
#�%��
5[]\Q^|�������'�?<������'"&�+�w����	Z�!�
����
#���Z��
i���'�(	&���#�����+�#���>��@���"&������JN�U���������%�I��-��
/C�$	�-#��[]\Q^
������
M	��U�`���g	s/T�]�������������������g�`����	�-#��K_���#��
������0�����A1;��	g1#�!	,�!����	g�`����"
	�-���LQ^NcN������������	�����f:������}T	�-��31#�!��-#�A1h������
.	]���a�`���]	�-#�q1�������������

�(	���"&�Z�����M1;�#����1Z<Mf?��[x� MA��J.	�-#�C���'����1&���'��
.	N���V�`���V	�-#�]1�������������

	������?�;���M1������A1z<.fv^N��D �v���An
��D4�b���,-:���'��
.	><������'"&���$�h����
�����

���'�(	a���������'J��!�C��-#�A/C
h��
w�U���'�;���qnMD
N ���_��
I	�-#�����'�(	]����
����C� ���P�>����	]�!�g���������������W����Jy�>���'�(	]���;���_�����

�W���A�!	��A1�<.f&1;������1���
#�Q/C-����,-����������������W�T	��$�����]�`���N���_����f&����������<#���
�������,�!	���
��q������
M	AD�c*�uJ_�`���N�A���,-&�'�����,�
	���
#�q���'��
.	AJ_	�-#�0�����!�������#���0���
�,-#������
�	�-��!	V"&��
#��"&��O����V
#����"��!����O��A1&��@;������	��A1&�����(	AJ.	�-#�C�������#��	�)

0 0.1

0.05

0.2

0.1

0.3

0.15

0.2

0.4

0.25

0.5 0.6

0.3

0.35

0.7 0.8

0.4

0.45

0.9

P(+) − Probability of Positive

0.5

0

E
rr

or
 R

at
e

1

$J%O'*)P+Q,SRT0
9
41+-+-,U?V:�4*<�W�%=<�'X9
4*?V>�Y�%=<�,�?

��
#�?���'�(	��������_�3���P	�-��$���A/T���3��
;�'�����'���q���b	�-#�q�'���_��
4���'�(	�����
�����J
	�-#��1����!�E�!�g	�-#��[]\Q^����'
M�_��@?-M�#���8D

3. VISUALIZING PERFORMANCE[]\Q^��!
��!��f;������1��.���Z
#�!	&1��������W	���f5���'"&"&��	$	��7��
.f:�#�!��	������;)
���!�$"&�A�����;���Z���T������� �!��"���
#���'D+ST-#���$���3���'"&�W	���"&���Q���'
����X1;�����A1
��
%��1�����
.	,�������'���]�`�A�!	��;���$�!�b[]\Q^H�������_����D0�#���P��@���"&�#���'JUZV��

[]� [u��<������'��
|���A�
�3L.����	����!\./T��	��4���@]!�a/C-#�5�
���'�#���?	�-#�!	�	�-#�������
�#���W� �#�R���a��	a"&�A�!�����������(1;����������"&��
#�!	����'
%���A/T�W�P��
�1;������
#1���
.	]���
��
.fS^ �!�������;	,��<#���Z�W����	��W������
Eme��"&�����
f_�A1��;D_�g���!�'�'�(	3�!
�1%����/T���W	�	
���#<��(	,��
.	����!	���	�-#���U�
���'��"&��
.	R<.f���-��A/C��
��]	�-#�!	R[]\Q^41;�'"&��
��!
#���
��"&�#�������U�����������������������`����"���
����V�`���b�C�'�
������	ufQ�!������"&"&�'
���fM)*�#����1
�������`����"���
����P"&�����������������Ao!��DVST-#�a[]\Q^5�����;��������
.	,�!	�����
h�������A/C�
��
���@;��������"&��
.	����Z	��z�����7L.�����,BM��f5�����'
#�w���X�!�����������I1���"&��
#�!	����
��
���	�-����0�!
�1Z	�-#�����W� ������J�������
#�Q	�-#�]���'
M�_�W@Z-M�#���8J.	��3�X1;��
.	����`f&���!)
	���
.	���������f4�'��	���"��!�b���X�!�������������3�M������������f%/C��	�-#�'�;	3���'"&"&��	�	���
#�&	��
�>�����������#�Q������� �!��"���
����Q"&�A�����;���'D

�#�!�N��@��!"&�#���'JM�U���'�;���&]3��-��A/C�T�Q����	V���y[]\Q^5������
M	���� �!�C^N�;D �
�'
%	�-#�q���'
#�!�31��!	,������	��X���'" 	�-���L�^Nca������������	����'
ED$�b���,-7������
M	
���!�����������'
#1��g	����a1���de������
.	�����	�	���
#�a����	�-��N�����!�������#�A�!	�����
Z	�-�������-;)
�'��1Z�#�!�,��"&�W	����AD����_��
$	�-��'���'-Z[]\Q^:��
#����f;�����T1��.���V
���	b���'"&"&��	
	�����
.f?���
��	������#���!�a"&�A�!�������Q�������W��� ����"��!
#���3��	]���a�(	������R����������<����
	��7�����'19������	,����
����W��� ����"��!
#���W)*�����X�
	��A19��
;� ����"��
	����'
9�X���'" 	�-����
���������'Dg�#���b��@���"&�����'J_���W��	,����
&[]\Q^v���'��
.	��V�
���C�'<M�M�����#����f>1��'"Z)
��
��
	��A1&<MfZ��	�-#�W����J;��
�1Z�X���'"�	�-��a�M�������!����f���<M�;�����#�V� ����	0	�-#�!	T�����
	�-#�C[]\Q^5���'��
.	��N�
���a/T��������<��
�_�C	�-#�C�W-#��
����a����
#��J.	�-#�]1��������'
#���
[(����
#��
#�i6�o;J o_=3	��i6(��J��
=WJV�'
#�+�A��
5�A�!������f5�����?	�-#�!	>	�-��I1;�����������'

	��������C�������`����"�/T�����y�
�_���,�!���8D

�N����
�����
�1�������
�1;��
.	U������
.f3���
��	������#���!�b�������`����"���
����T"&�A�!�������
�A�!
H<��7�51;������1�����
.	,�����w/C-#��
H��
#�%-��!�h�v���
��	������#���!�I������� �!��)
"���
����C"&�A�����;���a��
�"&��
�1eDU[]\Q^i�������_���N1��3
#�!	N�M�������!����f?1;���#����	
	�-#�PL.����
.	���	,�!	����_�]�������`����"���
����P�!�U�3�������������#���]���T	�-���1���de������
#���
��
h�������`����"���
����Q<���	s/T����
?	u/N�Z���������������W����D

ST-#�&�������X17����
����3��
v�U���������&�w�
���Z	�-#�>	�-��Z�����(	$����
#���q�`���3	�-#�
�������������#�����q/C-��'���&[]\Q^x������
.	��3�
���&��-#�A/C
z��
v�U���������8];D&�V�!�W-
�����(	�����
��I��
��U���������I�7���������������'
�1;�>	��4�'
#�+���a	�-#�I��
#1����M�X1;���!�
[]\Q^�������
.	��Z��
9�U���'�����H];D9pa���T	�-#�?����
#�����#������
#�?1;�,��/C
5�`���'"
	�-#�q[]\Q^�������	AJy��
#1w"&�����'Je�A�!
%<��>"��'1;�Q�`���'" �+L.�����,BI�M�������!�
��
#�������W	�����
H���Q	�-����?�����(	+�������_�w�����!	AD|ST-��w���A/N���h��
M�_���������w���
�M������������fw��<;�M���'���P�!�P���a	�-��Q�8���W	P	�-��
	Q^N�;D �Mm �Q1�������������
4	������3/C�����

#���_���h-#�A�_�4�5
�����"��!����O���1���@;�����W	��A1G���'�(	h-#���'-����I	�-#��
2n'���?D
\P
#�V�A��
>�������Q�����N	�-#�!	g	�-������T�
���0"���
.fQ�,-#�'�������b�!�������!�������#�A�!	�����


4



1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8

T
ru

e 
Po

si
tiv

e 
R

at
e

$J%O'1)�+-,���0 58789��&4*%=<�>@?���41+ 9��	��
�4*< >
��,��T4*<�� +�W	� >�� ?V, >

0.
5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

Probability_Cost(+)

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

$J%O'*)�+-,���0�9
41?V>FY�%=<P,U?!9�41+-+Q,�?V:�4*<�W�%=<�' >V4/$J%O'*)P+Q,��

	�-;������-#����15	�-#�!	q�������#��	&��
5
#�A�
��)*�'��	���"��!�T
#�!��"�������O��A1:��@;������	��A1
���'�(	]/C-#��
I���>6��Q=N���C
��A�!�ao�� �.D

4. COMPARING A CLASSIFIER TO THE
TRIVIAL CLASSIFIERScs
z�!
z[]\Q^x1;�������,�!" ���'��
.	��Z6�o;J o'=3�!
�156(�'J��
=P�����;��������
.	�	�-��

	������M���������X�!��������������}]6�o;J o'=g�����;��������
.	��N���X�!�������`f;��
#�$��������@���"&�������b���

����_�
	����_�'Jy��
#1v6(�'J��
=0��������������
.	��a�����!�������Xf;��
��h�!���R���'��
.	��P�!�P���'����)
	����_��DNST-��Q���'�(	a����
#���0� �!�a	�-������Q�������������#�������
����	�-#�Q1�����-#��1I����
����
��-��A/C
7��
7�U���������Z�;DqST-#�>1#����-��A1%����
��$�`����" 6�o;J o'=]	��z6�oMD �.J o;D �'=
����	�-��>�����(	Q����
��>� �!�Q	�-#�$�����������������Q	�-#�!	Q���X�!�����������q��������@���"&�������
�!��
#���_�!	����_��JR�!
�1h	�-#�$1����!�'�'
#���g����
#�q�`���'" 6�o;D �MJ oMD ��=P	��46(��J o_=a���
	�-��3���'�(	P����
��q�`���P	�-��$���X�!�����������a	�-��!	P�����������������Q�����U��@��!"&�#�����a���

���'����	����_�'D
ST-#�3�������,�!	���
#�&�,�!
#�'�3�!�N�Z���X�!�����������Q���C	�-#�3����	a���b�'���W�,�!	���
#�

���'��
.	��a/C-������3��	��'�;	�������� �!��"&�]	�-��q	������M�����U���X�!��������������DPp�������������)
���W����-#�'����1>
#�!	�<��0�#���A1q�'��	�����1;�0��	����������,�!	���
#���,�!
#���'J_����
#���0�'
#�
�A�!
z�'<;	,����
z���������������3�������`����"��!
#���Z<.f%�!�������'
#��
��%��������@���"&�#�����
	��&�>����
��'���3����������D

ST-#�P�'�����,�
	���
��>�,��
��'�Q�!���>�������������#���]�A��
�
#��	]<���������
+���A��1�����f
��
&��
&[]\Q^z�������_�'DUcs	b���V1;����
��A1><.f3	�-#�0�����'�����V�!��	�-#�0����
#����	,��
;)
�'��
M	V	��q	�-��a[]\Q^5�������'�a�!
�1&���!������
#�3	�-����'���'-%6�o;J o'=N��
#1%6(��J��
=WD
�Vf:���'
.	��,���(	AJV�w���������������W�Am �&�������,�!	���
��4�,�!
#�'�?�A�!
i<��?��"&"&�A1���)
�!	�����f����A��1?�!d%���U�$�����(	C�������_��}g��	C���C1;����
��A1&<.fZ	�-#� �N^G�������#���
/C-#�W���P	�-#�a���'�(	0�������_�a��
.	�����������	��T	�-#�a1��������'
#���y����
����T��������������
.	�)
��
#�w	�-#��	������M�X�!�T�������������#������D5�#�!�Z��@���"&�����'J���
9�U���������?�4��	>�A��

<��]������
?��"&"&��1����!	�����f$	�-��!	T������	�-#�]���������������W���0<�����
#�q���'
����X1;�����A1
�������`����" /T�!�����Z	�-���
v�+	������;���!�V�����!�������#���q/C-#��
:�����|o����
�I�!�
�����9o�� �_�.D

5. CHOOSING BETWEEN CLASSIFIERScs�g	�-��Q[]\Q^K�������_���0�`���P	s/T�&�����!�������#����������������Je�A���,-w�������������#���
���h<���	�	����?	�-��!
H	�-#�%��	�-����I�`���%�:������	,�!��
K�,�!
#���z���$�'���W�,�!	���
#�
���'��
.	���Dgcu1���
.	����`f;��
#�]	�-#���g�,��
#���C�;�����#������f>����
#�!	V�����(f$��
>��
Z[]\Q^
1����!���,��"���
�1&������-#�����T�������;��������
��'��f&	�-#�]�����'�����
�_�W�C���'��
.	T���E	�-#�
[]\Q^��������'���3-����3����	�	�����	��%1;�I/C��	�-v	�-#�Z�,�!
#�'��D%^N�'
�����1����q	�-#�
[]\Q^7���;���_���U�`����	u/N�P�������������#������J_	�-#�N1��!	�	��A1>�!
�1q1#����-��A1$�������_���
�����U���������]�.D�ST-#�T�������X1$����
��0���U	�-��T�����'�������`����"��!
#���0����
#�T	,�!
#�'��
M	
	��+	�-��$	s/T�?[]\Q^2�������'����D>c*	��������'���>��������������
.	���	�-��>�'���W�,�!	���
#�
���'��
.	>�!	3/C-#���,-v	�-#�Z	u/N�w���������������W���>-��A�_�&��LM�#���V������� �!��"���
#���'D
�#�!�+�������,�!	���
��i������
M	������!�����������'
#1���
#�v	��:�(	����������?�����'������J]	�-#�
�������������#���3/C��	�-4	�-#�>1���	�	���14[]\Q^2�������_�$������� �!��"&�Q<���	�	�����	�-#��

	�-#�$���������������W�q/C��	�-4	�-#�&1�����-#��14[]\Q^2�������_�'D>ST-#�>�'�#��������	��Z���
	����#�a� ���]�������,�!	���
#�>���'��
.	��]����������������
�1���
��>	��>��-#�������
/N���a������������D

0 0.5 1
0

0.5

1

False Positive Rate

T
ru

e 
Po

si
tiv

e 
R

at
e

$&%('*)�+-,�
T0�58789���:���� ,69
+-4*?@?V4��*, +

�U���'�;���P�3��-#�A/C�N	�-��]���'�(	0���;���_���b���������������'
�1;��
#�3	��3	�-��a[]\Q^
���;���_���b��
��U���������P�MDgc*	N�A�!
&��"&"&�A1����!	�����f$<��C������
Z	�-#�!	b	�-#�]1��!	�)
	��A1>����
#�0-#���b�P���A/T���V��@;������	���1>���'�(	V�!
�1$	�-�������� �!���C�'��	����W��� ����"&�
	�-#��1#����-��A1I����
#��/C-���
h��� �9o�� �>��
#1I�M�������_�������MD

5



0 0.5 1
0

0.25

0.5

PC(+) − Probability Cost

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t 

$J%O'*)P+Q,��T0
9
41+-+-,U?V:�4*<�W�%=<�'X9
4*?V> �T:���� , 9�+Q41?@?V4 �*, +

6. COMPARING PERFORMANCEST-��7[]\Q^����;���_���I��
��U���'�;��� Mv��-#�A/ 	�-��%������� �!��"���
#���7�!�
	�-��&1�������������
7	��������q<��#����	Q�'
4	�-#��\;�'
#�!�q1��!	,�����W	3<Mf7^N�;D �+/C��	�-
1;��de������
.	?���#����	�	���
��5������	��������K� ]
�*D|ST-#�%[]\Q^��������_���+�
���7���������
	����'��	�-����a��
#1?����"&��/C-��
	0	,��
#�����A1yJ�"���BM��
#�q�M�����#���y��
#����f;�����a1;���`)
�#���#��	AD]ST-������>�
���q	sf;�#���A���E����	�-#�3����"&���
�,�!	����_�3��@;��������"&��
.	��C��

"��!�W-���
#�Q���A�!��
���
#��DCFH-������3��	a���a�����A�!�a	�-��
	a	�-��Qj�l�� ��������	�	���
��
�W����	��W������
I1;�'"&��
��
	�����	�-#�C��	�-�������J.	�-#�����C���N
��3��
#1����A�
	�����
����y-#�A/
"$�#�,-h<���	�	����Pj�l������]	�-���
w	�-���" �!��-��
/x">���W-I	�-��������������`����)
"��!
#�����a1;��de���0�`����" ��
#�Q�!
#�!	�-#���AD

�U��������� �I��-��
/C�Q	�-��Z���������������'
�1;��
#�h�����(	q�������_����D?ST-#�>	,�!
�)
�����A1Z[]\Q^z�������'�����!���0
��
/9�����A�!
#��f>�������!�,�
	��A1yJ_��
#1$	�-#�T�'����	����A���
1;���(	,��
#���$<���	s/T����
h	u/T�������(	����;���_���a1���������	���fI��
#1����A�
	����a	�-��$1;���`)
�`������
����w��
9	�-#���������W��� ����"��!
#����DKpa��	�-#���#��-9j�l�� 1;�'"&��
��
	�����J
��	$�A��
:
��A/{<���������
v	�-#�!	$��	��$�������`����"��!
#���?1���de�����q����	�	������`����"
����SPm �T�
�_�W�T���8�!������fZ<����_��1>�,��
��'�'J;o � ] �9���>6��Q= �9o�� �;DbST-������
	s/T�����#����	�	���
#��������	���������-��A�_�3����"&�����
���'���W�,�!	���
#���,��
��'���P��
�1w�
���
�������!����fK���#���������!�I	��:	�-#�4��	�-����I	s/T��D�cs	+�A�!
2�!�����9<��4�����A�!����f
������
7	�-#�!	 N cu�ac]1��'"&��
#�!	����3p]^0^x�
�_���Q"&���(	Q���N	�-#�����3�'���W�,�!	�)
��
��>�,��
��'�'D

7. AVERAGING MULTIPLE CURVES�b���,-K���'����1H����
��4��
��U���'�;���7�:���h�!
H[]\Q^��������_�w<#�����A1H�'

�:����
#�����z
#��
�)�	������M�X�!���������������#���AD�\P
��4���+<�������1K��
H	�-#�%���'��
.	
6��Q� t�� �a� t =!� 6�o � o!�

�
o � �_=WJ0	�-#�h�!	�-#��������<��!���A19��
9	�-��h���'��
.	

6��Q� � � �a� � =
� 6�o � ]
�
o�� �_=WD%Fz�+�!�����#"&�&	�-��
	$	�-���fz�!����	�-#�&����)

������	&���P�����!��
#��
��z���>	����(	���
#�%�`���'" 1���de������
.	>�,�!
�1;�'" ���!"&�#������J
�!�Q���'"&�3�!	�-#���P�A�������$�!�V�,�!
�1���"��#�#��	��#�!	����'
w��
%�������`����"���
����'J
�!
�1v	�-#�W����� �!���?	�-������&�A�_���,�!�'�?�A��
5<��?�#���A1:�!�&��
:���(	���"��
	��+�!�
�W@�������	��A1+���W��� ����"��!
#����D

ST-������Q���a
��Z�#
����_������������fI���������A1;)*�#����
h"&��	�-��M1+���b�A�_�W�,���'��
��
[]\Q^��������_����DF\./T��	��3�!
�1 �b���,B_��	�	&�����!�N�����'�����(	Q	u/N�I"&��	�-��M1���J
���.������
��Z�!
�1:�(�A�_���,�!�'��
#����J#��
#1��g���
�_�'�(	0�W	0���8D]���'�W�E�;���'����������

�!��	�����
��
	����'�+�A�_�W�,���'��
��w"&��	�-#�M1eD?ST-#�8�g���!�'�'�(	q��	$���8D+"&��	�-#�M1
����	��?�����_�
�,1SE�JR-������$	�-��>	����#�$���'����	����_�>�,�
	��'JU�!�3�?�`�#
#�W	�����
z�!�

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e 
Po

si
tiv

e 
R

at
e

False Positive Rate

GINI

DKM
ENT

ACC

$J%O'*)�+-,	��0 58789 9�)P+ �*,�? ��41+�
 � +Q%O41)�? 9��	��
 �T:
�=%O>V>@%O<�'
9
+Q%O>V, +Q% � 41<X>
��, �T4*<�� +�� �U>��1?V, >

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PC(+) − Probability Cost

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

$J%O'*)�+-,��T0�9�4*?V>89�)P+ �*,�?89�41+-+Q,�?V:�4*<�W�%=<�' >V4/$J%O'*)P+Q,��

GRJe-������$	�-��q� �������Z���'����	����_�q�,�!	��'JE��
#1h	��?���'"&�#�;	��q	�-��>�A�_�W�,���'�
EG�������#�%� �!�w�A�!�W- GK�'�!�����'D�Fz�7�A�!����	�-#���I"&��	�-��M1��u�_����	����A�!�
�A�_���,�!�'��
#����Dvcs
5�U���'�����I�h	�-#���_����	����A�!�C�
�'���,�����+���>��
#�?���]	�-#�
1��!	�	��A1�����
#���?��
G<���	s/T����
9	�-#�h	u/N�:[]\Q^��������_����D�ST-��4�!	�-#���
1��!	�	��A15����
��I���Z	�-#�i�u-�������O��'
.	,�!���v�
�'���,�����I)Q	�-#�+�A�_���,�����I�8�!�����
���'����	����_���,�
	��&6 Ge=V� �!�P�A�!�W-I1���de������
.	C	����#�P���'����	����_���,�!	��&6 E�=WD

pa
$��"&������	,��
.	���-�����	�����"&��
��Q���y�!���;	�-#�����0"&�W	�-#�M1��g�!�y�A�_���,���!)
��
#�Q[]\Q^:�������'���V����	�-��
	V	�-��]���W��� ����"��!
#���368�������!�V�,�
	��'JM���V�����(	W=
���V	�-#�>�
�'���,�����Z�������'�>���Q
#�!	�	�-#�>�
�'���,�����Z������� �!��"���
����Z���V	�-#�
	u/N�&�'���_��
I�������_����D0ST-#�3�A�!�������(	P/T�Af+	��Z�����Q	�-#���]���]	��&����
#����1��W�
	�-#�]�����'�������`����"��!
#���a����
��a	�-��
	T����
#
�����	��N	�-��a����
M	��,�!���_����	��������T���
	�-#�b	u/N�P[]\Q^7���;���_���g��
$�U���������0�MD�ST-#�N�_����	����A���;�!
�1$-�������O���
M	,�!�
�A�_���,�!�'���a1��$
#��	C	����#�,-+	�-#���C����
#�'J;	�-#��f+�
����/T�����R<������A/2��	AD

6



T
ru

e 
Po

si
tiv

e 
R

at
e

0.2 0.4 0.6 0.8 1.00.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate
$J%O'1)�+-,��T0 
_, +->@% � � � �1<�W��I4 + %�� 4*<�>�� ��� �*, + � ' ,U?�4���> 3
4
5F7!9 � )�+ �*,�?

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Probability_CostC(+)
0.0

$J%O'1)�+-, .	�P0
� �*,�+ �U'1, 9
4*?V>89�)�+ �*,�?

�a�A/ ���'
#����1;���+/C-#�!	?�_����	����A�!�P�A�_�W�,���'��
��v/T�'����1G1��v��
G���'�(	
���#������J0/C-#�����w�A�!�W- GG�������#�h���?��
9�'�����,�
	���
#�v������
.	+��
#1 E5���
���W��� ����"��!
#���>68
#����"��!����O��A1+��@;�����W	��A1+�����(	W=WDVST-#���_�W��	��������y�A�_����)
�!�'�?���C	u/N�%���'�(	$�������'���$���q	�-#���A�_���,�!�'�?������� �!��"���
#���+�
	Z�A�!�W-
�������,�!	���
��+������
.	]Yh�;��������������fh/C-��
	�/T�3/C����-4	������(	���"��
	��'DQST-��
�������X17����
����3��
v�U���������I��oh�!���Z	�-��Z[]\Q^x���;���_�����`����" �U���'�����Z�
	��,�!
#�����!	���1���
M	��7���'�(	?���;���_�h���A/T���?��
M�_������������DKST-��h��@;������	��A1
���W��� ����"��!
#���3<#�����A1I��
I	�-#�����3	s/T�Z���'�(	a�������_���]���]�'���_��
I<Mf�	�-��
<�����1h1��!	�	��A1+����
#�'D

8. CONFIDENCE INTERVALS ON COSTSST-��+"&�����������?���a�������������#���&�������`����"���
����I���>1��������_�A1v�X���'" �

����
�� �������'
5"��!	�����@4�����M1;�#���A14�`���'"����'"&�&���!"&�#���&���C	�-���1#�!	,�MD
pa�V	�-#�����a���N����B_����f&	��q<��P���!�����
	�����
+<��W	u/T����
+���!"&�#������JM	�-#�]"&�A�
)
�������?����Jb��	��������sJV�w�,�!
�1;�'"��'�
���X�!<#���'D6\;�w����"&�+���(	���"��
	������]��	��
���!������
����Z���3�#�����`�#�8JR/C-����,-z�������!����f%	,��B'����	�-#�>�`����" �!�C�+����
���)
1���
#������
.	������'�!�8D4ST-#��"&�'�(	$���'"&"&��
:���������'���,-v	��4�;���M1�������
#�
�w���'
;��1;��
#���?��
.	������'�!�N���>	��4��������"&�&	�-��!	$	�-#�?1����(	�����<#�;	����'
5���
	�-#�C���(	���"��
	��]<�������
#���V	���J_���T���V�����'������f��!�#�����A@;��"��!	��A1$<Mf.J'���'"&�
���
�,��"&��	�������� ��"&����f+�����W-I��� N ������������
w��� \.	���1���
M	�)�	ADUpa
h�!��	�����)

��
	����_�'Jg1��!	,�h1M�����_��
EJE"&��	�-��M14-#���3<�������"&�Z���'���#���!�q��
z��������
M	
	���"&���+/C-����W-21��.���I
#��	h"���B_�7��
.fH�#�!�,��"&�W	������7��������"&��	����'
���D
�h�!������
#�A�!
M	����!
�1qj�����	�	��������W-I� �
��1;����������<��A1>-��
/i��
#�0���#�,->
��'
;)
���
�,��"&��	������a���������_�!�W-��A�!������1?	�-#�C<��.�!	��(	��,���4� �
�e�A��
?<��]�#���A1>	��
�'��
#���,�
	��Q���'
;��1���
#���a��
.	������������T�`���C������1����#
#�A1&�����(	a������������DgFv�
�#���q�Z����"&�����!�]	����W-�
#��L.�#�'J�<#�;	C� ���a	�-#�Q����"&�#����	����,�!
#�'�q�������X�!���
1����(	�����<#�;	����'
#�]�!
�1+"&���������!�������#�A�!	�����
4���'�(	���D

ST-#�0<��.�!	��(	��,���&"&��	�-��M1$���b<�������1>�'
>	�-��0��1��A�P	�-#�!	b
#��/i���!"Z)
�#�����$�'��
����,�!	���15�X���'" 	�-#�+�
����������<����h1#�
	,�%�!�����������!	��A1:	��w	�-��!	
1#�
	,�Z��
h	�-#�3����"&��/T�Af+	�-��
	a	�-��$�A����������<����$1#�
	,�>�������!	����]	��Z	�-#�
����������
#���e���'���#���!	�����
EDbST-M�#�b	�-#�]�'�
���X�!
#���]���R��
����(	���"��
	��a<#�����A1
�'
w	�-��q
���/����!"&�#�����a��-#�'����1%<��$�&�'�.�M14���������A@;��"��
	����'
h	�����	��
	����#�V�'�
������
#���'Db^N�'
;��1;��
#���V����"&��	��g�
���T�����M1;�#����1q<.f��������!"&�#����
#�
�`����" 	�-��3�������'��
��!�g"��!	�����@?	��&�����A�!	��q
M�#"&�������#�0
���/�����
��`�#�����'

"��!	�����������DvST-��+��@��!��	>/T�Afz<��.��	��(	��,�!�#�#��
��7���>���!�������A15�'��	>1��W)
����
#1��q�'
:	�-#�?����"&������
��4���,-#��"&�'D%Fv�?�����'�������I�h�������!"&�#����
#�
"&��	�-��M1H��
��!���'�'���#�h	��5�(	��,�!	����#�A1H�����'���h��������1#�
	����'
EJ���
H/C-����,-
	�-#�I���������&�`���AL.����
#��fi�����'�#�!�,��
.	�����1i	��z<��I�X1;��
.	����A���]��
����_�W��f
����"&�����'D

n

m

Pred.

Act.
Pos Neg

Neg

P1

1−P2P2

16 4

4 6

20

10

1−P1
Pos

$J%O'1)�+-, . .10
� %O<�4
�6% � � � ��� : �=%=<�'

�#�!�P��@��!"&�#���'J����'
����X1;���P	�-��Q���'
;� ��������
%"��!	�����@I�!�b�U���'�������'��D
ST-#�W���:�!���/]�o9��
#�(	,�!
#������J$n�o9�!�>/C-����,-��
���v���'����	����_�:�!
�1|�Ao

#���_�!	����_��D ST-��:�����������������z������������	���fx����<������i�A������	4���+n!oG���
	�-#�:��������	����'�i���X�!����JZ<���	4�'
���fx�G�'�;	4���%�AoG�!�&	�-#�:
#���_�!	����_�
����������DbFv�]�#@&	�-��P���A/H	���	,�����]�!	an!oZ��
#1%��o;J#��
#1?	����A�
	0	�-#�a	s/T�
���A/C�3���Q��
�1;������
#1���
.	�<���
#�'"&���!��1����(	�����<#��	�����
#��/C��	�-7�;���'<#��<#������)
	������q�>� ���A���'n!oH��o � �h��
#1z�3n8�����M�AoI��o � �;JU�����������W	����'����f.J
���b�!�������'
#��
����>���'����	����_�Q����<����y	��&��
+��@���"&������D

p2
���/K"��!	�����@����C�����M1;�#���A1?<.f&�,��
�1;�'"&��f�����"&������
��Z�!�������,1M)
��
#�Z	��Z	�-������Q	u/T�&<���
#�'"&���!�R1;���(	�����<���	����'
��a��
M	����y	�-#�Q
M�#"$<����C���
���'����	����_�a��
#1Z
#���'�!	����_�C��
#�(	,��
������V�AL.������	�-#�C���������������'
�1;��
#�Q���A/
	���	,�!����DN�����0�A�!�W-?
#�W/H���'
;� ��������
+"��
	�����@yJ;�q1��!	�	��A1&����
��P���0�#���!	�)
	��A1w��
4�U���������?�
nZ��������������
M	���
��?	�-��$
���/|���(	���"��!	��q���V�������������#���
�������`����"���
����'DC�����]�A�����q���b��@;��������	�����
EJ#/N�3�'��
����,�!	��A1v��o'oZ
#�W/
����
�� �������'
G"��
	����������w6 	uf;�#���A�!����f9�
	+���A�!�(	I��o'oz�!���w�#����1i� �!�+��


7



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability Cost Function

N
or

m
al

is
ed

 E
xp

ec
te

d 
C

os
t 

$J%O'1)�+-,I.�RT0 � � � 9
4*<���W�,�<�� ,�� <�>V, + ��� ��4*<��I9
4*?V> 9�)�+ �*,

�!�����;�,�!	��>���(	���"��
	��3���b�'�
������
#���
=WD�SE�Z��
�1I	�-��q�'o_������
���1;��
#���
����"&��	���JM����/T�]-��'1Z�����������T[u�#�(	b� �!�T�'
��C�������������C@M)s���������'J'	�-��T�#�`	�-
���A/T���(	b��
�1Q�#�X	�-3-#���'-����(	g�������#�V���'���X1Q<��b� �'��
�1eDgST-#���U�;���.�������g���
�������A�!	��A1?� ���]�A�!�W-+��"������e��
#������"&��
M	T��
?	�-#�_�V^P6��Q=N�������#�'DVST-��
����
.	����$<����X1h����
#�q��
%�U���'�����?�
n>�����;��������
.	��]	�-��3������� �!��"���
#���$�!�
	�-��+���X�!�����������&<#�����A1:��
v	�-#�?�������'��
��!�0���'
;� ��������
9"��
	�����@yD7ST-��
�!	�-#���V	u/N�Q<��'��1Z����
����T�
���]	�-��C�#�#���W�N�!
�1Z���A/T���N���'
;��1;��
#���C����"Z)
��	��0� �!�a	�-����]���X�!�����������AD

9. TESTING IF PERFORMANCE DIFFER-
ENCES ARE SIGNIFICANTST-��&1���de������
#���Z��
7������� �!��"���
#���Z���V	u/T�+���������������W���$���Q�(	,�!	����()

	����A�!����fz�����'
#���#�A��
.	3���0	�-#�Z���'
���1���
����>��
.	����������V�!�����#
�1%	�-#�&1;���`)
�`������
����Q1��.���T
#�!	0���'
.	,�!��
�O��W����DVST-#�a"&��	�-#�M1Z�;��������
.	��A1���
&	�-��
�;�����M���'�#�a������	����'
%�A�!
%<��q�W@;	���
�1���1+	��?1��&	�-#����J�<.fI��������"&�#����
#�
	�-�������
�� �������'
w"��!	����������0���g	�-#�a	u/T�>�������������������]����">����	,�!
#�����#����f.J
	,�!BM��
��+��
.	��+���������#
.	�	�-��$���!���������!	����'
7<���	u/N����
%	�-#�3	u/N�+�����!������)
�#������DVp2����
#�����3��������"&�#����
#�q	�-M�#�0�����M1;�#�����a�$�������]���U���'
;� �#������

"��
	�����������Jg��
#�>�`���$�A���,-z�����!�������#���AJb��
#14	�-�������� �!���&	u/T�I����
����3��

���'�(	$���������'Dhka�
/N���_���AJU��
��(	��A�'17���C�#���!	�	���
��h	�-#�Z	s/T�w����
#����JU/N�
������	&	�-#�I1���de������
����I<��W	u/T����
i	�-��+	s/T�z����
#����D9Fz�I�A�!
i���������!	
	�-����P�����.�������Q�&���!���'�$
M�#"><��W�a�!��	���"&���a	����'��	��&�X�
���'�$
;��"><����
�!������
#�����!
�1�	�-#��
EJ����g�!<��
�_�'J���@M	��,����	��]�'o'������
���1���
����N��
.	����������
�X���'"{	�-����N����	0�!�R����
#����DNST-����T���N	�-#�a���'
;��1���
#���]��
M	��W���'�!���!�����#
�1
	�-��31���de������
�����<���	s/T����
I	�-#�����X�!��������������m����W��� ����"��!
#������D

ST-��a	�-����,B>���'
.	���
;���'���N����
#���
	T	�-#�]<���	�	���"��!�U�U���������$�V]3������)
��������
.	��N	�-#�]"&�A��
�1;��de������
#���P<���	s/T����
��������`����"��!
#���]���y	�-#�C	u/N�
���X�!�������������:6 /C-����,-��!���4��-#�A/C
K��
K	�-��4�#�'�;���7�!�h<��'��1K1#�!��-#�A1
����
#���,=WDzST-��+��-#�'1;�A1:�!���A�h�����;��������
.	��3	�-#�����'
;��1;��
#������
.	����������
�!�R	�-��P1;��de�W����
#����J����������#���
	��A1I�!��[(���(	C1������W����<���1yDbpa�V	�-#�a1���de����)
��
#���C�A�!
>�,��
��'�0�`����";�Q�T	��
�$�0	�-��TfM)u�
@;����-#����<�����
&��@M	���
#1��A1eD
ka�����+/N�I�����?	�-��
	>	�-#�?����
���1;��
#���I��
.	������'�!�01��.���Z
#�!	&���'
.	,�!��

O�������J����Z	�-��31���de������
����3<���	u/N����
I	�-��Q���������������W�������a�(	,�
	����(	����A�!����f
������
#�����A�!
.	ADb�U�������������Q��-#�A/C�g	u/T�Q���X�!��������������/C��	�->	�-#�0���!"&�T��
�)
1;���;��1;�����.���'
��`�#�����'
$"��!	����������g<���	E/C��	�-3	�-#�����U���������������A�
	����'
#�b�������
�������������!	���1yD+�P��	,�!<#��f.JR	�-��&���'
;��1;��
#���>��
.	����������b���3">�#�,-%/C�X1;���

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

is
ed

 E
xp

ec
te

d 
C

os
t 

Probability Cost Function

$J%O'*)�+-, .��T0 9
4*<���WP,U<	� ,�� <�>V, + ��� � � 41+ >
�P, ��%	��,�+-,�<�� ,�

�H%O'�� 9
41+-+-, ��� >@%O41<

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

is
ed

 E
xp

ec
te

d 
C

os
t 

Probability Cost Function

$J%O'*)�+-, . ��0 9
4*<���WP,U<	� ,�� <�>V, + ��� � � 41+ >
�P, ��%	��,�+-,�<�� ,�

Y�4�3 9�41+-+Q, � �U>@%O4*<

��
#1>��
#�����#1����bO������;JM����	�-#�C1���de������
#���C���V
���	V�(	,�!	����(	����A������f������'
����X)
���A��
.	ADaST-M�#�a���'�(	P�������_���a�����'�>�&
#�����q�M���������E��������������
M	,�
	����'
%���
	�-#�C1;��de������
#���]��
Z�W@�������	��A1>�����(	N<��W	u/T����
Z	u/N�Q�������������������N�����������
	�-#�+� �#���0�,��
��'�w�!��"&���������������������!	����'
H�����(	��?��
�15���������&�X���AL.�#��
;)
��������DCST-��Q���'�(	a���;���_����������������
.	,�!	����'
%�!�����&"��!B_���C��	]�����A�!�a	�-��!	
�������`����"���
����Q1;��de�W����
#�����]"&����-M	T<��������'
#���#�A��
.	0� �!�]���'"&�P�,�!
#�'�
���]�������,�!	���
#�%������
.	��q<#�;	$
���	$��	�-�������D4pa
:��@��!"&�#���&���C	�-#���q���
��-#�A/C
%��
4�U���������?�
�MJ�/C-������3	�-#�$1���de������
����$���a������
#��������
.	Q�'
���f
������� ��o � MMD

8



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

Probability Cost Function

−0.1

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

0

0.1

0.2

0.3

0.4

0.5

$J%O'1)�+-, . 
T0 9
4*<��CW�,�<�� , � <�>V, + � � � ��41+ >
��, �I%	��, +-,U<	� ,�

� ,UW�%=) � 9
4 +Q+-, � �U>@%O4*<

10. CONCLUSIONSST-����U���!�����U-#���g1;��"&�'
��(	��,�!	��A1���-�����	�����"&��
��'�U�!�#[]\Q^%�������'���
�`���>�;�����#������O���
#�4�����������������>������� �!��"���
����'Jb��
#1v��-#�A/C
v	�-��
	>���'�(	
�������_���]�
�_��������"&��	�-#�����3�;���'<#����"&��DNFv�31��&
���	AJ�-��A/T���_�W�AJ�����
�)
	���
�17	�-#�!	q���'�(	$���;���_���3�!���?�!��/T��f��q<���	�	����3	�-#��
v[]\Q^����;���_����D
�����3��@���"&�����'Je� ���3�M�������!����O���
��I	�-#�q/T�!��BM�`�������&�;	�������OA�
	����'
v"&�A�
)
���;�������R������� �!��"���
����_���Ao
�*J#[]\Q^9���;���_���0�
���Q1����(	���
#��	���f����������������
	��q�����(	0�������'����Db�N��	V� �!�0"���
.fZ���'"&"&�'
&�M�������!����O��!	����'
?���AL.�#������)
"&��
M	���J!�����(	��������'���g�!���N<MfQ� �!�g	�-��N<����(	b�!��	��W��
��!	����_�T��
�1Q/T�V������)
��"&"&��
�1I	�-����������'�;	���
#�>�����>��
#�(	����'1%���V[]\Q^2�������'���a�`���Q	�-#�����
����������������D

p������X	u/0�
���Q���!�WB������Q���#�#���!��	���
#�Z�!���y	�-������'�(	C�������_�Q�!
��!��f;�����
1;����������<��A1:��
v	�-#���q�������W�Z���>�A����������<����+<.fz����
.	,����	���
#�w	�-��������(	
�!��	�-����AD

11. ACKNOWLEDGEMENTSFz�0/T�'����1�����B_�0	��3���,BM
#�A/C���A1�����p]��<��W��	,��cu
#����
M�#��	uf>�#��
�1$�`���
��	��Q�����#������	3�!�N	�-������������A�!���,-7	�-;���'�#��-7	�-��$� ��
�1;��
��I�!�N	�-#�>pa��)
<��W��	,�>cu
��'��
M�#��	sfh^N��
M	����a� ��� �h���,-#��
����E�A�
��
#��
#�;D

12. REFERENCES���W�q^aD���D��N����B_�q��
#1h^aD K�D �I�W��O'D L�^NcN������������	��!��fI�!�
"����,-#��
������A�!��
���
���1#�
	,��<��!������J1La
#���_��������	sf����V^T������� �!��
#���;J
cs���M��
#��J�^Tp D
/0/0/QD ������D �#���8D �A1��1A��P"&���A�
��
*A ���y[a�����'����	�����f.D -.	�"&�8JU�A��� �;D

� nA�q^N-������]jP���#"&"&��
�1&�!
�1I[]�'<�����	a^aD�kP����	��'D��g@;�#��������	���f
�����;��������
.	���
#�Z��@;�����W	��A1+�����(	A}Vpa
h�!��	�����
��
	����'��	��>���.�
�����;��������
.	,�!	����'
yD�cs
	��

��������������������� �"!#� $#�&%��"!('�)+*
$-,�.0/21314,��5�6�7
7�98��:�;���98�<=)0���>���7
��7�9�7�?����/�����@A<&�
���B�
1 �"�C����D��7
�EF8����G1�8��H8I*J�"�#���B��J#�#���'���3��� �AY;n�o MMJEn!o'o'oMD

� ]
�q^N-������]jP���#"&"&��
�1&�!
�1I[]�'<�����	a^aD�kP����	��'D��g@;�#���'��	���
#�>	�-��
�����(	$68��
�=u����
#����	����M��	sf?����1;�����������'
I	������P���#����	�	���
��Z������	��������;D�cu

��

�����������������?���2�"!#��$��7D��7�#�6���7�#�"!K,��#�6�7
���8��:�;����8�<
)0���>���7
��7�9�7�?����*L8M��!������3NO�
8�
��#�"����J��#�������an ]'�AY;n
�_�;J
n�o�o'oMD

� �!�$^N-������CjP���#"&"&��
�1���
#1+[]�'<�����	P^aD�kP�'��	��'D;FH-#�!	][]\Q^
^N�����_���0����
Em 	]1;�I6���
#1h^N���(	�^N�;���_���0�A�!
�=WD;cu
K��

�����������������
���2�"!#�IP����GQK��

R���!5�7ST���	U V2)W'X�98�< E����"�2���K'X
��:� Y=�C�;8�<
,��#�6�C<�< �&�B�7�9���[Z�!#�C<\�]���^�����>_C`��9�C�:�;���^@0�"�"![a2)+'X,2b-c�cCd�eAJ
���������Q�A�AY;n��MJyn�o�o��;D

� �A�3[qD#\$D�j���1��>��
#1I�UD#�CD�k��
��	AD9�A8��:�6�7
��f)g<\8������ Yh��8��:�;���L8����
�C���7���G8���8�< E�������D;FH�����Wf.J#�a��/jiN�!��BeJe��� M ]MD

� �
�q�aD��g�`����
%��
#1+[3D#ST��<���-#���,��
���Dk'X�K,��#�:

����`#�C�:�:���L�H�[�"!#�
lm�����:���:

87S#Dy^N-��!�#"���
I��
#1Ik��!���8J#�E��
�1���
EJy�A��� ];D

� MA�3[a��<�����	a^aD�ka�'��	��'DUZV����f�����"&�����Q���X�!���������A�
	�����
w���#�����
������� �!��"�/T�����R��
h"&�'�(	C���'"&"&�'
���f��#���A1+1#�!	,�!����	���D
*L8M��!������3NO�
8�
��#�"����JR���_6(�A=W} � ]
Y.�;�'Jg���'� ];D

� �
�3jP�,�����'�]j>D �h�!���'��
��A��
.	��%��
#1IST-��'"���� N D�j�����	�	��������,-ED
�N�.��	��(	��,�!�w"&��	�-#�M1;�T� ���C	�-��Q���'�(	�)*����
�����	����_�Q���'�!���#�!	����'
I���
��������������������D�cu
	��

�������
�����B���G�n� �"!5��$o�7D��7�5�6���7�#�"!
,��#�6�7
���8��:�;����8�<=)0�������7

�7�����G���K*L8���!����o�mNO�
8�
��#���B��J����!�'���
� �_n�Y;�!�'o;JEn!o'o�o;D

� �
� �7D1�g�!O�OA��
��8Je^aD �I�W��O'J1�UD �I������-Mf.J;lZD�pa���8J#SPD�kP��"&�'J
��
�1I^aD��V����
#B�D;[a��1��#����
��>"&�����������������#�A�!	����'
w���'�(	���D�cs

�p
����7���
�����B���?���2�"!#�3ap<&�7D��7�#�"!F,��#�6�7
���8��:�;����8�<=)0�������7

�7�����
����*L8M��!������3NO�
8�
��#�"����J��#�������anM�-M�Y;n�n'�MJP\;��
I���,��
�����������J
�A�'�!��D �I�����_�!
wl3���;� "���
�
ED

���Ao
�q�#�'�(	������g���
�_�'�(	a��
#1ISR��"�����/T���W	�	AD#[]�'<��#�(	0�����!�������#�A�!	�����

�(f��(	���"&�T� ���]��"&�������������Q��
M�;������
#"&��
.	���D;cu
��p
����7���
�����B�������
�"!#�3qh� ���6���7�5�"!Kr 8��:�;���98�<h)0�������7

�7�����G���K'X
��:� Y=�C�:8�<
,��#�6�C<�< �&�B�7�9���WJ#�#���'��� M!o'�
Y MM�V];J �I��
������g�!��B�J�^Tp3JE���'� �;D
pPpPp]c��g��������D

���'�W�q�#�'�(	������g���
�_�'�(	AJ#SR�'"��#�A/N����	�	AJ���
�1?[a��
IlQ��-��A�M��D#ST-#�
�A�����3�!�_����
��(	��!�������,�!��f+���(	���"��!	����'
I�`���a���'"&�#�!����
#�
��
#1�����	����'
h�!���'������	�-�"&��D�cu
��p
��������
���"�����?���2�"!#�3qh� �7�6���7�#�"!
,��#�6�7
���8��:�;����8�<=)0�������7

�7�����G���K*L8���!����o�mNO�
8�
��#���B��J����!�'���
� ]
Y_� �MJT\��!
h���,�!
#���������;JR�A��� �MD �I�����'��
wl3���;� "��!
#
ED

���
nA�
K�D.[]�'���psP����
#����
yDO)kd�t"u ��

����
�8�vG�+�>��
p*L8M��!B���o�pNO�
8�
��#�"����D
�I�����_�!
wl3���;� "���
�
EJ \��!
 �h�
	�����J�^T������� ����
����;Jg�A��� ]MD

���@]
�
K�D�p3D*\./T��	���D�,����C��
7vI8��:�;����UA�7�:
7�;�7D�8�<w$5E����6�7vG��De�V�'��	AJ
�N���,��
���B+��
�1?�P��/C"��!
EJ#^T��"$<�����1����'J �h���������,-M�#����	�	���J
�A�'� MMD

�����!�
K'�'-�
wpqD \M/N��	��]��
#1+[]�'
��!��1 �7D1�����WB'��	�	AD�a�D�8�< `58��:�;���x�n�
���;8����9�����:�;�?��E����6�7v?�?yXv[�7�"!5�����0�7

��vz���&���98�<O�M�7�6���C�:�:���
�"!#�
��
7E!Dep]�A�'1;��"&���_����������J��P�W/{iN�!��BeJy�A� �_n.D

���
�A�$^aD1K�ZV��
+[a� [(��<��W���'��
yDk,����C��
7vI8��:�;���	

�7�:
7�;�7D�8�< D
�N��	�	�����/N����	�-���J9�y�'
�1;�'
yJE��� M��MD

���A�
� N D�Fz��<#<I��
�1?lZD �7D#ST��
#�;De\P
+	�-��Q�����#�����A�!	�����
w���g[]\Q^
��
��!��f������C	��Z������1�����	C�������������#�A�!	����'
%�������`����"��!
#���Q��
�1��W�
�'�
��f���
��>���������a1����(	�����<#�;	����'
#��Do*L8M��!��"�o�XNO�
8�
7�5������J
� ��6(�A=W} n'�AY ]_n.JEn�o'o'�MD

9



Economical Active Feature-value Acquisition
through Expected Utility Estimation

Prem Melville
Dept. of Computer Sciences

Univ. of Texas at Austin
melville@cs.utexas.edu

Maytal Saar-Tsechansky
Red McCombs School of Business

Univ. of Texas at Austin
maytal@mail.utexas.edu

Foster Provost
Stern School of Business

New York University
fprovost@stern.nyu.edu

Raymond Mooney
Dept. of Computer Sciences

Univ. of Texas at Austin
mooney@cs.utexas.edu

ABSTRACT
In many classification tasks training data have missing feature val-
ues that can be acquired at a cost. For building accurate predictive
models, acquiring all missing values is often prohibitively expen-
sive or unnecessary, while acquiring a random subset of feature
values may not be most effective. The goal ofactive feature-value
acquisitionis to incrementally select feature values that are most
cost-effective for improving the model’s accuracy. We present two
policies, Sampled Expected Utilityand Expected Utility-ES, that
acquire feature values for inducing a classification model based on
an estimation of the expected improvement in model accuracy per
unit cost. A comparison of the two policies to each other and to
alternative policies demonstrate thatSampled Expected Utilityis
preferable as it effectively reduces the cost of producing a model
of a desired accuracy and exhibits a consistent performance across
domains.

General Terms
Algorithms

Keywords
machine learning, data mining, active learning, cost-sensitive learn-
ing

1. INTRODUCTION
In many predictive modeling problems, feature values for train-

ing data are missing, but can be acquired at a cost. Often the cost
of acquiring the missing information varies according to the nature
of the information or of the particular instance for which informa-
tion is missing. Consider, for example, patient data used to induce
a model to predict whether or not a treatment will be effective for
a given patient. Some patient data may have missing demographic
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Copyright 2005 ACM 1-59593-208-9/05/0008 ...$5.00.

information that can be obtained at a low cost. In contrast, acquir-
ing diagnostic test results from different health-care providers can
be significantly more expensive and time-consuming. Various solu-
tions are available for learning models from incomplete data, such
as imputation methods [8], and learners that ignore missing feature
values such as the Naive Bayes classifier. However, these solu-
tions almost always undermine model performance as compared to
that of a model induced from complete information. Since obtain-
ing all missing values may be prohibitively expensive, it is desir-
able to identify what information would be most cost-effective to
acquire. In this paper we address this generalized version of the
active feature-value acquisition(AFA) task for classifier induction
[10]: given a model built on incomplete training data, select feature
values that would be most cost-effective to acquire for improving
the model’s accuracy. The problem of feature-value acquisition is
different from traditional active learning [2] in which class labels
rather than feature values are missing and are costly to acquire.

Unlike prior work [9], we study AFA in a setting where the to-
tal cost to be spent on acquisitions is not determineda priori, but
rather can be determined on-line based on the model’s performance
as learning progresses. This setting is motivated by the inherent un-
certainty regarding the tradeoff between costs and improvement in
model accuracy. An incremental spending strategy enables a de-
cision maker to re-evaluate the desirability of further expenditures
by incrementally exploring the performance curve resulting from a
series of acquisition decisions. For example, one may choose not
to acquire additional information if the current model accuracy is
satisfactory, or if additional information is unlikely to provide a sig-
nificant improvement in the model. We propose a general setting
for AFA that specifies an incremental acquisition schedule. Given
the current model, an AFA strategy identifies feature-value acqui-
sitions that are estimated to be most cost-effective with respect to
model accuracy.

We present a solution to the AFA task that ranks alternative feature-
value acquisitions based on an estimation of the expected improve-
ment in model performance per unit cost. Our approach is gen-
eral, i.e., it can be applied to select acquisitions for any learner,
and to attempt to improve any performance metric. Experimental
results on decision tree induction to improve classification accu-
racy demonstrate that our method does consistently result in signif-
icantly improved model accuracy per unit cost compared to random
feature-value acquisition. The method is particularly advantageous
in challenging tasks for which there is a significant variance across
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potential acquisitions with respect to their contribution to learning
per unit cost.

2. TASK DEFINITION AND ALGORITHM

2.1 Active Feature-value Acquisition
Assume a classifier induction problem where each instance is

represented withn feature values and a class label. A training set
of m instances can be represented by the matrixF , whereFi,j

corresponds to the value of thej-th feature of thei-th instance. Ini-
tially, the class label,yi, of each instance is known, and the matrix
F is incomplete, i.e., it contains missing values. The learner may
acquire the value ofFi,j at the costCi,j . We useqi,j to refer to
the query for the value ofFi,j . The general task of active feature-
value acquisition is the selection of these instance-feature queries
that will result in building the most accurate model (classifier) at
the lowest cost. The framework for the generalized AFA task is
presented in Algorithm??ach step the learner builds a classifier
trained on the current data, and scores the available queries based
on this classifier. The query with the highest score is selected and
the feature value corresponding to this query is acquired. The train-
ing data is appropriately updated and this process is repeated until
some stopping criterion is met, e.g. a desirable model accuracy has
been obtained. To reduce computation costs in our experiments, we
acquire queries in fixed-size batches at each iteration.

Algorithm 1 General Active Feature-value Acquisition Framework
Given:
F – initial (incomplete) instance-feature matrix
Y = {yi : i = 1, ..., m} – class labels for all instances
T – training set =< F, Y >

L – base learning algorithm
b – size of query batch
C – cost matrix for all instance-feature pairs

1. InitializeTotalCost to cost ofF

2. Initialize set of possible queriesQ to {qi,j : i =
1, ..., m; j = 1, ..., n; such thatFi,j is missing}

3. Repeat until stopping criterion is met

4. Generate a classifier,M = L(T )
5. ∀qi,j ∈ Q computescore(M, qi,j ,L, T )
6. Select a subsetS of b queries with the

highestscore
7. ∀qi,j ∈ S,
8. Acquire values forFi,j

9. TotalCost = TotalCost + Ci,j

10. RemoveS from Q

11. ReturnM = L(T )

Alternate problem settings of feature-value acquisition have been
explored in the literature. In particular, Melville et al. [10] studied
a specialized version of the AFA problem addressed here, where
all the missing feature values for an instance are acquired at once
and an acquisition policy selects the instances for which acquiring
all missing values would result in the most accurate classifier. Li-
zotte et al. [9] studied thebudgeted learningscenario, in which
the total cost (budget) to be spent on feature-value acquisitions is
determineda priori. We discuss these and other related research in
more detail in the related work section.

2.2 Expected Utility Estimation
Specific solutions to the AFA problem differ based on the method

used to score and rank queries. In our approach we provide scores
based on theexpected utilityof each query (defined below). For
now we assume all features are nominal, i.e., they can take on val-
ues from a finite set of values. Assume featurej hasK distinct
valuesV1, ..., VK . The expected utility of the queryqi,j can be
computed as:

E(qi,j) =

K
X

k=1

P (Fi,j = Vk)U(Fi,j = Vk) (1)

whereP (Fi,j = Vk) is the probability thatFi,j has the valueVk,
andU(Fi,j = Vk) is the utility of knowing that the feature value
Fi,j is Vk, given by:

U(Fi,j = Vk) =
A(F, Fi,j = Vk) −A(F )

Ci,j

(2)

whereA(F ) is the accuracy of the current classifier;A(F, Fi,j =
Vk) is the accuracy of the classifier trained onF assumingFi,j =
Vk; andCi,j is the cost of acquiringFi,j . For this paper, we de-
fine the utility of an acquisition in terms of improvement in model
accuracy per unit cost. Depending on the objective of learning a
classifier, alternate utility functions could be used.

If we were to plot a graph of accuracy versus model cost after
every iteration of AFA, ourExpected Utilityapproach would corre-
spond to selecting the query that is expected to result in the largest
slope for the next iteration. If all feature costs are equal, this corre-
sponds to selecting the query that would result in the classifier with
the highest expected accuracy.

Since the true distribution of each missing feature value is un-
known, we estimateP (Fi,j = Vk) in Eq. 1 using a learner that
produces class probability estimates. For each featurej, we train a
classifierMj , using this feature as the target variable and all other
features along with the class as the predictors. When evaluating the
queryqi,j , the classifierMj is applied to instancei to produce the
estimateP̂ (Fi,j = Vk).

In Eq. 2, the true values ofA(.) are also unknown. However,
since the class labels for the training data are available at selection
time we can estimateA(F ) andA(F, Fi,j = Vk) based on the
training set accuracy. In our experiments, we used 0-1 loss to mea-
sure the accuracy of the classifiers. However, other measures such
as class entropy or GINI index could also be used [9]. In our pre-
liminary studies we did not observe a consistent advantage to using
entropy.

When theExpected Utilitymethod described here is applied to
learn a Naive Bayes classifier and feature costs are assumed to be
equal, it is similar to thegreedy loss reductionapproach presented
in [9]. Similar approaches to expected utility estimation have also
been used in the related task of traditional active learning [12, 7,
14].

Computing the estimated expectationÊ(.) for queryqi,j requires
training one classifier for each possible value of featurej. Se-
lecting the best fromall available queries would require explor-
ing, in the worst case,mn queries. So exhaustively selecting a
query that maximizes the expected utility is computationally very
intensive and is infeasible for most interesting problems. We make
this exploration tractable by reducing the search space to a ran-
dom sub-sample of the available queries. We refer to this approach
as Sampled Expected Utility. This method takes a parameterα

(1 ≤ α ≤ mn
b

) which controls the complexity of the search. To
select a batch ofb queries, first a random sub-sample ofαb queries
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is selected from the available pool, and then the expected utility of
each query in this sub-sample is evaluated. The value ofα can be
set depending on the amount of time the user is willing to spend on
this process. One can expect a tradeoff between the amount of time
spent and the effectiveness of the selection scheme.

2.3 Instance-based Active Feature-value Ac-
quisition

In Sampled Expected Utilitywe use a random sample of the pool
of available queries to make theExpected Utilityestimation feasi-
ble. However, it may be possible to improve performance by apply-
ing Expected Utilityestimation to a sample of queries that is better
than a random sample. One approach could be to first identify po-
tentially informativeinstances, and then select candidate queries
only from these instances. In previous work we studied a special-
ized version of AFA, whereall the missing feature values for an
instance are acquired at once and an acquisition policy selects the
instances for which acquiring all missing values would result in the
most accurate classifier[10]. The method proposed in this work,
Error Sampling(ES), can be readily used to identify informative
instances from which we can then choose candidate queries.Error
Samplingorders incomplete instances in terms of potential infor-
mativeness in the following way. It ranks instances that have been
misclassified by the current model as the most informative. Next,
it ranks correctly classified instances in order of decreasing uncer-
tainty in the model’s prediction.Error Samplingrequires building
only one model at each step of AFA, and hence is not too com-
putationally intensive to use in place of random sampling in our
Sampled Expected Utilityapproach. We call this new approach
Expected Utility-ES, in which Error Samplingis used to rank in-
stances from which the firstαb missing instance-feature pairs are
selected as candidate queries. Whereb is the desired batch size and
α is the exploration parameter.

ThoughError Samplingwas designed for selecting instances, it
can also be modified to acquire single feature values in our general
AFA setting. The method ranks instances for acquisition, but does
not provide a mechanism for selecting the most informative fea-
tures for a given instance. We therefore examine a version ofError
Samplingin which instances are ordered using theError Sampling
ranking, and the firstb missing feature values are selected for ac-
quisition.

3. EXPERIMENTAL EVALUATION

3.1 Methodology
We begin by evaluating our proposed approaches on four datasets

from the UCI repository [1], the details of which are presented in
Table 1. For the sake of simplicity, we selected datasets that have
only nominal features. In the future work section, we describe how
we can extend our approach to handle numeric features. None of
the UCI datasets provide feature acquisition costs – in our initial ex-
periments we simply assume all costs are equal. Later, we present
additional experiments with different cost structures.

Table 1: Summary of Data Sets
Name Instances Features Classes
vote 435 16 2
car 1727 6 4
lymph 148 18 4
audio 226 69 24

We compare all the proposed methods torandom feature acqui-
sition, which selects queries uniformly at random to provide a rep-
resentative sample of missing values. For theSampled Expected
Utility and Expected Utility-ESwe set the exploration parameter
α to 10. Given the computational complexity ofExpected Utility
it is not feasible to run the exhaustiveExpected Utilityapproach
on all datasets. However, we did runExpected Utilityon thevote
dataset. For all methods, as a base learner we used J48 decision-
tree induction, which is the Weka [16] implementation of C4.5 [11].
Laplace smoothing was used with J48 to improve class probability
estimates.

The performance of each acquisition scheme was averaged over
10 runs of 10-fold cross-validation. In each fold of cross-validation,
we generated learning curves in the following fashion. Initially,
the learner is given a random sample of feature values, i.e. the
instance-feature matrix is partially filled. The remaining instance-
feature pairs are used to initialize the pool of available queries. At
each iteration, the system selects a batch of queries, and the val-
ues for these features are acquired. This process is repeated until a
desired number of feature values is acquired. Classification accu-
racy is measured after each batch acquisition in order to generate
a learning curve. One system (A) is considered to besignificantly
better than another system (B) if the average accuracy across the
points on the learning curve ofA is higher than that ofB according
to a paired t-test (p < 0.05). As in [10], the test data contains only
complete instances, since we want to approximate the true general-
ization accuracy of the constructed model given complete data for a
test instance. For each dataset, we selected the initial random sam-
ple size to be such that the induced model performed at least better
than majority class prediction. The batch size for the queries was
selected based on the difficulty of the dataset. For problems that
were harder to learn, we acquired a larger number of feature-values
and consequently used larger batch sizes.

3.2 Results
Our results are presented in Figure 1. For all datasets,Sampled

Expected Utilitybuilds more accurate models than random sam-
pling for any given number of feature acquisitions. These results
demonstrate that the estimation of the expected improvement in
the current model’s accuracy enables effective ranking of potential
queries. Consequently,Sampled Expected Utilityselects queries
that on average are more informative for the learner than an av-
erage query selected at random. The differences in performance
between these two systems on all datasets is significant, as defined
above. SinceSampled Expected Utilitywas proposed in order to
reduce the computational costs of our originalExpected Utilityap-
proach, we also examined the performance and computational time
of the exhaustiveExpected Utilityalgorithm forvote. We computed
the average time it took to select queries in each iteration for each
of the methods. These timing results are summarized in Table 2.
The results show that constraining the search inExpected Utility
by random sampling (orError Sampling) can significantly reduce
the selection time (by two orders of magnitude in this case) without
a significant loss in accuracy.

WhileError Samplingcan rank acquisitions of complete instances
effectively, it does not consider the value of individual feature val-
ues. Despite this, we observed thatError Samplingperforms quite
well. In particular, it often performs significantly better than ran-
dom sampling and it sometimes performs better thanSampled Ex-
pected Utility. However, the performance ofError Samplingin this
general setting of AFA is inconsistent, as it may perform signifi-
cantly worse than random selection, as is seen on thelymphdataset.

The performance ofExpected Utility-ESshows that the method
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Figure 1: Comparing alternative active feature-value acquisitionapproaches.

Table 2: Average selection times onvote.
AFA Method Selection time (msec)
Random 3.8
Expected Utility 3.77 × 105

Sampled Expected Utility 6.64 × 103

Error Sampling 8.04
Expected Utility-ES 7.44 × 103

can effectively benefit from each of its components. WhenError
Samplingperforms better than random sampling, the acquisitions
made byExpected Utility-ESresult in better models than those in-
duced withSampled Expected Utility. The votedataset seems to
be an exception, in whichError Samplingcan at times perform
even better thanExpected Utility, so the combinedExpected Utility-
ESmethod does not outperformError Samplinghere.Error Sam-
pling’s inconsistent performance can also undermine theExpected
Utility-ES acquisition policy, so that whenError Samplingfails to
improve upon random acquisitions,Expected Utility-ESproduces
inferior models than those induced withSampled Expected Utility.
These results suggest that the use ofError Samplingin our current
AFA setting is a promising direction for future work, but is de-

pendent on improving theError Samplingstrategy such thatError
Samplingconsistently performs better than random selection. Note
that, in theinstance-completionsetting of AFA for whichError
Samplingwas originally designed, it always performs better than
random [10].

In summary,Expected Utility-ESoften exhibits superior perfor-
mance with respect toSampled Expected Utilityand random se-
lection. However, it is susceptible to the inconsistent performance
of Error Samplingand thus may potentially perform worse than
random sampling. On the other hand,Sampled Expected Utilityex-
hibits consistent improvements over random sampling on all datasets.

3.3 Artificial Data and Feature Costs
As no feature-acquisition costs are provided for the domains we

employ here, we initially assumed uniform feature costs. In ad-
dition, some of the features in the data are equally discriminative
so that there may be little value in selecting between them. In the
extreme case, where feature costs are uniform and all features pro-
vide equal information about the target concept, random sampling
is likely to be a very effective strategy. In order to make the prob-
lem setting more challenging, we constructed artificial data in the
following way. We took thelymphdataset, which is composed of
18 features, and added an equal number of binary features with
randomly-selected values, so as to provide no information about
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Figure 2: Comparing different algorithms on artificial data under dif ferent cost structures

the class variable. In addition, we experimented with different cost
structures. For the sake of simplicity, instead of having a cost as-
sociated with each instance-feature pair, we assume that the cost
of acquiring a particular feature is the same irrespective of the in-
stance. With each feature, we associate a cost selected uniformly
at random from 1 to 100. Experiments were run as before for 5
different assignments of feature costs. Along with recording the
accuracy after each batch acquisition of queries, we also record
the current model cost based on the cost of the features acquired.
Since random sampling does not take feature costs into account,
we also compareSampled Expected Utilitywith a simple baseline
strategy that incorporates feature costs. This approach, which we
call Cheapest-first, selects feature values for acquisition in order
of increasing costs. Given the inconsistent performance ofError
SamplingandExpected Utility-ES, we do not apply them to these
datasets.

Figure 2 presents plots of accuracy versus model cost for two
representative cost structures. The results for all randomly assigned
costs structures show that for the same cost,Sampled Expected
Utility consistently builds more accurate models than random sam-
pling. The differences in performance between these two systems is
more substantial than those observed for the UCI datasets with uni-
form costs. In contrast, the performance forCheapest-firstis quite
varied for different cost assignments. When highly informative fea-
tures are assigned low costs,Cheapest-firstcan perform quite well
(Figure 2(a)). Since the underlying assumption of theCheapest-
first strategy, that the cheapest features are also informative, often
holds in this case, it sometime performs better thanSampled Ex-
pected Utility, which imperfectly estimates the expected improve-
ment in accuracy from each acquisition. However, when many in-
expensive features are also uninformative,Cheapest-firstperforms
worse than a random acquisition policy (Figure 2(b)).Sampled Ex-
pected Utility, however, estimates the tradeoff between cost and
expected improvement in accuracy, and although the estimation is
clearly imperfect, it consistently selects better queries than random
acquisitions for all cost structures.

4. RELATED WORK
To the best of our knowledge, the methods we propose here are

the first approaches designed for the general problem of incremen-
tally ranking and selecting feature values for inducing any classifier
under a general acquisition cost structure. In this section, we dis-
cuss alternate settings for the AFA task.

Lizotte et al. [9] study AFA in thebudgeted learningscenario, in
which the total cost to be spent towards acquisitions is determined
a priori and the task is to identify the best set of acquisitions for this
cost. In contrast, our setting aims to enable the user to stop the ac-
quisition process at any time, and as such theorder in which acqui-
sitions are made is important. Given this criterion, we attempt to se-
lect the next acquisition that will result in the most accurate model
per unit cost. Lizotte et al. also assume that feature values are in-
dependent given the class, and as such consider queries of the form
“Give me the value of featurej for any instance in classk.” How-
ever, our approach evaluates feature-value acquisitions of specific
instances, which allows us to 1) incorporate feature-value costs that
vary per instance; and 2) to better estimate the expected value of
an acquisition by capturing improvements from better modeling of
feature interactions. Note that a set of features may exhibit dif-
ferent interactions for different instances, in which case evaluating
potential acquisitions for individual instances is critical.

In this paper, we explored the use of theError Samplingpolicy
designed for theinstance-completionsetting, in which all missing
feature values are acquired for a selected training instance [17, 10].
Sampled Expected Utilityselects individual features, and hence can
be also employed in the instance-completion setting, e.g., by se-
lecting the instance with the highest sum of utilities of individual
feature-value acquisitions.

Some work oncost sensitivelearning [15] has addressed the is-
sue of inducing economical classifiers when there are costs asso-
ciated with obtaining feature values. However, most of this work
assumes that thetraining data are complete and focuses on learning
classifiers that minimize the cost of classifying incompletetest in-
stances. An exception, CS-ID3 [13], also attempts to minimize the
cost of acquiring features during training; however, it processes ex-
amples incrementally and can only request additional information
for the current training instance. CS-ID3 uses a simple greedy strat-
egy that requests the value of the cheapest unknown feature when
the existing hypothesis is unable to correctly classify the current
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instance. It does not actively select the most useful information to
acquire from a pool of incomplete training examples. The LAC*
algorithm [5] also addresses the issue of economical feature acqui-
sition during both training and testing; however, it also adopts a
strategy that does not actively select the most informative data to
collect during training. Rather, LAC* simply requests complete in-
formation on a random sample of instances in repeatedexploration
phases that are intermixed withexploitationphases that use the cur-
rent learned classifier to economically classify instances.

Traditional active learning[2, 4] assumes access to unlabeled
instances with complete feature data and attempts to select the most
useful examples for which to acquire class labels. Active feature-
value acquisition is a complementary problem that assumes labeled
data with incomplete feature data and attempts to select the most
useful additional feature values to acquire.

5. LIMITATIONS AND FUTURE WORK
In Sampled Expected Utilitywe used a random sample of the

pool of available queries to make theExpected Utilityestimation
feasible; and inExpected Utility-ES, we explored the possibility of
limiting the set of candidate queries to only potentially informa-
tive instances. Alternatively, we can restrict the set of candidate
queries to only the most informative features. A subset of such fea-
tures could be picked using afeature selectiontechnique that can
capture the interactions among feature values, such as the wrapper
approach of John et al. [6].

The performance ofExpected Utilityrelies on having good esti-
mates of the feature-value distributions and of the improvement in
model accuracy for each potential acquisition. ThusExpected Util-
ity is likely to benefit from improving upon the methods we applied
to perform these estimations. For example, we could use proba-
bility estimation methods that better approximate the feature-value
distributions, specifically when there are many missing values.

TheExpected Utilityframework allows us to consider model per-
formance objectives other than accuracy. For example, when the
benefits from making different accurate predictions and the error
costs are specified,Expected Utilitycan be applied to identify ac-
quisitions that result in the highest growth in benefits per unit cost.
Experimenting with such alternate measures of model performance
is an avenue for future work.

Our current study was restricted to datasets that are composed
of only nominal features. Since many interesting domains include
both numeric and nominal features, we would like to extend this
study to datasets which also have numeric features. We could apply
our currentExpected Utilitymethod after converting the numeric
features to nominal features using a discretization technique, as in
[3].

6. CONCLUSION
In this paper, we propose an expected utility approach to active

feature-value acquisition, that obtains feature values based on the
estimated expected improvement in model accuracy per unit cost.
We demonstrate how this computationally intensive method can be
made significantly faster, without much loss in performance, by
constraining the search to a sub-sample of potential feature-value
acquisitions. Experiments with uniform feature costs show that this
Sampled Expected Utilityapproach consistently builds more accu-
rate models than random sampling for the same number of feature-
value acquisitions, and exhibits consistent performances across do-
mains as compared to policies employing an instance-based rank-
ing of features. Additional experiments on artificial datasets with
different cost structures demonstrate that for the same cost,Sam-

pled Expected Utilitybuilds more accurate classifiers than the cost-
agnostic random feature acquisition approach. Its performance is
also more consistent than that of a simple cost-sensitive method
which acquires feature values in order of increasing cost.
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Round Robin (RR).
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Biased Robin (BR).
_�����±cl]����#,+����3����� ���"
J�"������0
��� � ��
�%B�

��+,��� 
 � 6��	�����J�>�������U+,6
���"+,�*�G+.�"�"6
��%"M « ���"�H�9�����/�J��%b+�F�%'����<V�"0N(
±?l �*+�<,�"%H��+*�����9����`
�B�"+,���N( 
 � � § (!����0E����
J������%B�����\
���+.�"�"%'%"Mj « 8U��+,6���%'�212�����I�����2�/��%-�c�"+,���=��6�����%�6�
I�����/��%"(�±clQ�*+�<,�"%�FD����&
��+E������[���%-�I��+,���Jn�M4_�����%�%'�/�*
����$���/#�+����3����� ��%�1c�"���b&
��+�12�X�/�
%-���;����%-���/��%B��%KW�
��/�"�������B12����������Y$d3e���gZ���D0K�D��%bFJ���"�$

���"<	�/+�6�%'�3�
%-��6�0�����0���%G�I%����*
��/����#=�*������+	0�8:+��H���/�����/�"���A�'���/����%9d y�ghMc����%b
J���'@
8s+����������"�\+,�������\�"+,����%H
���+�F����"� �D��%HFJ�"���E<V���'�7%-�'��+,��#*���������
�"��%'�2+�8U�/0����	����������%-���;�'������#>
�����+���%"MZpR�"%'
������b�3��%��"+��*
J�����3���/<,��
J���'@
8s+����������"�,(N±?l �/%B�*%'6�FJ+,

���������)
J+��/�����.MH�P��8:������(J1c���"����%'��+�1
�������\�����I�
6��IFJ���B+�8b%'6�FJ+,

���/�����c0
�"�"��%'��+,��%9����0��=F.�S±cl �����
FJ�>����0��>�;��F��3�'���������3�7�^�;��#,�,�
��������������������� e,M���q:¡�u�r���rW�N�
w���q:�mq:¡�uBq:r���uh�.u�v � % e��Z�n��u�v�u

u	!�qs���m�B�y��v'w��"�/u�� �Cqs�n� ¤ , j"�{�Ex�n$#Bu����,j-e � e�nB��w�q:r����Z��rJ�L�����,��.u��)£ , j�x ¤ � � nR�����k���n�������n��u%#�&/�
w,� qm���*����;Vu��9�����W��w(�D�mq:�=�,��,���mqhw�r������/u'�����C�©�mq:�*u���'

Single Coin Lookahead (SCL).
_����Rµ�7� S����#,+����3����� �"+��=@


�6����"%9�����7��`

J�"������0����"#�������j
c
5	6�������+,�Qx�n�+�8G�����K
J+,�������X���D�;�

0���<V+����"%B�,�:������������������# � �/
�%c���=�����GF�6�0�#����?��+9�>%'����#��/�H�"+,��� 
 � M
®L���/������<V���Z�"+����I�
�/���^0
%)�����?
J+,��������12�3�����/+�1c�"%-�C��`

J�"������0>���"#������
��% � ��
�
J��0aw�rJ��u�(U����07��������µ�7� ����"
J�"����%2�����>
�����<
��+�6�%G�������"6��^�;@
����+,��12�3���4�3��%H���"0�6�����0EF�6D0
#,���H��+7����+.+�%'�������I����`
�H�"+��/�NM9 !��&V�
±cl\(?µ�7� �D��%=%-�'��+,��#4
J���'8s+����������"�,(cF�6
�I��%*%-�������G%'6�FJ+,

���/�����mM
�P��
����'�����"6��/�;��(DµW7� E%'6�TU����%?�/��%'�3��6D�;����+,��%�12�������G�I6��3����
����G�"+,����%
�I6�%-�\���	������������������<	���3�4��+�

��+	0�6��"�=�����*+�
����������C
J+,�������.ME_�����%
+.�"�"6
��%IFJ�"�"��6�%'�7µW7� k�"+,�*
�6����"%9��%'�"+����K8s+����"+,��� 
 � 12������+,6
�
�"+���%'�/0���������#a��+�1 �����$����������������# ¤ M eE��+,����%��"+�6��/0Q���.�����������12�3��� 
 � ��+9���*
���+;<V�G����%c
J+,�������.MC_����"%'�R0���[��"���"���"���"%b���������G%'���=@

����R%-�'���;���"#,���"%2+�TU������07F.�K±cl¶����0$µW7� 4�*+����/<������G�����H���"��0�8:+��
�I�*+����B��+,F�6�%-�G
J+,�������.M

3. THE MDP FRAMEWORK_����C��������<V�?�*+	0
�"��%'�"���"������+,�9
���+�F����"� ��%)�c[D���3����@���+������"+��9������&V+;<
pR�"���/%'��+��E³���+.���"%'%\d�e
�;g!�"+,��%'��%-���/��#=+�8)��%'���2+�8)%-���;���"% # (��9%'���2+�8
�������/+���%�(9(C������1b�;��0a8:6���������+,� � (C���D0X�$�'������%'�3���/+��X8:6���������+,�
)\MCµ

J���"�3[D�����/�3�.(.1c�B�/0��"�.���38s�*�\%-���;��� 5%* # +�8!�����H�$p>³XF	�������
���"�����/������#\F�6�0�#,����£�'h(
����0*F	�I�����G�"+,�����"������+,�7+�8A±c�����\�.��
J����
D��@
�����*��������%�+;<V���?�����G�"+,����%"M?_������b��%"(��9%-���;���B��%2��x ¤ �aeB�"���"�*���	�<V�"����+��>+�8?������8:+������8^,£ ' � � §
� � §
� ������� � � � � � a�M9_����I�"+��*
��������%'���9+�8c���������D��F�����%-�������"%\�"+��'���"%'
J+,��0�%\��+E�����������*
J+,%'%'��F��/��
J+�%-@
��������+��H±c�����=0���%-�'����F�6
���/+���%b���D�;�b������+.�"�"6
�2+�<,���b����� ¤ �"+��/��%2F	�%'
J�"��0�����#2%'+,�*�?
J+��'����+,� F +�8������C+�����#,���D���	F�6D0
#,���A£�(;12�3��� F,+ £�M
µ
�����"�I��+7�*+����=�������/+���%>�����4FJ�9����&V���S+����"�������9F�6D0
#,���R�/%B��`	@
�D��6�%-����0U(������R�������*���D���N%-���;���"%H�����>����+�%'�>�/�712�������$£ ' , f
M?_����
�������/+���%b+�8!�����R�$p>³X�"+��'���"%'
J+,��0���+\����� ¤ 0��3TU�������	�c�"+,����%����D��������EFJ� � ��
�
J��0U(�12�������9��������+�� 2W�-* ( �"+��'���"%'
J+,��0�%2��+ � ��
�
�����#
�"+��/� � M
_����?����1b�;��098:6���������+�� � j 5 � 2 � 5 'snA%'
J�"�"�3[D��%)�����?����1b����0�+�8�����&.@����#I��������+,� 2 8s��+�� %-������� 5 ���D0*��������������#I%-������� 5 ' M��P�������H�"+,����%


���+�F����"��(�����������1�����0������"�"��<V��0I���*���.����+,�
@��������*�/�����	%-�������>jm�mM �,M�(
12�������������c���"������������#HF�6D0
#,������%�
J+,%'�3����<V�;n)��%��"����+
(,12�������b�����c����@
1b�;��0����G�9�������*���D���U%-���;���>�/%b�����B���"#������2+�8�����+.+,%'����#*�I�"+��/� 
 9
���D�;�C�*�/#��.�?��+��CFJ�b�����bFJ�"%-���AlH��#������;j 
 9 n�MCµ	�/���"�2+,6
�?#�+V���D��%C��+
�*�������*���"�B�����R��`

J�"������0����"#�������(D�3�2����&V��%b�*+����>%'�"��%'�R��+I��������&
+�8Z�����B����1�����0�%G��%H�"+�%-��%\j:��+=FJ�>�*�������*���"��0DnC�/�7+,6
�H��+,�.����`	��M
�P�������	���$p>³C%"(	�����H����1�����0K���b8:6
��6����G���/�*�G%-���"
�%���%b<,���/6���0

���"%'%2���D���7���*�*��0��/�����H����1b�;��0N(J���D0$%'+=�=0���%'�"+�6��.�28m������+��/. + e
��%H6�%'��07��+=��6��3����
��3��8:6
��6����R����1�����0�%2��+I����0
6��"�R�����"�3�G<,���/6��,M?�P�
�������"+�����%=

��+,F����"��(A8:6���6
���K����1b����0
%=�;���7��+S���"%'%�<,����6���0��������
���*�*��0��/�;���B����1b�;��0�%9jm���$8m�����H�����*w�r�� �*����1b�;��0$���D���2���;�'������%2��%
�����c+,���?���"�"�"��<V��09+,�9�����c�/��%-�C�����*��%-����
Jn�(,���D0\%'+B1c���D��<V�0. , e
����+,6
�H�$p>³�8s+�����6��/������+,�NM�)���D���/�3�.(��������'������%'�3����+,�>8:6���������+��%)�j 5 � 2 � 5 ' nJ%'
J�"�"�3[D�"%N������
���+�F�@��F����/�3����+�8C��������������#7%-������� 5 'C�;8s�����R����&	�/��#$��������+,� 2 8s��+�� %-�������5 M¯���o+,6
�$±c���V�"%'�/���L8:+����I6��/�;���/+��!( )9j 5 � 2 � 5 ' n=�����LFJ�E�"+,�	<V��@�����"�.���3����+,�*
�6
����0�6�%'����#��������*�"���E+�8C�����9±c�����70
�/%-�'����F�6�����+,��%
+;<V���b�����R�"+,����%"M@��+��G��`����*
��/��(1)9j �80 � 2 j�� � x,n � 
 � � �80 � 2 j�� � x�n'nc��%�����/��6��/������0K��%?�����2��`

J�"������0*

��+,FD��F������3�P�*+�8!��+,��� 
�� ��6���������#>6�

���"�,0�%"�ET*j� � n , �32�y	M�iH%I�����K�'������%'�3����+,� 8:6���������+,��%'
J�"�"�3[D��%

���+�FD��F������������"%"(�1��\+�8^���"��6�%'� u j 5 � 2 � 5 ' nc����
��^���"�>+�84)9j 5 � 2 � 5 ' n�M
3.1 The Optimal Policy& ��<V�"�K�����9�$p>³ 8:+�����6��/������+��!(
���������\�;���\�I�	6��IFJ���b+�8)�������
@
���/5.6���%H���D�;�R������FJ��6�%'��0���+7%'+��/<,��8:+��R�����\+�
����������Z
J+��/��������`	@
���������Sd3e���ghM@��+��b��`����*
����,(
��FJ+��'��+,�=@�6�
�0	�
�D���*���G
���+�#������©�����
6�%'�������=±?�"���/������+�
������������3�P����5.6�������+,�S��+7�����;���65 s87 (N��������`	@

J�"�����"07<�����6��>+�8Z��������%-���;���>6��D0
���G���$+,
����������N
J+����/���N�
5 s87 j 5 n , ����`? e q:9�u j 5 � 2 � 5 ' n�d � j 5 � 2 � 5 ' n �;.�5 s87 j 5 ' n�g j��.n

±c�"#�����������#*���b�����R�"�D0�%-��������%G���K12�������7£ ' , fI���D0�
J���'8s+����*����#
19



� ���Z�s�������!�
��|
	A{;���"�	|
�
	��"����� ZD{Q�����A{$Z��!}��4��|"}:�A�]|
�A�
� �D��	A����	)�A�,|�}nZJ�
µ	����� �����;��6����"% & ��+,6�
�%2�P���"��6D0
��07���Eµ
���
e ±c6�0�#�����(D±?�����I�H�

J����
��������*��������%
x ±c6�0�#,����(J�$������%G����0Eµ	�����D0�����07pB�"<	�^�;����+,��%� ±c6D0
#,����(17c+,�
[J0
�"���"�B�P�.������<����!µ	���;��%� ±c6D0
#,����(D�$������µ	���;��%"(x7c+���[J0
�"�����>�P�.������<����!µ	���;��%� ±c6�0�#�����(D N+.+,&��������,0Eµ.������%"(17c+,�
[J0������"�>���	������<,���Aµ.������%

�EF�����&	1�����0X%-1����"
���+�1�����0a�����������3���/���b%-���;���$£ ' , £�(�������+�
�@
���������c<�����6��*8:6���������+��X�����XFJ���"+��*
��������"�3�X0
���������*�����"0NM$®o�����
�����b&	��+�12�I�'������%'�3���/+�������0�����1b�;��0I8:6���������+,��%"(V�����b+�
�����������
J+,�3@
�����U\ 9 �����"�E8:+,����+�12%\�/�*�*�"0��/�����"�3�$<
�/��#����"�"0
�E+�����@�%-���"
���+.+,&���@
�����,0UMR¢H��8:+��'��6��������"�3�.(D�����9%-���;���I%'
����"��+�8?��������<V���*+	0��"�!%'�"���"��@
����+��*#���+�12%?��`�
J+����"�.���/�����3�912�����*£����D0 ¤ (,����&	����#R�3�C���.�'����������F������+��"+,�*
�6����G�����B+�
����������U
J+��/�����K6�%'�/��#I��`������2�*������+	0
%�%'6����7��%
0	�
�D���*���*

��+,#������*�*����#�M�_�����%I������0�%9��+������*�D�;��6����������3����������@
����<V������
�
���+�`
���������>0	�
�D���*���R

��+,#������*�*����#�<
�/�I���"���
8:+������"�*�"�.�
�����;��������#
M

3.2 Applying RL to Active Model Selection_����K�$p>³L8:+�����6��/������+��a�"+,6�
�����0412�3���S�����*&	��+�12�����
<	�3��+,�
@
�*���	�=0
�
�D���*���"%$jm�mM �,M�(������K�'������%'������+��o����0 ����1b����0 8:6���������+,��%�n
�*+�����<,�;���"%Z�b���"����8:+����"�"�*�"�.�Z�����;��������#B��
�
���+V�����9��+B��������<V�c�*+	0
�"�
%'���/��������+,�!M?lG�"
J�������"0K�"
���%'+	0��"%2+�8!�����\�$pR³������7FJ�B%'�/��6��/�����"0N(
12�3���L���klH ��#,�"�.�K��`

���+�������#�������%'
����"�E+�8\�������/+���%"(2+�F�%'����<.@
����#\���������"%'6��3������#>����1�����0
%"(
���D0=#����,0
6D�����3�*�����;��������#9�R
J+,�������=��+
�*�����/�*���"�H�����R��`

J�"������0K���"#�������M��+��=+�6��IlB o���	<V�"%-����#V�;����+,�!(?1��K6�%'�������/��@���+	0�����#�d3e��;gG��%=+,6
�
8s6���������+,�7��
�

��+�`������;���/+��*�*������+	0*���D0*�"+��IF������H�3�c12�3���7�R���"�=@

J+������H0��3TU�����"���"�ajh_�p\nI�����;�������Sd3e�y;gB6�%'����#a���k�"
�%'���/+���@�#�������0
�

J+����/���.Mc����#,�"���������N�����>�"+��IF��/��������+,�$+�8��"
�%'�/��+���@�#����"�"0
�$_�p=j �Jn
���D0$�������"���B��������@��"+	0
�/��#*��%B�;�'�'����������<V�\FJ�"����6�%'�>���������\�����\%-�'��+,��#
#�6D�;�����.���"�"%)�������)�����c�*������%�5.6D�;����0\���'��+���FJ����1��"���9��������
�
���+�`	@
�����;����������������0�<�����6��?8:6���������+,�I���D0\�����C�'��6���<�����6��C8:6���������+,�912���/�
FJ�G���"���b�*�����������Ad3e
!;g�M?iG%?12�3���$���.�=lH N@���#��"�.��(.�����G�
6��IFJ���C+�8
8^���"��<,�;���/��F����"%\���D�;�9�I6�%-�\FJ�*�����	6D�����3�S%'���\8:+��=�E_�p=j �JnB��������@
��+	0�����#���#,�"�.�9��%���`	���"��%'��<V�,MK_����*�/�;��#,�K�
6��IFJ���R+�820
�"#����"��%�+�8
8^���"��0
+,�²����&V��%\���.�S��`
�D��6�%-����<V�*���
<,�"%-����#V������+��X+�8������*
D�������=@
��������%$����8s����%'��F��/��M µ.���/���m(H�/�L+�6��7��`

J�������*�"�.��%"(21�����`

���+����"0L�
12�/0
�\������#��9+�8C
J+,���.��%G���$�����>
D�;�����*�������H%'
D���"�,(��/���"��6D0
�/��#*<,�;�'@
��+�6�%B<�����6��"%G8s+��G�����\��������������#*%-���"

@�%'���"��j���n�(������>
���+�FD��F�����������+�8
��`�
���+���������+��Xj#"�n�(����D07�����B1��"��#��	�G+�8���@�%-���"
$F�����&	6�
�%Bj �Jn�M��+���8s6��������/+��K��
�

��+�`������;���/+��!(.1c�B�"+��/���"������0K�����H+�F
<	��+,6�%?8s����@
��6
���"%cjm��M #
M)�����?±c�����2�.�

J����
D�;�����*��������%"(������C����������������#2F�6D0�#�����(
�����2�*������%c���D0*%-������0�����0*0
�"<	�/������+,��%c+�8N�����2�"+�����%�n�(
����+���#\12�����
%'+��*�R�*+����H%'6�F
���/�B���'�'����F�6
���"%>jm�,M #�MC�"+���[D0��"���"�B���.������<�����%"(
F�6D0	@
#�����FD��%'��0 �"+,�
[J0������"�K���	������<,���/%"(c<,�;���/������+,�Q���*+���#������$��+,����%"(
+	0�0�%*��������+�%�n�M iH�3����+,6�#��k+�6��K��`

J�������*�"�.��%=���"%-����0k�	6��*����+,6�%
��+,�IF����D������+���%B+�8?8s������6
���"%"(U1��\8:+.�"6�%R��������+���[�<V�>8:���;��6����9%'����%
�������=�����7����
����"%'�"�.���;���/<,�7+�8H�����K#��"���������b�'���"�D0
%91c�$+�F�%'����<V�"0NM��+��2�������K+,���R+�8!�����H[�<V�B%'����%"(�_A��F����IeB#,��<V�"%������B�����*�"%�+�8A�����
0
�3TU�����"�.�Ht�u'���m�	v�uI��v-w����D�*���D�;�9�����*�������/6�0���04�/�S�����*%'����MSjh_����
���.�������"%-���"0I�����,0
����%'��+,6��/0I����8s���c��+R�����G��
�
J���D0��3`9��+>%'�"�G��`��������3�
12�������Kt�u'���m�	v�u����;�����������/6�0���0����E��������t"u����m�
v'u\��v'w����DM nv��+��R+,6
�
��`�
J�����/�*���	��%�+�8N�����b����`	�C%'�"������+��!(.1��b�'�����/����0I[D<,�20��3TU�����"�.�ClB 
��#,�"�.��%"(.12�������b����������#��"�.�c6�%'��0I+����2+�8J������[D<V��8s������6
���G%'����%C8s+��
�3��%b8:6���������+��E��
�
���+�`
�/���;����+,�!M

� ���Z�s�%$&�('��)������|"���Q{;�	�D{;�
|�Z�� � ��{�}nZ�	��*� ZD�:}:�V}s���
³)+,������� jm� , �.(�F , e���n jm� , !
(�F , e"yVn jm� , e�f	(�F , x�fVn
±cl f	M f���y�yi� f
M fi�i�$��� +-,.+&/�$&�0+
µ�7� +-,.+�1�23��4 +-,.+&/�4�2&$ f
M fi�,x	e�e

lH ?jm%'����e�n f	M f��i����� f
M fi�5! � f f
M fi�$��� �
lH ?jm%'����x�n f	M f��i�$�
e f
M fi�5!i��y f
M fi� � ��f
lH ?jm%'��� � n f	M f��i���i� f
M fi�i�,x6! f
M fi� � !i�
lH ?jm%'��� �Vn f	M f��i����� f
M fi�$�Vy$� f
M fi�,x$�7!
lH ?jm%'���(��n f	M f��i� � � f
M fi�i��fi� f
M fi�,x5!�f

0  0.25 0.50 0.75 1.0
0.073

0.0735

0.074

0.0745

0.075

0.0755

0.076
Expected Regret Comparison (n=8,b=16)

Lambda

E
xp

ec
te

d 
R

eg
re

t

RL(set 5)
BR
SCL

�2}s�8	A{;�9���;:>��{�}nZ�	�� � �D�<	A����Z��\�s�8�=�>�A�@?BADC¬�D���FE�GIH
�"|�}:�s�J�
	-�C�	{�}nZD{K|�Z@CKH

4. EMPIRICAL RESULTS®a�\�"+��D0
6�������0���`�
J�����/�*���	��%2+����������"�9
���+�F����"�*%G+�8C������������%-@
����#S0��ML*��6��3���3�.(Z12�������K������� �����3���/���b�"+��/� 

���/+��I1���%*�E6����38:+����
±c�����
j-e � e�n�M ��+��C�������*��`

J�������*�"�.��(������b��`

J�"������0����"#������Bj

c
5.6D�;@

����+,��x�n>1���%I�"�����"6��/�;����0a8:+��=±cl\(�µ�7� �(Z���D0������=[�<V��0��3TU�������	�

J+,�����"���"%*�����;������0 6�%'����#S�S_�p=jhfVn\lB ��#,�"�.��MX_����$�	6���FJ���9+�8
�'���������/��#>�"
���%'+	0
�"%C8s+��C�����blH $��#,�"�.��%�1b��%C%'���C��+Ie,M !R�*�������/+��=8:+��
�����=��1�+E%'�����/�����9

��+,F����"�*%9���D04��+�x.M !��*��������+,��8s+��9�����*�/����#����

���+�F����"��MC_����R���"%'6��3��%G�����>%'��+;12�$�/��_)��F��/�9x.M
_����9���"%'6��3��%>���D0
���������9���D���B8:+��9�����C

��+,F��/���*%B�"+���%'�/0������"0N(!�"�3@

�������R±cl +��\µW7�  

��+	0�6��"��0$�����\%'�����/���"%-�R��`

J�"������0$���"#�������MH�P�
8m������(U��+�lH a
J+,�������E��%R��F����\��+*FJ�����B�"�3�������B+�8������\%'���*
����\
J+,���3@
�"���"%G���7�����B����%'�\+�8A���"�$�"+�����%H���D07�IF�6�0�#����2+�8)��1��"�.���.(
���D07��+
lH �
J+,����������%B��F����>��+*FJ���;�>µW7� �+,� ��rW�K+�8Z�����\

��+,F����"�*%"M?®a�
�D��<V�H+,F�%'����<V��0*���D�;�b+,�K�/����#,���H

��+,F��/���*%Rjm�,M #�MZ���"�K�"+��/��%2����07�
F�6�0�#�����+�8D�����3�'�P��n�(�±clQFJ�"����%?µ�7� 7���D09lB K
J+,�����"���"%C����%'���3�.M�_����
���"%'6�����%H+�8������\��`

J�������*�"�.��%b���"<V�"���!�������B0��"%'
��3���\�����\��`	���"��%'��<V�
�	6���FJ���B+�8�%-���;���"%>+,F�%'����<V��0�0�6
������#��'������������#
(!������lH  
J+,�����"���"%
�����>��+��2#��"�����������/���/��#=1��"���!�"��+�6�#,�7FJ���P1c�"�"�7%-�������"%b��+=FJ���;�b�����
%'���*
������G
J+,�����"���"%"M
iB0�0��3����+,��������`

J�������*�"�.��%\1������K��6��X+�� ����� ¤ , !
(?£ , e�y


���+�F����"�¦12�3���k0��3TU�����"�.��<�����6��"%*+�8(�Q8s+��������$_�p=j �JnI��������������M��+��R��`����*
����,( �)��#,6
���7e9%'��+�12%B�����\����%'6��3��%R+�8?<����'�
����#N��12���"�
6�%'����#4�����7[�8s����%'����+�8R8:���;��6����"%=8s+���8:6���������+��o��
�
���+�`
����������+,�NM��+��b�����U<�����6��"%?+�8��K�"+���%'�/0�������0N(.�����H
J+��/���"���"%b�����;������0�F.�=lH �0�+
+,���3�R%'����#,�.���3�>FJ���'�����N���D���\±clX����0>�����C����8:�����/+��)��+Gµ�7� �M;_����?0��38^@
8:�����"���"�HFJ���P1c�"�"�=�����H<�������+,6�%�_�p=j �Jn���������������%c��%���+��c0
�������;�����,(
F�6
�������2��`

J�"������0I����#������c�/%C��+�1��"%-��12�3�������*�/�.�������*�"0��/�����2<�����6��
+�8O� , f � �.M

20



2.5 3 3.5 4 4.5
0.072

0.0721

0.0722

0.0723

0.0724

0.0725

0.0726

0.0727

0.0728
Expected Regret Comparison (n=10,b=20)

Number of RL Training Episodes (in millions)

E
xp

ec
te

d 
R

eg
re

t
RL(set5)
BR
SCL

�2}s��	A{;� $)�K:>��{�}nZ8	3�7�8��Z8	)�U|
�EZ��>|�{���}:�)}:�!�
�

CKH �"|"}:�:�B�0���
�A}��Z}s|
���nZ��9�
{K���	{ � ZD{5�4���)�,��|
�A���9��}�� �)�s��� ZD�:}:�V}s���

� ���Z�s��4)� C�����Z8	!{������ 	��"��� ��� �	���5� � ZD�:}:���DZJ� �
	�� +
��
	 $�+

³)+,������� _!���������/��#I�����*�=jm�*����%�n �$���*+��'�K¢B%'��0Sj���±bn
±cl f f
µ�7� f f

lH ?jm%'���N��n y � f ��y,f
i 
J+,%'%'��F����K��`

��/����������+,�a8s+��9��������+;1c����
J���'8:+������������K+�82lB 

��%2���D�;�B��+��G�"��+�6�#��$�'������������#*�"
���%'+	0���%R�����\FJ�"����#*��`

J�������"���"�"0NM
iH0�0
������+��D���)�'������������#7%'��+,6��/0�
J�����*���R���SlB  ��#,�"�.�R��+K������������%'�
�3��%G��`

���+����;����+,�E+�8Z�����R%-�������\%'
����"�,(D����07�
�/���^0$�IFJ���'�����G
J+,�������.M
_!+\����%-�c�����2��TU������+�8!������������%'�"0��'�����/������#�(.1c�H��+,�D0
6������"0=��`

J���'@
���*�"�.��%Z+��I����� ¤ , e�f � £ , x�fB
���+�F����"� ����12�������I1c�b<,�;������09�����
�	6��IFJ���b+�8Z�'������������#=�"
���%'+	0
�"%G8^��+,� ��1�+*���D0��I�����38Z�*�������/+��E6�

��+=�����"<,�"�$�*+����>#,�"������+,6�%28s+,6
�R���D0$���D���38��*�������/+��!M? !�"����������#
��+.+�&\
��/���"��12�3���I�B_�p=jhf	M ��nA��������������(V6�%'�/��#B+�����+�8D�����?%-�'��+,��#��"%-�
lH a8:���;��6����9%'����%B1c�9���"%-���"0N(U%'���B�
6��IFJ���2[�<V�,MH_�����0�+�12�.1b�;��0
%'��+�
�����#��'�����D0X+�8N�)�/#�6�����x�%'6�#�#,�"%-��%=�������*������������%'��0 �'������������#
0
+.�"%R���*
���+;<V�>�����9���"%'6��3���/��#7
J+����/���N·!��+�1c�"<V����(U�"<,�"�S��8s�����R8:+�6��
�*��������+,�*�"
��/%'+	0
�"%"(.�����2��`

J�"������0����"#������c+�8U�����blH $
J+,�������=��%?%-���/���
�/�;��#,���G���D����±cl ���D0$µ�7� �M��+���8:6
�'���������"+��*
D�;���/%'+��!(�1��b�"+���%'�/0����C�����?�'������������#H���/�*�����D0
�*���*+��'�I���"5	6��3����0KF.��±?l9(�µW7� C(
����0������BlH E
J+,�������K��8^�����b8:+�6��
���D0������38��*���/����+,���'������������#*�"
���%'+	0��"%"MG_����9�*���*+��'���"+���%'�/0������"0
��%=+����3�X�����K
J+,������� %'
J�"����[��$%-��+�����#,��jm�hM �,M�(���FJ+;<V�����D0XFJ���.+��D0
�����cF���%'���c�"���"�*���	��%!%'6����I��%A�����CFJ�����2�.��
J����
D�������*��������%A���D0R�����
F�6D0
#,���Z����������%Z#,�"�����������3�9����5.6��3����0�F.�9���/�

J+,�����"���"%�n�M

c
`����*��������#

_A��F���� � (21���%'�"�E�������K�"<V�"�k6�%'����# ���/�*+�%-� !�f,f���± +�8\�����/�
�*���*+��'�.(�lB a0
+.�"%G��+��H#V�����4�=%'��#����3[D�����.�>�,0
<,���.����#,�>+;<V���H�����
<	�3�'��6D�������7�*�"�*+��'�����"%'%2±?l ���D0EµW7� S��+,6
�������"%"M
iG%H�����"%'�\��`

J�������*�"�.��%H%'��+;1>(J������
J���'8:+����������"��(J%'
J�"��0U(N���D0

��+�1ª�*���*+��'�X����5.6��3���"�*���	��%*����&V�$�����E%'�/�*
J���$±?lª����0Lµ�7� 

J+����/���/��%B
�����8:������F����9��+������>6�%'�\+�8Z���"����8:+����"�"�*�"�.�G��������������#�M�iH�3@
����+,6�#,���3�9%'��+�6��/0�FJ�=
J+�%'%'��F����*8:+������alB Q��#��"�.�9��+$0�+�FJ���'�����
�������������"%'�����"6
����%-���/��
J+,�����"���"%"(N�����I��`�
J�����/�*���	�����A���"%'6�����%B�/��0��3@
�"�����2���D���Hjh���?������%-��n��*+����2�"���"<V�������=0��"%'��#�����0=8:�"����6�����%c+����RFJ���'@
�����Z�P�

J�c+�8D8:6���������+,�I��
�
���+�`
�/���;��+��)12������FJ�C����5.6��3����0\��+R���������"<,�
������%"M
³)�����D��
�%)���������/�"�����"%-�?����#�6��*�"�.�G���V��q:r����)6�%'����#BlH K8s+��?�������/<,�

�*+	0����R%'�"���"������+,�]jh����0o���"���"�S#,�"���������>F�6D0�#�������0o�����;��������#Vn7��%
�����*+�
�
J+��'��6����3���4��+,%-��+�82�"+��D0�6���������#$�����*���"���"%'%����'�4�'������������#
M
_��D�;�I��%"(C��������+,6�#,�X��`

J�������"���"�*��%�����%-����+E#��"�������;���,(Z�����=�����*�
����0o�*�"�*+��'��6�%'��0Q��+a�'�������LlH ¯�*������+	0
%��"+,6��^0oFJ����5.6������3�
1����/�>%'
J���	�K��6���������# �aFJ+��'��+,�=@�6�
o0
�
�D���*�/�E

��+,#������ jh��%$���
µ
��������+,� � M�e�n2���D�;�G%'+,��<V�"%G8:+��H�����>+�
����������!<,���/6��>+�8C�������E%-���;���,M
_����40
�
�����*����
���+,#������ �"+,6��^0L�"+��*
�6
���������4+�
����������B
J+,�������
8s��+�� %'+,�*�G%'�"���"���2%'����+�8A%-�������"%c�/�������G%����*�B���*+�6��.�c+�8!�����*�G�3�
����&,�"%A�����"���
8:+������"�*�"�.�A�����;��������#H��#��"�.�!��+2�"+��*
��������Z�'���������/��#�MA�P�
��TU�"����(
�����H+�
�����������<,���/6��"%c8^��+,� ������%�%'�"���"���2%'����+�8!%-�������"%���+,6��/0
FJ�$�"��%'���3�Q��+,�IF�������0a12�3����������±cl +��7µ�7� 
J+,�����"���"%=��+���+�1����
���������G���"#������B��<V�"�$8s6��'��������(U����0$����&V�>�3�G�.���G�*+����\0
�ML*�"6��3�G8:+��
lH 4�*������+	0�%���+=�"+��*
J�����B12�3���$�����"%'�>���"6
����%-���/�>
J+����/���/��%"M
« <V���������h(������c
J+.+���
J���'8s+����������"�b0
�"�*+,��%-�'��������0\F.�\lB ��*������@

+	0�%B�/��+�6��>��`

J�������*�"�.��%G%'6�#�#,�"%-��%R�������B12���"���"+,��%'�/0���������#K�����
�/����#����R���D0K�I6������*+����R��+,�*
��������;����07

��+,F����"� +�8Z#,�����������!F�6D0
@
#,������09�����;��������#
(��������$pR³E8s+�����6��/������+,�9%'��+�6��/0>FJ����<V+��^0
��0N(����D0
+,���$%'��+,6��/0X8:+.�"6�%=+,���*+������'����������F����7���"6
���/%-�����7
J+,�����"���"%*���D���
�D��<V�BFJ�"�"��%'��+;12�7��+�1�+���&7��TU�"������<V�"�3�4d �.(1�;ghM
5. RELATED WORKiH�����/<,�=�*+	0��"��%'�"���"�����/+��a1b��%�+����/#����D�����3�a���.�'��+	0�6��"��0S�/�kd�e"f�gh(
���3����+,6�#��\%'�"<V�������V%'���*�/�/�;�)
���+�F����"�*%N�D��<V�ZFJ�"���>
����"<	��+,6�%'���R%-��6D0
@
����0NM _����S1c�"����@�&	��+�12�L��6��3���3@P�;���*��0kF����D0
�3�$

��+,F����"� d3e���g\��%
�"+����"��������0k12�3���o[D��0�����#a�����SFJ��%-�$+�F
¥P�"���E���*+,��# �a%'����(GF�6��
����1�����0�%7���������

����������3�Q���"����6���0Q���
��+,6�#,��+�6���(�12�3����+,6��70
�/%-�����
@
#,6���%'������#��'�����/������#E8s��+��²����%-���/��#�
��D��%'�"%"M�±?�4�"+��	�'����%-��(C��������<V�
�*+	0����b%'�"���"������+,�o#���<V�"%*��+S����1b�;��0Q6��	�����������$[D�����b�"+��/�Q��%K%'��@
���"������0U(����D0B���	6�%!�*+��������"�"6
�������"�3�R����
����"%'�"�.��%N������
�6
�����'������������#

�����%'�>+�8�F�6D0
#,�����"07��������������#�M�µ	�'���;���"#,���"%28s��+�� �����>��0�<V����%��;���/���
FD���D0
���B8:+�����6��/������+��od3e�gC�"+,6��/0�����%'+EFJ�I�,0�+�
�����0�8:+��\+,6��\

��+,F
@
���"��(�F�6��b�����\�,0
<V����%������/���)��%'%'6��*
�����+,�$�/%26��������"�"%'%��������3��%-�'��+���#
8:+��R+�6��G����%'��(U����0$���
6�%2�/��%'%B0
��8:�"��%'��<V�9����#,+����������*%B������6�%'6������3�

J���'8s+���� FJ���'������+��L�������/<,���*+	0��"�2%'�"���"�����/+��!M¶i �*+����$���"�"���	�
FD���D0
���'@�<������/���.��(.�����B����`=&	@��;���©FD���D0
���Rd � gh(�%'�������"%b+�6��b��+�����+,�
+�8�����`
���*���"����#G�\��q:r.�,�/uC����1�����0�+;<V���A�����c0�6
��������+,�\+�8������c�$p>³)M
�B+�1c�"<V����(�d � gC�����/+�12%R������%'����#���������1�����0���+�+.�"�"6��R+,�S���.�$�����*�
%-���"
N(D��%G+�
�
J+�%'��07��+=%-�'���������3�$���2�����B�������*�/�����N%-�������"%"M
pR6
T d �;g9%-��6D0
����0 �����a±��"�.��%'�^��� �$p>³ 8s+����I6��/������+,�O���¯����@

����<V�\�*+	0��"�!%'�"���"������+,�N(N��%B�K±c���V�"%BiH0���
�����<V�9������&,+�<$pR�"�"��%'��+,�
³Z��+.�"�"%'%�jh±�iR�$pR³cn�M?_��D�;�*%-��6D0	������%'+���+,��%'�/0
����%*<,�;����+,6�%*lH 
�*������+	0�%=��+a��
�

��+;`
�������������k+�
����������G
J+,������� 8:+���±ciR�$p>³�%"(
����07����+.+�%'�"%2%'+,�*�R+�8A�����B%����*�B����
J��%�+�8)8s������6
���"%b8:+��b8:6���������+,�
��
�
���+�`
����������+,�L���D�;�71c���"+���%'�/0��������L������%$1�+���&JM �$+����"+;<V����(
�����4��`

J�������*�"�.�����R���"%'6��3��%E�"+,���"6��E12�3��� +�6���[��D0
�/��#,%"(\��% d ��g
����%'+�����
J+��'��%��4#,��
QFJ���P1c�"�"�Q�����7����1�����0�+�8R�����$������������0QlH 

J+,�����"���"%7����0 ������+,

���/�����2
J+,�������.M ±c�"%'�/0
�"%�lB �(c����+���������
J+�@
���"�.���/���b%-�'���;���"#�� 8:+����������/<,�$�*+	0����b%'�"���"������+,�Q�/%I+,���������$%'
D����%'�
��+.+,&��������,0ad3e
�	(8!;g�MC¢H��8:+��'��6��������"�3�.(�#,��<V�"�K�����>%'���"�>+�8Z�����R%-�������
%'
D���"�,(J1c�����;<,�R8:+,6��D0����D�;�R���.�7�'����������F��/�7j:�'��6�����������0�n��/+.+�&,�;@
���"�,076�%'6D���/�3�K�
�/���^0
%G�I����#,�����b���"#������2���D���K�����R%'���*
��/�\±?l ���D0
µ�7� 4
J+,�����"���"%"MSB6��*����+,6�%>���"%'6��3��%\8s��+,�¦�������������$ N���������/��#S���������"�/������0���+
�����I�"+,����%\

��+,F����"��(!��%\�������E��+.+E�;���*�"+,���"�������"0S12�3���4�����=��+�@
����+,� +�8G�"+�%-��%*�����'������������#������*�,M4_��������$�;���K��+.+������	�S1�+���&	%
��+��*�"�.����+,�4��������()F�6
�\%'+,�*�I�����/��<,���	�\��`����*
����"%>�������/6�0��*F�6D0
@
#,������0K�����;��������#Kd �	(W��gh(��������/<,�B��������������#Kd ��gh(D��������<V�H8s������6
���B<�����6��
���"5	6���%'������+���d3e�x;gh(U����0�
���+�#����"%'%'��<V�9%����*
��/����#�d3e � ghMG_����\[��"�/0�+�8
��`

J�������*�"�.�����!0���%'�/#��Xd x;gZ��%H����%'+*���"�/������0U(U��%G�3�R0
������%212�����E��+�1
��+=����&V�B[D���3���>������+.��������+���%R���*+,��#=+,F	¥-�"����%"M

6. CONCLUSIONS AND FUTURE WORK

21



pB�"%'
��3���B�����"�3�2&
��+�12�$%'��+��'���"+,�*����#,%"(
�����>±c�/��%'��0$lG+,F����$���D0
µ	����#,���:7c+����E !+.+�&,��������07%-�'��������#,���"%b�
�/���^0K��+;1O��`

J�"������0�����#�������(
���D04���	6�%\���a���.�������"%-������#E+�
J�"�a

��+,F����"�­��%�0����������*�/������#7�����"�3�
��
�

��+;`
������F����/�3���¶���D�;�������������/%-�����"%"M¦µ	�/���"��8s������6
���"%S12�����9+�8s�����
����<V�=0
��TU�����"�.�>�"+,%-��%>���S�����I#��"����������F�6�0�#,������0S�����;��������#7
���+�F�@
���"��(!����+��������9��<V�"�	6��\8:+��\8:6���6
����1c+���&E���	<V+,��<V�"%H���"�*+;<
����#K�����
��%'%'6��*

���/+������D�;�\�"+,����%����;<,�=�/0��"�.���������?�"+,%-��%"(Z���D0�[D��0�����#���8s@
8s�"������<V��%-�'�������"#��/��%9���E������%R��+,�.����`	��M:�)���D���/�3�.(U�����\8m�����>���D�;�B�����
+�
����������A%'+,��6�����+,��������FJ�9��+,�*
�6
����078s+��>%'�����/�A<V����%'��+,��%B+�8������
��������<V�G�*+	0��"�D%'���/��������+,��
���+�F����"�]�����IFJ�26�%'��8s6��D���K0�������<	����#9���
��
�

��+;`
����������+�� ����#,+�����������M « ���*
J+�%'%'��F����������a1�+��'���X��`

���+�������#
��%=��+46�%'�$�"������8s6��G��F�%-�'����������+,��%*��+S�'������%-8:+���� �/����#,�$
���+,F����"�*%
���.��+*�I�*+����B�'����������F����,(�%'+,��<���F����>%'���"�,M
G:ZJ�N|�{�} � 	A|�}nZD���7� _�����%K
D��
J���$���	<V�"%-����#,�����"%�������6�%'��+�8>���"����@
8s+����"���*�"�.�H�����;��������#=��+�0
�"<V�"��+�
�
J+,�����"���"%H��+=�,0�0	���"%'%2�����\�������/<,�
�*+	0
�"��%'�"���"�����/+�������%'&JMS®��K0��"%'������FJ�$0���[��"���"���"���"%����a�����KFJ�"%-�
��`���%-������#9
J+,�����"���"%"(
12�������K�*+�����<,�;���G�����H���"��0I8:+��G�>�*+����2��+,F�6�%-�
%'+���6�����+,�NM ®a�S��`	���"��%'��<V�"�3�o�'�������¶��6��3����
����4lH ��#��"�.��%�6�%'����#
0
�3TU�����"�.��8s������6
���$%'����%98:+��I8:6���������+��Q��
�

��+;`
����������+��!M « 6�����`	@

J�����/�*���	��%"(A+,�4<,�;���/+�6�%\%'���"��
���+�F����"�*%"(Z0
�"�*+,��%-�'�������I�������>�����
%'���*
��/�>
J+����/���/��%B�;���\��F����R��+*���������"<V�>��+�1����2���"#������212�����78m���H���"%'%
��+,�*
�6
��������+,�����D���k�����������;������0olH ¶
J+����/���/��%"M _�����%'�����"%'6��3��%
�;���?�*+�%-�)���"��
�8:6���12���"�\�"+,��%'�^0
��������#H��
�
���+V�������"%!8s+��!�����C#,�"���������


��+,F��/���]+�8JF�6�0�#�������0I�����;��������#
M?µ

J�"�"�3[��������3�.(V���I�����2��F�%'�����"�b+�8
FJ���'�����>8:���;��6����"%>8s+��\8:6���������+,����
�
���+�`
�/���;����+,�!(U1c�=���"�"+,�*�*���D0
rDw��B��
�
��3������#7lH a���"�������/5.6��"%G��+K����������#,�����\0����*�"��%'�/+��D�������D0
�*+����*0��ML*��6��3�\F�6�0�#,������04�����;��������#�

��+,F��/����()��%\1c�*���.�����"��
D�;���
��������12���/�!
���+;<V�R������TU�"������<V�,M

Acknowledgments±?+���� ��6
����+���%\12��%'�X��+$��������&USRµ c ly7´���D0�� 7 « l c 8:+��������"�3�
#��"������+,6�%�%'6�
�
J+��'��MQ®a�$����%'+a���D����&ap>���o N�/��+��'��������0 « �*�/0
����0������H8s+��K����%'��#,�.��%K+,�Q<,�;���/+�6�%*���"�/�����"0o
���+,F����"�*%"(2����0������
����+��	�
�*+�6�%>���"<	����1�����%98:+��I�����������"+��*�*�"�.��%"M�lG6�%'%'�"��� & �����/�����
����%'+H���D����&	%U�����?iH��FJ���'���b�P��#,�"�	6��3���:7c�"�.�'����8:+����������������c !���;����@
����#�M

7. REFERENCESd�e�g\³)MDiG6�����(6S9Mx7c�"%��;@�±c�/���������m(��IM������"6���0N(�����07l\M c M
µ
���D��
��3���,M & ����F�������#I���E�9���/#�#,��0��"��%'����+
�C�����\�,0
<V����%������/���
�I6��3����@��;���*��0KF�����0��3�2
���+�F����"��M
�P���bv-w���u�u'��q:r.����w-tR�n��u��� �n���Gr�r��������W���d�
w���q:�	� w�r��!w��	rJ�V���mqmw�r��9w-t
	Cw��d�D�	��u�v�J��qhu�rJ��u�(Ae��i���.M

d x�g��=M17c�D����+������H����0$��M�
C����0������"���/�mMD±��"�.�"%'�/������`�
J�����/�*���	�����
0���%'�/#��!�?iO����<
����1>M��������mqs���mqm�������J��q�u�rD��u�(Ae
�����.M

d � g�
�M�i9M�7c���"�3���"����+K���D0�µUMW�cMJµ	�*�3���!M�_����>���;`�&	@��;���*��0
FD���D0
�����C������1O�*+	0����N+�8���`

���+����;����+,�E��
�
�������07��+I%'���������
����6�����%-�����>%'�"���"������+,�NMD�P�������G��(Jx�f,f��.M

d ��g>pIM�i9M�7c+,���!(1�ZM & �D���������������m(�����0��4MD��M��,+���0����!MDiH������<V�
��������������#=12�3����%-��������%-���������A�*+	0����/%"M��P���G��¡���rJ��u��\q:r�\u��
v-�,�U��r"t"w�v��*���mqmw�r$�bv-w���u�����q:r.����������u��I��()e
�����.M

d ��g9�4M�pR6�TZM��-�D�mqs�*�,�N�/u'��v�r�q:r	���R��w��d�D�	�����mqhw�rD�,���Dv-w���u����
v'u��
t"w�v #G���.u������V�V�(���mq:¡�u��4��v ;,w�¡��9u���qs��qmw�r7�bv-w���u�����u���MN³���p
������%'�/%"(�¢B���/<,����%'�3�P��+�8?����%'%������	6�%'���'��%HiH�*������%-��(�x�f�fVx	M

d y;g>pIM��B+.�"�!����0��4MJµ
+,FJ���hM17c+,�*
�������%'+,��%2+�8�%'��5.6����	���/���

���+.����0�6
���"%b8:+��H%'�"���"��������#=�����RFJ�"%-�GF��/��+,�*�/���U
J+�
�6��/�;���/+��!M
�P� ��q�!��n� #Bu�v ;Vu��/u(�!����� �
w���q:�	� w�r��4���n��u��=���mqh���,��������mq:���mqh���9��rJ����v'w�������qm� qs����(!e
���.e,M

d ��g\i9M��\��
J+.+��H���D0Kl9M & ���"��������MD N���������/��#�����07�"�/��%'%'�38^������#
6���0����2������0KF�6D0
#,����%"M��P��"b�	v-w(��u'��r#	Cw�r�t�u�v'u�rJ��uIw�r�4�V�k�.q:rUu�$)u'��v�r�q:r	��(Jx�f�f��	M

d !;g��4M%�>���;����%"(1�IMD������%'+,6���(D����0$i9M1�IM6SH#�M�i¶%'
D�;��%'�
%����*
�������#=����#,+���������� 8:+��G�������'@�+,

���������N
��/����������#��/�$�^�;��#,�
������&V+;<�0����"��%'�/+��E
���+.�"��%'%'�"%"M��4�,�k�	q:rUu�$)u'��v�r�q:r.��(Ux�f�fVx.M

d �;g\pIM&�
MD N�/��+��'���,( « MD����0������m(J���D07l\M & ���"��������M�±c6D0
#,�����"0
�/�"����������#*+�8Z������<V�"%-@�FD�"�.��%b�"�/��%'%'�3[D����%"MD�P�E��v'w���u�u'��q:r.���IwPt'!rD��u�v�����q:r�������r(�Gv��mq )?��qh�,�D��r���u��:� q/�.u�rD��u�(Ux�f�f � M

d3e�f;g « MJ����0������m(�pIM%��M� !���"+��'���,(J���D07l\M & ���"��������M�iH������<V�
�*+	0��"�U%'�"���"������+��!MD���E��v'w���u�u'��q:r	����w-t�'NrJ��u�v�����q:r����Kq:r�Gv��mq )?��qh�,�J��r���u��:� q/�.u�rD��u�(Jx�f,f��
M

d3e,e�g « MJ����0������m(�pIM%��M� !���"+��'���,(J���D07l\M & ���"��������M�iH������<V�
�*+	0��"�U%'�"���"������+��!MJ_!�"�������������!���"
J+��'��(�¢H����<V����%'�3�P�K+�8
iH��FJ���'���
(Dx�f�f��
M

d3e;x�g9³ZMD�$�"��<	���/���,(J�4MUµ
�,���'@�_�%'�"���D����%'&.�.(W�cMD³Z��+;<V+,%-��(D����0
l9M��$+.+,�����.MJiG������<V�B8s������6
����@�<,���/6��>���"5	6���%'������+���8:+��
�"�/��%'%'�3[D���H���D0
6�������+,�NM������*	�����(�x�f,f$��M

d3e � g8�cMD³Z��+;<V+,%-��(�pIM%�,�"��%'���!(����D0$_BM « �;���"%"M c L*�"���"�.�

���+,#����"%'%'��<V�\%����*
��/����#�M��P����r���u�v�rD���mqhw�rD�,�U�>rJw��2�/u'���.u�>q:����w�¡�u�vk�$��rJ�+�9�����+��q:r�q:r	��	Cw�r�t"u�v�u�rJ��u�(!e
�i���
M

d3e���g\��M
lH+�F�F��/��%"MJµ	+,�*�>��%'
J�"����%2+�8Z�����R%'��5.6����	���/���A0
�"%'��#,��+�8
��`

J�������*�"�.��%"M�#b���s�/u��mq:rSw-tR�n��u,�G�*u�v�qm����r-�4���n��u��*���mqm������Jw���q�u�����(Ae����,x.M

d3e���g�µUM�lH6�%'%'�"���A���D0$³)MWSB+���<
��#
M.�Gv��mq )c��qm�,�U��r���u��:� q/�.u�rJ��u/�0��4w��.u�v�r��@���Dv-w��V�k�	MU³Z���"�.�����"�>�R�����h(Jx�f�fVx	M
d3e�y;g\l9M�µUMDµ
6
�'��+,�NM� N������������#I��+=

����0������GF.�*�����>�*������+	0�+�8

���"�*
J+������!0
�3TU�����"�����"%"M��4�,�k�	q:rUu�$)u'��v�r�q:r.��(Ae
�5!7!	M
d3e���g\l9M�µUMDµ
6
�'��+,�$���D07i9M & MD±c���'��+�M &Gu�qsr�t"w�v-��u���u�r��$)u'��v�r�q:r	��MD_����9�$�P_O³Z���"%'%"(!e
�i�5!
M
d3e
!;g1��M�S9MD_�%'�3��%'��&	���/%H����0�±HM�
�M�lH+��.M
iG���������3�
%'��%H+�8

���"�*
J+�������@�0
��TU�����"���"�B�/�"����������#=12�����78:6���������+,�
��
�

��+�`������;���/+��!MD�2"3"4"65�v'��r����,���mqhw�r���w�r��G�	��w��=���mqh�	Cw�r��mv-w,� (Ae��i���.M

d3e
�;g9_BM
®a����#�(
pIM
 !���"+��'���,(D�4M�±?+;12������#
(D���D0�pIM�µ
���	6�6
��������%"M
±��"�.�"%'�/����%'
�����%'�\%����*
����/��#I8:+��G+,��@��������R����1�����0
+,
������*�����;���/+��!M��P�E��r���u�v�rJ���mqhw�rJ�,�7	Cw�r�t�u�v'u�rJ��uIw�r��4�V�k�.q:rUu$)u'��v�r�q:r	��(Jx�f�f��	M

APPENDIX

A. PROPOSITION ONE
����� ��8:9B³Z��+,
J+�%'�3���/+��Ke�MZ_��������c�;���?�	6��*����+,6�%U1��"��%N��+b
���+;<V�

������
���+�
J+,%'�3����+,�!·!1���6�%'�=�K%'���*
����I%'6�F�
���+�F����"� ��+$+�F��������������
���"%'6�����M 7c+,��%'�/0
�����E%-�������,(0;�(Z���X12������� £ ' , e,(C���������K��`
��%-��%
�P1c+=±c������j � � x�nc�"+,����%"(D���D04j ¤ M4x�n�±c������j�x � x,nc�"+�����%"MC���b��%b����%-���+I<,�����38s�Sjm6�%'����#

c
5.6�������+,� � n?���D�;�b�����H+,
����������!��������+,�����(; ��%

%-�'���������3����+ � ��
4�$±c������j � � x�nB�"+,���NM=_A+7
���+;<V�9�����I

��+,
J+�%'������+��!(1��H%'��+�1o�������b±?lO�����"+�6��.������%��;�b������%-�$�ª0��3TU�����"�.�c<,�;���^���.��%�+�8; ���$12���������3�G����+.+,%'�"%b��+ � �/
��=±c�����
j�x � x,n��"+����!M !���H����������FJ� ¤ , � �Qx=�"+,����%"(N���D0��*F�6�0�#,���B+�8?£ , x ¤ �� M SB+������"�E�����SF�6D0
#,���K��%7%'6����Q���D���7%-�������<;ª��%7#�6D�;�����.���"��0
��+�+.���"6���6��D0����*±cl\� %*%-�'�������"#��.Mk����8:������(0; +.�"�"6
��%*�I6��3����
����
�����*�"%�FJ�"�"��6�%'�H���������B�����>= ¤ x�? 0
��%-���/�����b1b�"�
%c��+�
��/���"�H�����H��1�+
±c�����
j � � x�nK�"+��/��%"M ®�������%'+Q��+����E���D�;��%'�����"���������	6���FJ���K+�8
��������%2+,�$����� ¤ ��+,����%2��%b��5.6D���h(	1c�>�����R#�6D�;�����.���"��0����D���G±?l 12�����FJ�E�"6
�'���"�.����� � ��
�
�����#�������[���%-�K�"+��/�L���k�����E%'����M _��	6�%"(G±cl
12����������&V����%'6�FJ+,

���/������0
�"�"��%'��+,�a12�������"<V���I�3�9�����������"%9%-�������;´12�3���E�����\[���%-�B�"+,����FJ�"����#K+,����+�8?�����I±?������j�x � x,nP%"M « F�%'����<V�
���D�;�c���������G�����-= ¤ MQex@? 0���%-���������?<V����%'��+,��%�+�8N%-���;���,; �/�*12���/���
�����*[���%-�=�"+��/� ��%*��±c�����
j�x � x�n�M�SH+;1 ������
���+�
J+,%'�3����+,� 8:+��/��+�12%
8s��+�� ������8m�����>���D�����<= ¤ MQex@? , r � } § t�r � } w tw , rBA � § tCAw % �

22



8s+��B����� � % e,M
B. FEATURE GROUPS
AD	��!�D�	|� ���"������������#=F�6�0�#,���\jm£�'sn
A��	|"��� �)�C�	{��H��{;�8�4�	|"�	{6�� � � � �), e �`� ¤� � � � �-, e �`� ¤� �	�D�����D���9EN|"�D�3�A��{6���7� � }s��|"}nZJ���� � � � �), e �`� ¤� � � � � , e �`� ¤� �	�D�9EN|"��| �� ����` � � �� �*�/� � � ���� � � �
HBZ Z
		���A�	���BEN|"��|
�� ����` � | X ��� 9| X � � X ��� 9��
 X���� X���� 9� X ��� X ��� 9���
G8ZJ�!~ �A�
�)�,�����U|"�	{ � ��� EN|"��|
�� ����` � j�� � �oe � �,y�� � n j������ ���.������<����^n� ����` � j�� � �oe � x5!�� � n j#!,f�� ���.������<����^n� ����` � j�� � � f � y��$� � n j���f�� ���.������<����^n� ����` � j�� � � f � e;x�y$� � n j-e�f��©�/�.������<����^n� � � j�� � �oe � �,y$� � n� � � j�� � � f � e;x�y�� � n� ����` � j�� � �X£(' � � � n��� � j�� � �X£ ' � � � n

23



Wrapper-based Computation and Evaluation of Sampling
Methods for Imbalanced Datasets

Nitesh V. Chawla
Department of Computer
Science and Engineering
University of Notre Dame

Notre Dame, IN

nchawla@cse.nd.edu

Lawrence O. Hall
Department of Computer
Science and Engineering

University of South Florida
Tampa, FL

hall@cse.usf.edu

Ajay Joshi
Department of Computer
Science and Engineering

University of South Florida
Tampa, FL

ajoshi2@cse.usf.edu

ABSTRACT
Learning from imbalanced datasets presents an interesting
problem both from modeling and economy standpoints. When
the imbalance is large, classification accuracy on the smaller
class(es) tends to be lower. In particular, when a class is of
great interest but occurs relatively rarely such as cases of
fraud, instances of disease, and regions of interest in large-
scale simulations, it is important to accurately identify it.
It then becomes more costly to misclassify the interesting
class. In this paper, we implement a wrapper approach that
computes the amount of under-sampling and synthetic gen-
eration of the minority class examples (SMOTE) to improve
minority class accuracy. The f-value serves as the evaluation
function. Experimental results show the wrapper approach
is effective in optimization of the composite f-value, and re-
duces the average cost per test example for the datasets
considered. We report both average cost per test example
and the cost curves in the paper. The true positive rate of
the minority class increases significantly without causing a
significant change in the f-value. We also obtain the lowest
cost per test example, compared to any result we are aware
of for the KDD Cup-99 intrusion detection data set.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning - Induction; H.2.8
[Database Management]: Applications - Data Mining

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
cost-sensitive learning and evaluation, imbalanced datasets,
wrapper, under-sampling, SMOTE
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In this work, we focus on the problem of learning a clas-
sification model from imbalanced data sets. An imbalanced
data set is one in which there is a significant difference in
the number of examples in a set of classes. The imbalanced
datasets pose an economic or utility problem, as there is
usually a higher cost in misclassifying the interesting class.
A simple consistent guess can become an accurate classifier,
by classifying everything as the majority class, but that is
not useful for the problem at hand. On the other hand, a
simple guess classifying everything as the interesting class
will also not work due to the number of false positives. One
wants a high number of true positives, while maintaining a
low false-positive rate.

There are many examples of imbalanced data sets where
the minority class is of interest. For example, cellular-phone
fraud or credit card fraud data are typically comprised of a
very small proportion of the the fraudlent cases (minority
class) [19, 29, 11]. However, it is quite important to predict
a fraudulent transaction. It is also important to minimize
the false positives (the nonfraudulent transactions that are
predicted to be fraudulent) because these cost time to inves-
tigate and can potentially upset the customer. Thus, there
is a non-zero cost associated with the false positives as well.
Typically, the cost with the false negatives will be the cost of
the transaction. We don’t want a system that will strongly
target true positives at the expense of a high false positive
rate, thereby increasing the total cost of the operation.

As another example, large-scale simulations can be based
on extremely large data sets. Some simulations are replacing
or augmenting physical experiments. This requires that they
be done in great detail [26, 9]. However, the process of
building very large-scale simulations and examining them for
correctness when looking for important, subtle details may
prevent all areas of interest from being viewed [6]. In any
event, the process of validating a simulation can take weeks
to months. A similar amount of time is required to actually
utilize and explore the simulation. This is indicative of the
great opportunity for building intelligent tools which can
help the simulation designers/users find regions of interest
and/or anomalies quickly. There is a cost involved not only
in correctly displaying the regions of interest but also the
costs in time. Hence, the intelligent tool should not only be
“fast”, but also accurately identify the interesting regions,
without too many false alarms. Having many false alarms
for the user to browse through can inadvertently increase
the cost in terms of the time spent. As these two examples
highlight, there is a “utility” associated with the usage of
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a technique. That utility is comprised of various costs of
errors, time spent, etc.

We investigate an enhancement to a particular compos-
ite approach, combining over-sampling by creating new ex-
amples and under-sampling, for dealing with imbalanced
data sets. The Synthetic Minority Oversampling TEchnique
(SMOTE) creates synthetic examples from minority classes
[14]. We also under-sample the majority class(es) to obtain
higher accuracy on the minority class(es) without greatly
increasing the number of false positives. However, previous
work has not shown how to effectively set the amounts of
under-sampling and SMOTE for a given dataset. In this
paper, we explore an automated method to do this. We set
up the method such that the f-value [10] is optimized. We
chose the f-value as it is a composite measure that incor-
porates both the false positives and false negatives. Hence,
if an approach significantly increases the true positives, but
also increases the false positives, then the f-value will ap-
propriately reflect that. We evaluate the final performance
of the classifiers under a cost-based framework using cost-
curves and average cost per test example.

It is important to identify the potentially optimal under-
sampling and SMOTE percentages. The amount of sam-
pling performed to mitigate the imbalance in class distrib-
ution will have an effect on the performance of the classi-
fier. We want to reduce the costs per test example. The
utility of the learning algorithm for a particular domain or
task is strongly dependent on the right amount of sampling
and the examples distribution in the dataset. Each dataset
and the corresponding class distribution will have its own
requirements [32]. The computational time and resources
spent deploying the wrapper technique should be mitigated
by the reduced cost per test example, and a higher detection
of the interesting class or regions in the dataset. There is
a tradeoff between the time spent in learning or searching
for the parameters, and the relative reduction in the costs
or improvement in the true positives on the testing set. We
will show that minority class accuracy is improved on several
data sets with only small increases in false positive predic-
tions. In addition, we will also show that our approach pro-
duces much reduced costs per test example. The approach
is shown to be both tractable computationally and effective
in choosing the parameters.

2. LEARNING FROM
IMBALANCED DATASETS

Researchers in the machine learning community have dealt
with the problem of class imbalance by using various ap-
proaches like over-sampling the minority classes, undersam-
pling the majority classes, assigning different costs for dif-
ferent misclassification errors, learning by recognition as op-
posed to discrimination, etc [3, 25, 27, 32, 4, 1, 24, 2, 34].
There is a significant body of research comparing the various
sampling methods [12, 28, 17, 22, 7]. Sampling strategies
have almost become the de facto standard for countering
the imbalance in datasets [13]. With all this there is still
no answer on how to do the sampling required for obtaining
good classifier accuracies on minority classes.

There are a number of different approaches that can be
applied to build classifiers on imbalanced data sets. In
this work, we examined under sampling and over-sampling
by creating synthetic examples of minority classes. Under-

sampling the majority class can reduce the bias of the learned
classifier towards it and thus improve the accuracy on the
minority classes.

Some studies [27, 21] have been done which combined
under-sampling of majority classes with over sampling by
replication of minority classes. While Japkowicz [21] found
this approach very effective, Ling and Li [27] were not able
to get significant improvement in their performance mea-
sures. Japkowicz experimented with only one-dimensional
artificial data of varying complexity whereas Ling and Li
used real data from a Direct Marketing problem. This might
have been the reason for the discrepancy between their re-
sults. On the whole, from the body of literature, it was
found that under-sampling of majority classes was better
than over-sampling with replication of minority classes [17,
12] and that the combination of the two did not significantly
improve the performance over under sampling alone.

Chawla et al. [14] introduced a new over-sampling ap-
proach for two class problems that over-sampled the minor-
ity class by creating synthetic examples rather than repli-
cating examples. They pointed out the limitation of over-
sampling with replication in terms of the decision regions in
feature space for decision trees. They showed that as the
minority class was over sampled by increasing amounts, for
decision trees, the result was to identify similar but more
specific regions in the feature space. A preferable approach
is to build generalized regions around minority class exam-
ples.

The synthetic minority over-sampling technique (SMOTE)
was introduced to provide synthetic minority class examples
which were not identical but came from the same region
in feature space. The over-sampling was done by selecting
each minority class example and creating a synthetic exam-
ple along the line segment joining the selected example and
any/all of the k minority class nearest neighbors. In the
calculations of the nearest neighbors for the minority class
examples a Euclidean distance for continuous features and
the value Distance Metric (with the Euclidean assumption)
for nominal features was used. For examples with continu-
ous features, the synthetic examples are generated by taking
the difference between the feature vectors of selected exam-
ples under consideration and their nearest neighbors. The
difference between the feature vectors is multiplied by a ran-
dom number between 0 and 1 and then added to the feature
vector of the example under consideration to get a new syn-
thetic example. For nominal valued features, a majority vote
for the feature value is taken between the example under
consideration and its k nearest neighbors. This approach
effectively selects a random point along the line segment
between the two feature vectors. This strategy forces the
decision regions of the minority class learned by the classi-
fier to become more general and effectively provides better
generalization performance on unseen data.

However, an investigation into how to choose the num-
ber of examples to be added was not done. In addition,
the amount of under-sampling also needs to be determined.
Given the various costs of making errors, it is important
to identify potentially optimal values for both SMOTE and
under-sampling. This is equivalent to discovering the op-
erating point in the ROC space giving the best trade-off
between True Positives and False Positives. In this paper,
we develop an approach to automatically set the parameters.
We discuss a wrapper framework using cross-validation that
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performs a step-wise and greedy search for the parameters.
Note that while the computational aspects of the automated
approach induces certain costs, we do not incorporate that
into our framework. We optimize based on the different
types of errors made. However, we do try to restrict our
search space. We show that this approach works on three
highly skewed datasets. We also utilized a cost-matrix to
indicate the costs per test example based on the different
kinds of errors.

3. WRAPPER
In this work, a wrapper [23] approach was utilized to de-

termine the percentage of minority class examples to add to
the training set and the percentage to under-sample the ma-
jority class examples. The wrapper approach works by doing
a guided search of the parameter space. In this case the un-
derlying classifier is used to evaluate the chosen performance
function for every considered amount of under-sampling and
SMOTE. A particular parameter or set of parameters is cho-
sen and a five-fold cross validation on the train data is done
to get the performance average. The parameters are varied
in a systematic way such that a set of parameter candi-
dates are generated, training sets are updated, and the clas-
sifiers built and evaluated. The candidate associated with
the highest performance is chosen to have its parameters
systematically modified to create new candidate solutions.
This process is a type of best-first search. In order to eval-
uate the effectiveness of the wrapper approach in selecting
the parameters for under-sampling and SMOTE, we need to
use a metric other than strict accuracy. With imbalanced
data, accuracy can be misleading, because it causes you to
favor high prediction accuracy on the majority class which
is often uninteresting. Hence, the f-value metric was used
as the evaluation function [10]. It is made up of two mea-
sures: precision which gives us the measure of correctness
of the classifier in predicting the actual positive or minority
class, whereas recall gives us the measure of the percentage
of positive or minority class examples predicted correctly.
The precision, recall and f-value were calculated as follows,
where β corresponds to the relative importance of precision
vs recall.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

f − value =
(1 + β2) × precision × recall

β2 × recall + precision
(3)

We implemented our wrapper approach as follows. We
first do a ten-fold stratified split to separate the original
dataset into ten training sets and ten disjoint testing sets.
Then, for each of the ten training folds, we implement the
wrapper approach using five-fold cross-validation to get more
robust amount estimates for under-sampling and SMOTE.
Note that these performance estimates will hold true only
when either the training data is a good representative of
the actual data distribution or the wrapper strategy does
not over-fit the training data. If the training data is not
a good representative of the actual data, no strategy can
help. So the only thing which remains is to see whether

the wrapper approach finds under-sampling and SMOTE
levels which when used to build a classifier, do not over-fit
the training data. Once the wrapper selects the particu-
lar amount of SMOTE and under-sampling, we apply those
amounts five different random times on the training set,
since both SMOTE and under-sampling randomly remove
or create new instances. The classifiers learned from the
updated training sets are evaluated on the same testing set,
and those performances are averaged. This is done for each
of the 10 folds. Thus, the final ten-fold average reported is
essentially over fifty classifiers.

The two search parameters for the wrapper are the under-
sampling and SMOTE percentages. The search space be-
comes large if the search is done simultaneously for both
the under-sampling percentage and the SMOTE percentage
(creation of new synthetic examples). Hence, we chose to
first use wrappers to find the best under-sampling percent-
age. The wrapper starts with no under sampling for all
majority classes and obtains baseline results on the train-
ing data. Then in a step-by-step greedy fashion it tra-
verses through the search space of under-sampling percent-
ages to seek better performance over the minority classes.
The search process continues as long as it does not reduce
the f-value of the minority classes or reduce the f-value over
the majority classes more than some specified amount (gen-
erally 5%). Note that for under-sampling we look at both
the minority and majority class f-values. We also looked at
the f-value for the majority class as we only want to remove
the redundant examples through undersampling, and not
remove some of the important majority class examples. By
looking at both the values simultaneously we are maintain-
ing the decision regions for all the classes. Also, we wanted
to identify the amount of under-sampling before introducing
any synthetic minority class examples as that could have in-
advertently penalized the f-value for the majority class. We
want to first remove the majority class examples, that add
no learning value to the base classifier.

Then with the under-sampling percentage fixed, we used
the wrapper approach, to find the SMOTE percentage. Over-
sampling by creating synthetic examples is done until no
minority class f-value increase is obtained for 3 candidate
expansions. Now, for SMOTE we are only interested in im-
proving the performance of the minority class. The f-value
takes into account the increase in false positives (lowered
precision), if any, by SMOTE increments. Thus, an over-
whelming increase in the precision will stop the SMOTE
process. This provides significantly improved computation
times at the cost of a potential loss in accuracy. Once the
best percentages for under-sampling and over-sampling via
SMOTE are found, the training folds are updated with the
requisite SMOTE and undersampling amounts. A classi-
fier is then learned and evaluated on the unseen test data.
We would like to be able to put this in a cost-framework
if the time spent in searching for the “optimal” and “best”
under-sampling and SMOTE percentages, justifies the per-
formance improvement. We are investigating that line of
work, as future work.

4. EXPERIMENTS
We report results on three data sets:

• Mammography Dataset,

• Forest Cover Dataset, and
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Table 1: Summary of Datasets. The percentages indicate the proportion of minority class in the complete
dataset.

Dataset # of Examples # classes # of Majority
class examples

# of Minor-
ity class ex-
amples

# of at-
tributes

# of continu-
ous attributes

Mammography 11183 2 10923 260 (2.3%) 6 6
Forest cover 38501 2 35754 2747 (7.13%) 54 54
Modified
KDD cup
99 (intrusion
data)

69980 5 Normal: 35000;
Dos: 25988;
Probe: 4813

U2R: 267
(0.41%);
R2L: 3912
(5.95%)

41 34

• KDD-cup 99: Network Intrusion Detection Dataset
(two versions).

A brief summary of the datasets is presented in Table 1 and
further details are given in later subsections. The Forest
Cover dataset is available from the UCI repository [8] and
our modifications to it will be described in the proceeding.
The network intrusion data set comes from the KDD cup
competition in 1999 [20] and the mammography data set
is one that we locally extracted [33]. It is clear from Ta-
ble 1 that there is significant imbalance between the two
classes of each of these data sets. Hence, there is an oppor-
tunity to improve the minority class recognition accuracy
because a typical classifier will be highly accurate but fo-
cused on the majority class. We report the f-value for all
our experiments. The f-value assumed a β of 1. We intro-
duced a cost-matrix for the mammography dataset, as there
can be a large cost associated with misclassification of a po-
tentially malignant calcification (cancer) as non-calcification
(non-cancerous). Moreover, there is also a slight cost asso-
ciated with misclassifying the non-calcifications as calcifica-
tions. While there wasn’t a natural application of costs to
the forest cover dataset, we still constructed a cost-matrix
for the sake of analysis. The KDD-cup dataset comes with
a cost-matrix for each of the relative type of errors.

However, we did not incorporate the cost-matrix during
the validation stage to select the amount of SMOTE and
under-sampling. We are going to investigate that as a future
line of work. It requires a definite cost matrix to be known
for a dataset. It will be interesting to compare the SMOTE
and undersampling parameters discovered using cost matri-
ces during validation with the SMOTE and undersampling
parameters discovered without using the cost-matrices (as-
suming the same loss).

4.1 Classifiers
Experiments were done with two types of classifiers, de-

cision trees using software (USFC4.5) which emulates C4.5
release 8 [30] and a rule learning technique called RIPPER
[15]. USFC4.5 was used with the default settings. By de-
fault, RIPPER will build rules first for the smallest class and
will not build rules for the largest class. In the case of two
class problems with imbalanced classes, such as here, only
rules for the minority class are going to be built. Hence, one
might expect that RIPPER will be better than a decision
tree in accuracy on the minority class.

The wrapper algorithm that uses five fold cross-validation
on the training set finds the undersampling and SMOTE
percentages for a particular training fold (one of the ten
folds for cross-validating the system). Then under-sampling

and SMOTE are applied to each fold with wrapper selected
percentages, a classifier was built on the updated training
data and evaluated on the test data, unseen during the
wrapper process. Due to the inherent random nature of
under-sampling and SMOTE, the process of training and
testing with wrapper selected under-sampling and SMOTE
percentages is done five times to get an averaged (more sta-
ble) performance measure. To summarize, on each of the
10 folds, training and testing for wrapper selected SMOTE
and under-sampling percentages was done five times i.e.
SMOTE and under-sampling was done for a total of 50 times
for cross-validation to get average stable results. All results
reported in the proceeding are averages obtained in this way.
In the tables, t-stat indicates the results of a significance
test at the 95% level. This was a paired t-test. The x%
of under-sampling means that x% of majority class exam-
ples were retained; and the y% of SMOTE means that many
more examples of the minority class were created. For ex-
ample, 200% of SMOTE means that twice as many (than
the original number) minority class examples were created.

5. RESULTS
We did a ten-fold cross-validation, for mammography and

forest cover datasets, in which the original dataset is strat-
ified into ten disjoint sets or folds from which ten distinct
testing sets and ten training sets are created. For the in-
trusion dataset, we utilized the training and testing sets as
provided. We also used the cost-matrix as provided for the
intrusion dataset and report the average cost per test ex-
ample to compare with other published results [18]. For the
mammography and forest cover datasets, we report various
perfomance metrics, including TPrate, FPrate, f-values, av-
erage cost per test example at different cost ratios, and cost
curves. Our main goal is to compare the classifiers in terms
of reduction in the expected cost across different cost ratios.
Drummond and Holte [16] introduced the cost space rep-
resentation that allows for comparing different classifiers in
terms of the expected cost. Let p(+) be the prior probabil-
ity of the positive class, and p(-) be the prior probability of
the negative class. C(−|+) is cost of misclassifying a pos-
itive example as a negative example (false negative); and
C(+|−) is cost of misclassifying a negative example as a
positive example (false positive). The Normalized Expected
Cost (NE[C]) can then be expressed in terms of TPrate,
FPrate, and Probability Cost Function (PCF) as follows:

PCF (+) =
p(+)C(−|+)

p(+)C(−|+) + p(−)C(+|−)
(4)
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Figure 1: Average Cost per test example at different cost ratios for the Mammography dataset.

NE[C] = (1 − TPrate− FPrate) × PCF (+) + FP (5)

The performance of classifier using a fixed threshold, as
used in this paper, is represented by a pair of (TP, FP). It
can thus be represented as a line in the cost space, compris-
ing of the normalized expected cost (NE[C]) in the y-axis
and PCF (+) in the x-axis. The range of both the measures
is between 0 and 1. Given a family of such classifiers, if
a classifier is lower in the normalized expected cost across
a range of PCF , it dominates the other. One can, thus,
choose a classifier that has a minimum cost either over a
range of PCF (+) or at a particular operating range.

5.1 Mammography Data
The Mammography Dataset was used in [33] and con-

sists of 11,183 total samples with six numeric features and
two classes representing calcification (cancerous) and non-
calcification (non-cancerous). The minority class which rep-
resents calcification contained only 260 examples in the dataset
i.e. only 2.32% of the total examples. The results obtained
are shown in Table 2. The negative sign before the number
in the ’% increase’ row indicates reduction in the associated
value. It can be seen from Table 2, that for all four experi-
mental trials, the wrapper algorithm was able to statistically
significantly improve TP-rates for the minority class at the
expense of a statistically significant reduction in f-values for
the majority class. However, the wrapper method also pro-
duces significantly higher FP-rates than the baseline meth-
ods. But, the correspnding decrease in the f-value was not
significant. Hence, the goal of a higher true positive rate
is attainable without a significant reduction in the overall
f-value.

We then constructed a cost-matrix for the mammography
dataset by considering the the following costs of making er-
rors between the positive and negative examples (using the
convention (C(+|−), C(−|+)): (5, 5); (5, 10); (5, 50); (5,
100); and (5, 500). Figure 1 shows the results using these
varied cost ratios with the different methods presented in
Table 2. As one would expect, if using the same costs of
errors, the baseline method produces the lowest cost per
test example, and is indeed the preferred method. However,
varying the costs from twice as much for false negative to 100
times, we see that the SMOTE classifier achieves the least

cost. Under-sampling in conjunction with SMOTE provides
very little reduction in the cost, if any. Both the C4.5 and
Ripper classifiers exhibit similar behavior with SMOTE —
significant improvement in performance over baseline. Rip-
per is well-suited for the task, as it is able to produce lower
cost estimates per test example. We believe that incorpo-
rating a f-value in the wrapper framework maintains the
relative importance of false positives and false negatives, as
the number of true positives increases. However, one might
vary the relative importance of precision and recall in the
equation based on the specified costs. We assumed uniform
costs in the f-value.

We also implemented cost-curves over the range of PCF (+)
established by varying C(+|−) and C(−|+) [16]. Figure 2
shows the result. Again over the wide range of PCF (+),
the Ripper-SMOTE classifier achieves the lowest expected
costs. Until a PCF (+) of 0.05 all the classifiers achieve
similar performances, but beyond that the Ripper-SMOTE
classifier dominates over the others.

5.2 Forest Cover Data
Originally, the Forest Cover dataset [8] consisted of 581,012

examples with 54 numeric features related to cartographic
variables and seven classes representing the type of the forest
cover. For our study, the data samples from two classes were
extracted while the rest were ignored as done in [14]. The
two classes we considered are Ponderosa Pine with 35,754
samples and Cottonwood/Willow with 2,747 samples. The
results obtained on this dataset are tabulated below in Ta-
ble 3.

For the Forest cover dataset, the results for the minority
class were as expected, with the wrapper TP rate increasing
with statistical significance. But the interesting thing about
these results was that, the wrapper f-values obtained on the
majority class using RIPPER in both scenarios actually in-
creased slightly instead of decreasing which was the gen-
eral trend. For the ’SMOTE only’ scenario using RIPPER,
the wrapper f-values were better than baseline f-values with
statistical significance. For C4.5, the drop in the wrapper
f-values over the majority class though statistically signifi-
cant was extremely small. These were almost perfect results
which one might always hope for, where the minority ex-
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Table 2: Results for the Mammography Data. > indicates Wrapper is statistically significantly greater than
Baseline; < indicates Wrapper is statistically significantly lower than Baseline; and ≡ indicates there is no
statistically significant difference between the Wrapper and Baseline methods.

C4.5 Ripper
SMOTE only Undersampling

and SMOTE
SMOTE only Undersampling

and SMOTE
Average
SMOTE %

210% 180% 300% 180%

Average
Under- sam-
pling %

100% 87% 100% 94%

Average Mi-
nority Class
TP-rate

Baseline 0.546 0.546 0.577 0.577

Wrapper 0.658 0.659 0.696 0.665
% increase 16.96% 17.15% 17.13% 13.29%
t-stat -4.7 -3.913 -4.276 -3.322
significance > > > >

Average Mi-
nority Class
FP-rate

Baseline 0.0031 0.0031 0.00439 0.00439

Wrapper 0.0088 0.0099 0.0114 0.0099
% increase 64.58% 68.63% 61.47% 55.96%
t-stat -9.626 -6.387 -8.952 -5.461
significance > > > >

Average Mi-
nority Class
f-value

Baseline 0.644 0.644 0.652 0.652

Wrapper 0.647 0.634 0.643 0.639
% increase 0.49% -1.61% -1.38% -1.90%
t-stat -0.128 0.398 0.484 0.727
significance ≡ ≡ ≡ ≡

Average Ma-
jority class f-
value

Baseline 0.993 0.993 0.993 0.993

Wrapper 0.992 0.991 0.991 0.991
% decrease 0.16% 0.21% 0.21% 0.18%
t-stat 3.678 3.923 5.674 4.224
significance < < < <
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Figure 2: Cost Curve for Mammography dataset.
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Table 3: Results for the Forest Cover Data. > indicates Wrapper is statistically significantly greater than
Baseline; < indicates Wrapper is statistically significantly lower than Baseline; and ≡ indicates there is no
statistically significant difference between the Wrapper and Baseline methods.

C4.5 Ripper
SMOTE only Undersampling

and SMOTE
SMOTE only Undersampling

and SMOTE
Average
SMOTE %

600% 430% 560% 580%

Average
Under- sam-
pling %

100% 99% 100% 93%

Average Mi-
nority Class
TP-rate

Baseline 0.873 0.873 0.834 0.834

Wrapper 0.905 0.903 0.900 0.905
% increase 3.59% 3.28% 7.34% 7.87%
t-stat -4.889 -4.223 -7.544 -7.532
significance > > > >

Average Mi-
nority Class
FP-rate

Baseline 0.0072 0.0072 0.009 0.009

Wrapper 0.0109 0.0105 0.0133 0.014
% increase 33.72% 30.82% 28.42% 32.58%
t-stat -10.996 -8.626 -9.507 -5.719
significance > > > >

Average Mi-
nority Class
f-value

Baseline 0.887 0.887 0.852 0.852

Wrapper 0.884 0.885 0.868 0.866
% increase -0.35% -0.24% 1.88% 1.69%
t-stat 0.771 0.549 -3.963 -3.178
significance ≡ ≡ > >

Average Ma-
jority class f-
value

Baseline 0.992 0.992 0.989 0.989

Wrapper 0.991 0.991 0.989 0.989
% decrease 0.06% 0.05% -0.06% -0.04%
t-stat 2.225 1.884 -2.19 -1.087
significance < < > ≡
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Figure 3: Average Cost per test example at different cost ratios for the Forest Cover dataset.

30



amples which were previously misclassified were correctly
classified without increasing the number of majority class
examples being classified as belonging to the minority class.
The reason for these good results might be due to the sim-
ilar distribution of the minority class examples in training
and test data when cross-validation is performed. For ex-
ample, in the forest cover dataset which contains 2,747 total
minority class examples, the training data will contain ap-
proximately 2,472 examples while test data will contain 275
examples. Since there were a fair number of examples in
the minority class SMOTE may have been more effective.
It is unlike the mammography dataset where the number of
minority class examples in the testing set is only 27.

We also looked at the Forest cover dataset under a cost
framework. While, there weren’t any obvious cost matrices
that could be constructed, we simply utilized the follow-
ing relative costs of (C(+|−), C(−|+)): (1, 1); (1, 10); (1,
50); (1,100); and (1,500). As evident in Figure 3, Ripper
and C4.5 provide different performances as the cost matri-
ces change for this dataset. Ripper is helped by undersam-
pling, while C4.5 is not. This further justifies the use of
wrapper techniques for different classifiers when considering
sampling as a strategy for imbalanced datasets. Moreover,
Ripper at (1,1) also benefited by SMOTE. Figure 4 shows
the cost-curves across the range of PCF (+). The wrapper
based SMOTE and SMOTE-Undersampling for C4.5 and
Ripper, respectively, produce the lowest expected for the
broad range of PCF (+). The choice of the classifier with
the sampling methods doesn’t seem to make a significant dif-
ference in the expected costs, while the individual classifiers
are significantly apart in the cost space.

An interesting addition to our work will be analysis of the
behavior of SMOTE and the rules thus constructed with
both Ripper and C4.5. We would also investigate combina-
tion of the outputs of both the classifiers if they are making
different kinds of errors to reduce the overall costs.

5.3 KDD-99 Cup Intrusion Dataset
This data set we treat differently. We look at it in a way

that allows for comparisons with previous published work.
A particular interesting example for comparison is to look at
the results from of the KDD-99 cup data. A cost matrix was
used in the scoring of the competition as shown in Table 4
[18]. It was used to produce the results in Table 7 below.
There were many duplicate examples in the original 5 million
example training set. All duplicate examples were removed.
We also under-sampled both the normal and neptune (dos)
class by removing examples which occurred only once. For
Training Data 1 as in the Table 4, we under-sampled the
normal class, and for the Training Data 2 we under-sampled
both the normal and neptune classes. Note that for both
these set of experiments, the test set remained unchanged.
Our assumption was that some of them could be mislabeled
or they were not very representative. These changes resulted
in the training data set used here. Only SMOTE was applied
to the modified data with the percentages for each minority
class shown in Table 5.

It can be seen that our approach with RIPPER as the
classifier produced the lowest cost per example after under-
sampling both the normal and neptune classes (Training
Data 2), and applying 100% SMOTE to the u2r class, while
keeping the r2l class unchanged. This was better than the
winner of the contest and better than the succeeding results

from the literature. Even C4.5 as the base classifier with
SMOTE (200% u2r and 300% for r2l) performed better than
the other published techniques.

6. CONCLUSIONS
In this work, a wrapper [23] approach was utilized to de-

termine the percentage of minority examples to add to the
training set and the percentage to under-sample the major-
ity class examples. The wrapper approach works by doing a
guided search of the parameter space. The evaluation func-
tion was applied with a five fold cross validation done on the
training set. Once the best percentages for under sampling
and SMOTE are found it can be used to build a classifier on
the updated training set and applied on the unseen testing
set.
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Figure 4: Cost Curve for Forest Cover dataset.

The f-value metric was used as the evaluation function.
By using such a composite measure, we are able to control
the relative increases in precision and recall, as both are es-
sentially dependent on the different types of errors — false
positives and false negatives. To statistically validate the
results, we applied a 10-fold cross-validation framework to
all but one of the datasets. Within each 10-folds, the wrap-
per utilized 5-fold cross-validation to identify the potentially
optimal amounts of under-sampling and SMOTE.

We show results from applying this approach to the mam-
mography dataset, the forest cover dataset, and the KDD-
cup 99: Network Intrusion Detection dataset. Two learning
algorithms were used, RIPPER a rule learning algorithm
and C4.5 a decision tree learning algorithm. For the exper-
iments, it was shown that it was possible to significantly
increase the accuracy on the minority class, and reduce
the overall expected costs. Our approach for imbalanced
datasets significantly outperformed the baselines both in the
true positive rate and the average cost per test example.
Note that the f-values did not differ significantly because
of the reduction in precision at the expense of the increase
in recall. However, the relative increase in false positives
does not impact the costs computation, because it is more
costly to err as a false negative than a false positive. We
achieved the lowest cost per test example of any approach
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Table 4: Cost matrix used for scoring entries in KDD CUP 99 competition.
Actual/predicted dos u2r r2l probe normal

dos 0 2 2 1 2
u2r 2 0 2 2 3
r2l 2 2 0 2 4

probe 2 2 2 0 1
normal 2 2 2 1 0

Table 5: Comparison of results obtained on the original KDD CUP 99 test data. The numbers beside u2r
and r2l indicate the SMOTE percentage utilized for the experiments.

dos u2r r2l probe normal Cost per test
example

Winning Strategy
[18]

97.10% 13.20% 8.40% 83.30% 99.50% 0.2331

Decision Tree [5] 96.57% 13.60% 0.45% 77.92% 99.43% 0.2371
Nave Bayes [5] 96.65% 10.96% 8.66% 88.33% 97.68% 0.2485
Multi-classifier [31] 97.30% 29.80% 9.60% 88.70% - 0.2285
Using C4.5 on Train-
ing Data 1 u2r (200)
- r2l (0)

97.08% 14.47% 1.21% 93.52% 97.87% 0.2478

Using RIPPER on
Training Data 1 u2r
(100) - r2l (0)

97.45% 22.37% 6.96% 81.64% 96.18% 0.2444

Using C4.5 on Train-
ing Data 2 u2r (200)
- r2l (300)

99.41% 14.47% 7.39% 93.61% 97.34% 0.2051

Using RIPPER on
Training Data 2 u2r
(100) - r2l (0)

97.33% 19.74% 13.73% 91.98% 95.62% 0.2049

we know of for the intrusion detection data. We also intro-
duced artificial costs for both the mammography and forest
cover data. Our approach again produces lowest cost per
test example, when compared to the baseline approach. It
is very compelling that for the Forest cover dataset, our ap-
proach produces lower cost per test example even for (1, 1).
Hence, the wrapper approach for automatically selecting the
amounts of SMOTE with under-sampling is very promising.
The proposed framework should be applicable to any sam-
pling technique and evaluation measure.

In this paper, we did not include the costs in the f-value by
varying the β parameter to reflect the relative ratios. We be-
lieve that will be an interesting addition to our work. If the
costs are known then they can expressed within validation
framework for selecting the amounts of SMOTE and under-
sampling quantities. We believe incorporating costs should
again reduce the overall costs of the errors. The sampling
quantities are also discovered using the same costs for both
the classes as they will be used during evaluation. Thus, a
stronger utilitarian framework can be implemented.
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ABSTRACT 
How much is information worth?  In the context of decisions, the 
value of information is the expected increase in utility of the 
decision as a result of having the information.  When the 
information might be noisy, the model is slightly more 
complicated.  We develop a model of the value of noisy 
information in the context of a plausible intelligence information 
gathering and decision making scenario.   

Categories and Subject Descriptors 
H.4.2 [Information Systems Applications]: Types of Systems – 
decision support; G.3 [Probability and Statistics]; I.2.3 
[Artificial Intelligence]: Deduction and Theorem Proving – 
uncertainty and probabilistic reasoning.  

General Terms 
Economics, Management, Theory. 

Keywords 
Value of information, Uncertainty, Noise, Economic Utility, 
Decision Theory, Intelligence Analysis. 

1. INTRODUCTION 
In this paper we describe a method for evaluating the value of 
information with respect to making a decision.  The method 
answers the question, if paying more for information ensures 
better information, how much should I pay?  Or, what is the value 
of corrupted or noisy information?  Our goal is to develop a 
rational theory of intelligence information gathering as it relates to 
decision-making, particularly in scenarios where information 
quality depends on the amount of resources spent.  We develop 
this model within statistical decision theory, which combines 
probability, statistics and utility theory to provide a coherent 
framework for evaluating and choosing actions under conditions 
of uncertainty [20, 13, 15, 11].  Here we consider a class of 
decision-theoretic models made up of three components: a 
probabilistic model of the states of the world and their causal 
relations, decisions that link actions to consequences, and a 

system of values assigned to those consequences.  We review the 
standard framework for assessing the value of information, 
develop the model of the value of noisy information, and provide 
an example of its use in an intelligence information gathering and 
decision scenario.  

2. OLYMPIC SECURITY 
Consider the following scenario.  You are the head of security for 
the 2004 Olympic Games in Athens, Greece.  You have been 
tasked with protecting the games from potential terrorist attacks.  
You have the authority to raise a terrorist threat alert that will 
mobilize special forces and implement extreme counter-terrorism 
measures.  If you raise the alert just prior to an actual attack, the 
attack will be thwarted and your security firm will be awarded a 
handsome sum.  However, raising the alert is costly, especially if 
it is a false alarm – it will disrupt the games and your security firm 
will be held accountable for the resulting loss of potential 
revenue.  On the other hand, not raising the alert prior to an attack 
will be devastating.  The city will be unprepared, lives will be lost 
and the security firm will be held accountable for a very large sum 
of money.  If no attack is imminent and you do not raise the alert, 
you are assumed to be doing your job and will be paid as per your 
contract.   

At your disposal you have a team of agents to collect information; 
each piece of information must be purchased.  Suppose one piece 
of information is the location of terrorist group members, and 
another is about how prepared they are (in the sense of having the 
right materials and manpower) to carry out an attack.  Based on 
your experience, you have developed a model of how knowledge 
of the location or level of preparedness will affect your belief in 
the likelihood of an attack.  You have been provided a fixed 
budget and it is up to you to manage your information-gathering 
resources and make the decision about the terror alert.  You must 
decide which information to pay for (if any) while minimizing 
overall expenditures and still make the right decision about the 
alert level.  

3. A DECISION MODEL 
The value of information is always relative to some target 
decision.  In the Olympic Security scenario, the target decision is 
a choice among the actions of raising or not raising the terror 
alert.  The target decision is associated with a target hypothesis T, 
a state of the world that has a direct bearing on the outcome of the 
target decision.  The target hypothesis for our security firm is 
whether an attack is about to take place.  In a probabilistic model, 
T is a random variable with possible states t, and the available 
actions a are represented by a decision variable A.  In general, the 
states and actions of T and A are the domain of the variables T and 
A.  A random variable has a probability distribution over its 
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possible states, while a decision variable is assumed to be 
deterministically controlled by the decision maker. 

The outcomes of actions taken in the context of world states may 
be assigned values or utilities, which represent the relative 
desirability of outcomes.  In the Olympic scenario, the outcome of 
deciding whether to raise the terror alert is represented in terms of 
money being gained or lost, depending on whether an attack is or 
is not about to happen.  More generally, a utility function U(a,t) 
maps action a and a target hypothesis state t to a utility value.  
Given a target hypothesis, a set of actions and a mapping of target 
states and actions to utilities, we can frame the target decision 
problem.  Under a widely accepted characterization of rational 
decision making [20, 15], the optimal decision is to take the action 
that maximizes the expected utility given beliefs about the target 
state of the world.  Given a distribution over the possible values t 
of target state T, the expected utility of taking action a is 

 

! 

EU(T) = P(t)U(a,t)
t"T

# .1 (1) 

Some actions may yield a higher expected utility than others.  The 
utility of taking the optimal action out of the possible action 
choices in A is the utility of taking the action that maximizes 
expected utility, expressed as follows: 

 
 

! 

MEU(T) =
max
a " A

P(t)U(a,t)
t"T

# . (2)  

4. UTILITY-BASED VALUE OF 
INFORMATION 
In this section we present the standard approach to assessing the 
value of information with available utilities.  In Section 5 we 
develop the value of noisy information out of this basic 
framework. 
In many situations, we cannot simply observe the state of the 
target hypothesis T and make our decision.  Instead, we must rely 
on other states, which are observable, and (we hope) tell us 
something about the state of the target.  The Olympic Security 
scenario describes two potential sources of information that have 
some relation to the target hypothesis about whether there is an 
imminent terrorist attack: the proximity of terrorists to Athens and 
the capabilities or readiness of the terrorists to commit a terrorist 
act.  These information sources are also about states of the world 
(e.g., how far away the terrorists are from the Games) and may 
themselves be represented by random variables (e.g., a 
distribution over whether the terrorists are within the city limits, 
in the country, or outside of the country).  We use the generic 
term indicator variable for a variable that has some relationship 
with a target hypothesis.  We denote an indicator random variable 
by I, which represents a distribution over possible states i.  We 
also assume we have a complete joint probability distribution 
representing the relationship between I and T.  This means that we 

                                                                    
1 A note about notation: All of the probability terms in this paper are 

assumed to be in the context of all currently available evidence.  That is, 
P(t) could be expressed as P(t|E) where E is the set of all other known 
variables, some of which are known to be in specific states.  For clarity, 
we omit E from our equations.  Similarly, all utility calculations are 
assumed to be in the context of a particular decision variable A and we 
will only explicitly note A in the context of maximization functions. 

have the information required to derive prior probabilities over I 
and T, as well as their conditional relationships, P(I|T) and P(T|I).  
In practice, joint distributions are efficiently represented as 
Bayesian belief networks, and algorithms exist for effectively 
deriving and estimating probability distributions from them [15, 
11]. 
Usually the state of our target hypothesis is not directly 
observable.  Instead, we may need to rely on one or more 
indicators, and determining their state may come at a cost, CI.  In 
this case we are faced with an information gathering decision, 
which is to be made in the service of our target decision.  Out of 
the set of available indicators, which should we spend resources 
on?  Making this decision requires assessing the value of the 
information the indicators may provide about the target 
hypothesis. 

The value of any information source is defined as the difference 
between the utilities of two decision strategies, one in which we 
choose the optimal action after finding out the state an indicator 
variable is in, the other choosing the optimal action without that 
information [10, 13, 15, 8, 11, 12].  The expected utility of taking 
the optimal action given the outcome i of indicator variable I is 

 
 

! 

MEU(T | i) =
max
a " A

P(t | i)U(a,t)
t"T

#  (3) 

Since the outcome of I is not known ahead of time, we can 
calculate the expected utility of having evidence I by 
marginalizing over the possible values of I: 

 

! 

MEU(T | I) = P(i)MEU(T | i)
i"I

#  (4) 

 

! 

VOI(T | I) = MEU(T | I) "MEU(T) . (5) 

Taking into account the cost CI of acquiring the information about 
the state of I, the net value or expected profit of purchasing the 
information is 

 

! 

netVOI(T | I) =VOI(T | I) "C
I
. (6) 

If the net value is greater than zero, then the information is worth 
paying for.  

4.1 Myopic Value of Information 
Equations 3 through 6 allow us to calculate the value of 
information about a particular indicator given our current state of 
knowledge.  However, once we consult one source of information, 
our state of knowledge may change, affecting what we may learn 
from other information sources, and this in turn affects their value. 
In general, when considering sequences of information gathering 
decisions, every permutation of the available information sources 
must be considered [15, 8, 11].  A myopic approximation of 
information value assesses each information source independently 
of the others.  The myopic assessment is made as if the 
information source were the only one available, and under the 
assumption that immediately after gathering the information a 
final decision is made that incurs some utility [15].  While not 
perfect, this method has been found to perform well in medical 
diagnostic systems [7, 9, 14].  Heckerman, Horvitz and Middleton 
[8] have proposed an approximate nonmyopic method for 
computing information value given certain constraints.  In this 
paper we will consider only myopic value of information.  
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5. THE VALUE OF NOISY INFORMATION 
We now add another wrinkle to the story, one that has been 
alluded to [10, 15, 16], but to our knowledge has not received 
extended treatment, except in very different terms in the 
economics literature [1, 6]. Suppose the amount you pay affects 
the quality of information you receive from an information source 
and the more you pay the more accurate the information is.  Now 
our information gathering decision is to determine which level of 
payment is optimal for this potentially noisy information.  We 
start by considering paying for reports at a particular cost level 
and then present the more general formulation of the choice of 
cost level. 
We use RC to represent a distribution over possible reports about 
the state of an indicator I at a particular cost level C.  We 
emphasize that what we are paying for at this cost level is not a 
particular report, but a distribution over reports, as the report we 
receive depends on both the state of I as well as the probabilistic, 
and therefore noisy, relationship P(RC|I) we are paying for.   

Assessing the expected utility of paying for possible reports RC 
about the state of I is no different than the standard Value of 
Information calculation presented as Equations 3 through 6 in 
Section 4.  Only now we’re considering the state of RC as an 
indicator of state I, which in turn is an indicator of our target 
hypothesis T.  That is, we could re-write Equations 3 through 6 by 
replacing RC for I.  Nonetheless, it is useful to highlight the 
relationship between RC and I because, again, it is this relationship 
we are paying for.   

The following recasts the VOI calculation in terms that make the 
relation between R and I explicit: 

 

! 

MEU(T | R
C
) = P(r)max

a"A
P(t | i)P(i | r)U(a, t)

t"T

#
i"I

#
$ 

% 
& 

' 

( 
) 

r"R
C

#  (7) 

 
All we have done is add a term that conditions the probability of i 
on r, and marginalized the effects of r on expected utility by 
multiplying by and summing over P(r).  In other words, Eq. 7 
represents the expected maximum utility given that our only 
source of information is r.  

Equations 8 and 9 express the expected benefit and profit of 
paying for noisy reports at cost C. 

 

! 

VONI(T | R
C
) = MEU(T | R

C
) "MEU(T) (8) 

 

! 

netVONI(T | R
C
) = MEU(T | R

C
) "MEU(T) "C  (9) 

With netVONI(T|RC) we can now determine the report distribution 
RC at cost level C that yields the highest expected utility:  

 

! 

maxVONI(T | R
C
) = max

R
C
"#

netVONI(T | R
C
)[ ] , (10) 

where ℜ is a set of sources, R, of information about I, each with 
its own distribution Pr(I|R), distinguished only by how much R 
costs.  

5.1 A Simple Model of Noisy Reports 
There are many possible representations of the relationship 
between I and R.  This is a general topic for intelligence analysis 
and modeling research and will depend on the domain being 
represented.  To demonstrate the value of noisy information in the 

Olympic Security scenario, we provide a simple linear noise 
model to generate RC. 

We define a “noise level” as a real-valued number between 0.0 
and 1.0 (inclusive), where 0.0 means perfect information (no 
noise) and 1.0 means complete noise. Suppose the reports we are 
paying for are about an indicator with possible states {close, near, 
far}.  For each possible state of I that report r could say I is in, 
given that the indicator is actually in state i, we determine the 
probability P(RC=r|i) as follows: 

 

! 

P(R
C

= r | i) =
1

m
" d

# 

$ 
% 

& 

' 
( ) noise

# 

$ 
% 

& 

' 
( + d  , (11) 

where m is the number of possible states of the indicator and d = 1 
when r reports the same as the target state value i of the indicator, 
otherwise d = 0.  We repeat this for each state of I to arrive at 
P(RC|I), the conditional probability distribution over reports given 
the states of I at a particular noise level.  Finally, we provide a 
cost function that maps costs to noise levels, so that given a 
particular payment C, we can generate P(RC|I).  Under the 
assumption that information becomes exponentially more 
expensive with accuracy, we chose the cost function depicted in 
Figure 1. 
 

   
Figure 1. An exponential cost function mapping noise levels to 
costs of information in dollars. 
 

5.2 Back to the Olympics 
Figure 2 shows a decision graph representing the Olympic 
Security scenario.  A decision graph is a useful formalism for 
representing relationships between variables in decision problems.  
In the graph, decision variables are represented by squares, utility 
functions by diamonds, and random variables by circles.  A 
directed arrow indicates that the state of a parent node participates 
in determining the state of a child node (where the child is the 
node being “pointed to”).  The labels in the nodes represent 
random variables, and we have included text near the nodes 
indicating which part of the Olympic Security decision problem 
the variable corresponds to.  To complete the specification of the 
model, we need the prior and conditional probability relationship 
between random variables as well as a utility function.  The tables 
on either side of the graph in the figure provide this information. 

36



In this scenario, we consider purchasing a distribution over reports 
about the capabilities of the terrorists.  With all of the information 
represented in Figure 2, we can calculate the value of noisy 
information of a report about terrorist capabilities at a given level 
of noise (Eq. 8).  Figure 3 does this for noise levels ranging from 
1.0 (complete noise) down to 0.0 (no noise).  The state of 
knowledge about proximity affects the value of information, and 
proximity can be in one of four states (unobserved, close, near or 
far).  Because of this, Figure 3 plots four different curves 
representing the value of information across noise levels given 
that proximity is in one of its four possible states.  Figure 4 factors 
in the cost of information for the net value of information (Eq 9).  
The max value of noisy information, Equation 10, provides us 
with a strategy by selecting the cost level at which the expected 
utility peaks on each curve. We should select the level of payment 
for a noisy report according to the noise level that yields the 
greatest expected utility. 
 

 
Figure 2. Decision graph and probability and utility tables 
characterizing the Olympic Security scenario. 
 

  
Figure 3. The VONI at varying noise levels.  Each curve 
represents VONI given a state of proximity. 
 

As Figure 4 shows, whether to pay for reports, and if so, how 
much, depends on our belief about the proximity of terrorists to 
the Games.  When proximity is unobserved, paying for a report 
has the greatest benefit.  In particular, the benefit is maximized in 
the peak of the curve, when noise level is 0.10, costing $60.  

When proximity is near, the benefit of paying for a report peaks at 
noise level 0.15, with a cost of $40.  When proximity is either 
close or far, a report is simply not worth paying for at any level.  
When proximity is known to be far, it is likely that an attack is not 
about to take place; when proximity is close, then an attack is 
almost certain.  Under these conditions, paying for more 
information is simply not worth it.  However, as Figure 4 shows, 
when proximity is unknown or near, then knowing about the state 
of the terrorists capabilities is useful in determining whether an 
attack is about to occur, and paying the price of perfect 
information is not as cost effective as paying less for somewhat 
degraded information. 
 

 
Figure 4. The netVONI at varying noise levels (as represented 
by their cost) given proximity. 
  

6. CONCLUSION 
We have presented a decision model based on the value of 
information and demonstrated its use in a simple intelligence 
analysis decision scenario.  We demonstrated that with VONI we 
can determine the optimal amount to pay for information where 
the amount of effort or cost invested affects information quality.  
The value of noisy information is an incremental extension to the 
standard value of information framework, making it possible to 
assess the value of reports about an indicator that informs a target 
decision. 

As we noted in Section 5.1, the representation of the relationship 
between and indicator variable I and possible reports R about the 
indicator is a general topic for intelligence analysis and modeling 
research.  Our simple linear noise model is just one example.  
Robust models of these relationships will depend on specific 
scenarios, the expertise of trained analysts, and possibly learned 
from collected data. 

Although we have not presented this framework in terms of 
machine learning, there are connections between the VONI 
framework and recent work in cost-sensitive [11, 19] and active 
[6, 10, 17, 18] learning.  In particular, VONI makes explicit the 
role of data acquisition costs and the impact that acquiring costly 
information has on decision-making.  Recently, [18] explicitly 
argues for the importance of making active learning decision-
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centric, demonstrating in an active learning scenario that simply 
improving the accuracy of the target classification on which a 
decision is based does not necessarily lead to overall improvement 
in decision-making.  An important next step in the VONI model is 
to explore how a model of the noisy relationship between reports 
and indicators can be learned.  
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ABSTRACT
In time and cost sensitive classification, the utility of la-
beling an instance depends not only on the correctness of
the labeling, but also the amount of time taken to label
the instance. Instance attributes are initially unknown, and
may take significant time to measure. This results in a dif-
ficult problem, trying to manage the tradeoff between time
and accuracy. The problem is further complicated when we
consider a sequence of time-sensitive classification instances,
where time spent measuring attributes in one instance can
adversely affect the costs of future instances. We solve these
problems using a decision theoretic approach. The problem
is modeled as an MDP with a potentially very large state
space. We discuss how to intelligently discretize time and
approximate the effects of measurement actions in the cur-
rent instance given all waiting instances. The results offer
an effective approach to attribute measurement and classi-
fication for a variety of time sensitive applications.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning - Induction; I.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search - Graph and tree search strategies; H.2.8
[Database Management]: Applications - Data Mining

General Terms
Algorithms

Keywords
cost-sensitive learning, data mining, AO* search

1. INTRODUCTION
Cost sensitive classification (CSC) has been the subject of

a growing body of research. In CSC, the goal is to train a
classifier that minimizes the expected cost incurred on future

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UBDM ’05 August 21, 2005, Chicago, Illinois, USA
Copyright 2005 ACM 1-59593-208-9/05/0008 ...$5.00.

test instances, rather than trying to maximize the predictive
accuracy. Penalties for misclassifying instances vary based
on the actual label of the instance. For example, in medical
diagnosis domains classifying a sick patient as well is often
far more costly than labeling a healthy patient as sick. In
a spam filtering system, legitimate email flagged as spam is
significantly more costly than spam judged as legitimate.

Additionally, in some CSC problems, attributes of an in-
stance are not initially known. Instead, the CSC classifier
must explicitly decide which attributes to measure. Some of
these attributes may have a fixed cost to measure; an exam-
ple from the medical diagnosis domain are those that require
an expensive test to be performed. In this problem, an at-
tribute measurement and classification policy that specifies
what attributes to measure and in what order is designed to
minimize not only misclassification penalties, but also the
sum of attribute measurement costs.

In this work, we examine a previously unexplored dimen-
sion of CSC. In many domains, the value of a classification
result depends not only on the correctness of the labeling,
but also the timeliness with which it is computed. Fur-
thermore, measuring some of these attributes may be either
computationally intensive or rely on slow external sources
of information. For example, in medical diagnosis, tests are
often sent away for processing while the patients condition
may be deteriorating. In the spam filtering case, retriev-
ing or verifying hyperlinked information can take significant
time and delay the arrival of email to a user’s inbox. It is im-
practical to measure all possible attributes for each instance
when the final result has time-dependent utility. We call
this problem time and cost sensitive classification (TCSC).

Managing the tradeoff between classifier accuracy and time
costs incurred is a challenging problem. Myopic methods
such as those used in [12] will not perform well due to in-
teractions between attributes: when not all attributes can
be measured, the ordering of measurements becomes very
important. There have been several methods designed by
researchers for handling the CSC problem, but very little
attention has been paid to the TCSC case. We develop a
model that allows the system to quickly decide which at-
tributes to measure, what order to measure them in, and
when to cease any further measurement and classify the cur-
rent instance.

We take a decision theoretic approach, where we try to
minimize the expected value of a cost function reflecting
the quality of service of the system. In the cost sensitive
classifier developed in [17, 16], the attribute measurement
problem was framed as a Markov Decision Process (MDP)
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where the state was the current attribute vector. We build
upon that work by adding the current time to that state.
Due to the potentially large size of this state space, AO*
heuristic search is used to compute the policy. It is not
necessary in AO* to compute values for all possible states
as would be required in a dynamic programming approach.
The addition of time to that state space requires that time
be intelligently discretized to provide a balance between the
quality of the computed policy and the memory required to
compute it.

We then examine the case where a sequence of time de-
pendent instances must be classified over time. In this se-
quential TCSC problem, classification instances arrive at the
classifier over time and are processed in a first-in first-out
manner. Time spent measuring attributes in the instance
at the head of the queue can increase the costs incurred on
waiting instances by delaying the start of their processing.
Clear examples of this type of problem are spam filtering
on an overloaded mail server or estimating the value of mes-
sages posted to a newsgroup or online forum [1]. This model
can also apply to diagnosis tasks. We show how to extend
the MDP model to find policies that minimize cost over all
instances processed and discuss the approximations used to
solve this even larger MDP.

2. TYPES OF COST IN TCSC

2.1 Misclassification costs
In many applications, not all misclassifications have the

same value. There may be a significant difference between
the problems caused by a false negative versus those caused
by a false positive. We denote this portion of the cost func-
tion which handles misclassification penalties as CL(lp|la),
which is the cost incurred by classifying an instance with
actual label la with the predicted label lp.

The misclassification (MC) cost component depends on
the actual label la of an instance, which is unknown, ex-
cept in training data. Thus, in practice we need to use the
expected MC cost, given that the classifier predicts label lp:

ECL(cl(lp)|f) =
X

la∈L

p(la|f)CL(lp|la)

where L is the complete set of labels that an instance may
have. The probability that an instance with the current
measured attribute vector f has the actual label of la is
estimated, when necessary, from training data: p(la|f) =
|train(la,f)|
|train(f)|

, where train(f) is the set of all training instances

such that for every measured attribute in f , the training in-
stance has the same value, and train(la, f) is the subset of
instances in train(f) that have label la. In practice this es-
timate is smoothed to reduce overfitting and avoid divisions
by zero:

p(la|f) =
|train(la, f)| + 1

|train(f)| + |L|

When classifying a partially measured instance f , the al-
gorithm will choose the label that incurs the minimum ex-
pected MC cost on the given set of training data:

lp = arg min
l∈L

ECL(cl(l)|f) (1)

There has been a significant volume of work on the prob-
lem of minimizing MC costs: some general methods are the

weighted boosting algorithm of [8], and the MetaCost algo-
rithm of [7].

2.2 Attribute measurement costs
The action of measuring an attribute fi is indicated as

m(fi). This action may incur a deterministic cost: CM (m(fi)).
We assume the value of a measured attribute is constant and
will not change upon repeated measurements.

Research that handles both attribute measurement costs
and misclassification costs includes the genetic algorithm
based decision tree inducer of [15], the POMDP (Partially
Observable MDP)-based decision tree learner of [5], a dy-
namic programming algorithm described in [10], a POMDP
for computing attribute measurement policies with respect
to a given naive Bayes classifier in [11], the test-cost sensitive
naive Bayes classifer of [6], and finally an MDP framework
with heuristic search to find good attribute measurement
and classification policies [17, 16]. Note that none of these
can handle any kind of time-dependent costs.

2.3 Response time costs
The cost function should reflect the timeliness with which

we wish the classifier to act. In many systems (especially
those that interact with humans), a labeling decision made
quickly will be worth more than one that takes a very long
time. In general, any system that has a component of human
interaction should be fairly responsive and not spend unrea-
sonable amounts of time measuring all instance attributes
so as to minimize the expected MC cost.

Therefore the cost function has a final component CT (t),
which will typically have a super-linear form: the cost of
a quick result is small and fairly constant, but as the wait-
ing time increases, the time cost grows at an increasing rate.
This function provides a good approximation of a user’s per-
ceived utility of a system when they are forced to wait for
a result. In general, the time cost function can take on any
form that is nondecreasing over time.

Note that if the time cost function is linear and the mea-
surement times for each attribute are deterministic, the time
cost function can be simply folded into the attribute mea-
surement costs.

2.4 Combining cost function components
To combine the three components of the cost function, it

suffices to perform a simple weighted addition. The expected
cost of assigning predicted label lp to an instance f with
measured attributes meas(f) in t time units is:

C(f , t)=wLECL(cl(lp)|f) + wT CT (t) + wM

X

fi∈meas(f)

CM (m(fi))

The variables wL, wT , wM are system parameters that are
manually tuned to provide a good balance between the con-
flicting goals of low MC costs, attribute measurement costs,
and timely responses.

3. SINGLE INSTANCE TCSC
Given a set of training data, we want to find the attribute

measurement and classification policy that minimizes the
expected cost of classification of future instances where cost
is made up of the three components discussed in Section 2.

Our strategy for time and cost sensitive policy learning
builds on the work of [17]. We frame the attribute mea-
surement and classification problem as a Markov Decision
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Process (MDP). The “optimal” policy (quoted because it is
optimal only with respect to a set of labeled training data)
can then be found using AO* search, a classical heuristic
search technique. We extend this model to handle time-
sensitive utility costs.

3.1 TCSC as an MDP
MDPs are a popular framework for sequential decision

making problems. An agent in an MDP takes actions which
cause stochastic transitions between states. A typical for-
mulation (and the one used here) has an agent with the
goal of minimizing the costs incurred while transitioning to
some terminal state. Each state in the MDP satisfies the
Markov property: the current state effectively summarizes
all previous activity of the agent in the environment. The
mapping from states to actions that minimizes cost is called
the optimal policy.

The states s ∈ S in the model presented in [17] are sim-
ply the set of all possible attribute vectors f . This includes
those with unmeasured attributes. An additional absorbing
terminal state E is transitioned to when an instance is clas-
sified. We augment that state space to include the current
waiting time of the instance: s = 〈f , t〉. The starting state
of the MDP is the state with no measured attributes and
zero waiting time: 〈f?, 0〉.

The actions in this model are to either measure an unmea-
sured attribute fi, denoted ‘m(fi)’, or to classify the current
instance using the label lp, denoted ‘cl(lp)’.

There are two types of cost related to taking a measure-
ment action. CM (m(fi)) is the deterministic cost to measure
attribute fi. There is also the incremental time cost C∆(δ|t)
which indicates the portion of the end cost CT (t) incurred
by waiting δ additional time units to classify an instance
that has already been waiting t time units. Given a time
cost function CT (t), it is straightforward to compute the
incremental time cost function:

C∆(δ|t) = CT (t + δ) − CT (t)

The expected immediate cost of taking the action m(fi) is
then

CM (m(fi)) +
X

δ∈Ti

p(Ti = δ)C∆(δ|t)

where Ti is the set of all possible durations that the mea-
surement action can take.

The probability of transitioning from state s = 〈f , t〉 to
state s′ = 〈f ∪ fi = x, t + δ〉 (where f ∪ fi = x refers to f
with attribute fi set to x) is

p(s′|s, m(fi)) = p(fi = x|f)p(Ti = δ)

The probability that attribute fi will take on value x given
the incomplete attribute vector f is estimated from training
data:

p(fi = x|f) =
|train(f ∪ fi = x)|

|train(f)|

In practice this value is smoothed to:

p(fi = x|f) =
|train(f ∪ fi = x)|+ 1

|train(f)| + |fi|

where |fi| indicates the total number of distinct values the
ith attribute can have.

The probability that attribute fi takes δ time units to
measure is denoted as p(Ti = δ), and is estimated from

training data or from some other source of prior experience.
Note that these transition probabilities are computed only
when necessary during the AO* search.

Taking the classification action incurs the MC cost CL(lp|la)
and transitions to the terminal state with probability

p(E|s, cl(lp)) = 1

Recall that lp is chosen to minimize expected cost as in
Equation 1.

3.2 AO* search
AO* search is an heuristic search algorithm for searching

AND/OR graphs [13]. It is akin to A* search for standard
directed graphs. MDP policies can be represented as an
AND/OR graph: at an OR node, the agent must choose a
single action to take so as to minimize future cost. How-
ever, since the environment is stochastic, taking an action
causes the agent to transition probabilistically to one of a
number of states. Therefore all these states are successors of
the original state and their costs must be AND-ed together
(computing the expected cost) to find the best expected ac-
tion.

AO* works by iteratively improving upon the current best
partial solution policy until an optimal policy is found. Each
iteration of AO* search is composed of two parts. First, the
current best partial solution is expanded (its successors are
added to the search graph) by picking an unexpanded search
state within the current policy. Next, state values and best
action choices are updated in a bottom-up manner, starting
from the newly expanded state. The estimated value of a
state s during the search is F (s): an optimistic estimate of
the cost to get from s to a terminal state.

A heuristic is necessary to guide AO*. The heuristic value
of a state is the optimistic estimate of how much cost will
be incurred before reaching a terminal state. For an optimal
policy to be found, the heuristic must be admissible: it must
never overestimate the cost from a state to the terminal
state. An optimistic one-step lookahead heuristic derived
by [17] for the case where there is no time dependent utility
was extended to include incremental time costs in [2].

Given an unexpanded state s, the heuristic value F (s) is
the cost of the action (classifying or measuring an attribute)
giving the smallest immediate cost:

F (s) = min
fi 6∈meas(f)

8

<

:

ECL(cl(lp)|f)

CM (m(fi)) +
X

δ∈Ti

p(Ti = δ)C∆(δ|t)

(2)
This heuristic is admissible because it gives the smallest pos-
sible immediate cost incurred when taking any action from
the current state.

3.3 AO* as an anytime algorithm
For classification problems where instances have a large

number of measurable attributes, each of which can take on
many values, pruning the search space is essential for effi-
cient search. A pruning strategy that preserves the optimal-
ity of the policy hinges on the fact that the terminal state
E can be reached from any state of this MDP by taking a
single classification action [17]. This property, which is not
applicable for general MDP models, allows for significant
pruning of the search space. An upper bound F̂ (s) value is
computed at each node; this value represents the expected
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Figure 1: An attribute time distribution discretized
in a ‘round-down’ manner. The curve shows the cu-
mulative density function, the length of the black
bars represents the probability of each discrete
value.

cost of following the current best known policy from search
state s. Therefore, any unexpanded search node s′ with
parent node s where F̂ (s) < F (s′) can be pruned, as the
expansion of s′ cannot lead to an improved policy since we
will always choose the action at s that provides the minimal
F̂ (s).

Furthermore, maintaining the best known action at each
search node gives the AO* search the properties of an any-
time algorithm. At any time during the search, the process
can be halted and the current best policy returned. For large
classification problems where there are many attributes tak-
ing on many possible values in each instance, this must be
done when memory is exhausted.

3.4 Discretization of time
While continuous attributes can be discretized using met-

rics such as information gain relative to the class attribute
(for example [9]), finding an appropriate discretization of
time for a instance is a more difficult problem. A very fine
grained discretization of time results in the best policies, ex-
cept when search terminates early due to available memory
being exhausted by the larger state spaces. Furthermore,
in some cases, using a coarser time representation may still
find a policy of approximately equal value.

In this work we take an iterative approach to finding a
suitable time unit size. Starting from an initial coarse time
unit τ , we iteratively solve the MDP using a unit of τ ′ = τ/2.
This process repeats until the cost incurred on training data
by the policy πτ ′ is greater than or approximately equal to
the cost incurred by following πτ ; the πτ policy is retained
for actual use. Note that the cost of πτ ′ can be greater than
that of πτ when the memory limit is reached and search is
forced to terminate with the current best known policy.

To compute the policy for time unit τ , we use ‘rounded-
down’ versions of the continuous attribute measurement time
distributions p(Ti). That is: pτ (Ti = kτ ) =

R (k+1)τ

kτ
p(Ti =

x)dx. See Figure 1 for an example distribution. This round-
ing down combined with the nondecreasing nature of the
time cost function CT (t) means that the F value of a state
s in πτ always underestimates of the actual cost of state s.

ts0
t

ta1

ta2

Task 0

Task 1

Task 2

ta0
=0

Figure 2: instances arriving over time. Dotted lines
represent waiting time, solid lines active processing
of an instance. Time cost curves are shown for each
instance. Instance 0 arrived at ta0

, but processing
did not begin until ts0

due to delay from measuring
attributes in previous instances.

Therefore, we can use the F values computed in the τ itera-
tion as part of a new admissible heuristic function F ′ in the
τ ′ iteration; The new heuristic value at a state is the smaller
of the heuristic value computed as before in Equation 2 and
the final F value computed in the previous iteration (round-
ing down time from kτ ′ to jτ , such that jτ ≤ kτ ′ < (j+1)τ ):

F ′(〈f , kτ ′〉) = min(F (〈f , kτ ′〉), Fτ (〈f , jτ 〉))

4. SEQUENTIAL TCSC
The above procedures do not account for other instances

that need to be classified. Suppose that instead of a single
classification instance to process, the system has to handle a
stream of classification instances arriving over time. There-
fore, when deciding which attributes to measure in the cur-
rent instance, we must also consider the potential for utility
loss due to delay in processing of all other instances waiting
to be classified. [3] refer to this as the opportunity cost, the
loss of expected value due to delay in the starting of work
on the remaining instances. They show that for a similar
problem, the opportunity cost function can be quickly and
effectively approximated by examining simple attributes of
the queue of waiting instances.

There are no known existing methods for classifying se-
quences of time sensitive instances. [14] study a sequential
CSC problem where the cost of each instance is dependent
on the labels assigned to prior instances. Reinforcement
learning is used to minimize costs over a sequence of in-
teracting instances; however, there is no time-sensitive cost
component.

4.1 MDP model for sequential classification
We call the instance that is currently having attributes

measured the ‘active’ instance. Time t is measured relative
to the arrival time of the active instance ta0

≡ 0. As at-
tributes are measured in the active instance, new instances
arrive at tai

. Figure 2 shows a possible configuration.
Sequential classification instances can be introduced to

the MDP model by expanding the state space to s = 〈f , t,q〉,
where q = {ta1

, . . . , ta|q|
} describes the queue of instances

waiting to be classified.
The MDP transition model must also be augmented to
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include q. The probability of transitioning from state s =
〈f , t,q〉 to state s′ = 〈f ∪ fi = x, t + δ,q′〉is

p(s′|s, m(fi)) = p(fi = x|f)p(Ti = δ)p(q′|q, δ)

where p(q′|q, δ) is the probability of the queue going from
state q to q′during a time interval of δ time units. This
quantity can be estimated from past experience.

We could then change the transition model so that classi-
fication actions transfer to terminal state E only when the
queue is empty. In all other cases, the next state would be

s′ = 〈f?, t − ta1
, {∀1<i<|q|t

′
ai−1

= (tai
− ta1

)}〉

and processing begins on the new active instance. Solv-
ing this MDP would give an optimal solution to the TCSC
problem. The size (possibly infinite) of this MDP makes it
intractable to solve exactly.

An alternative approach is to estimate the opportunity
cost of investing δ time units on the active instance given
that q instances are waiting. Once estimated, this cost aug-
ments the incremental time cost component C∆(δ|t):

C∆′(δ|t,q) = C∆(δ|t) + COC(δ|q, t)

The MDP can be solved with the updated incremental time
cost function using the techniques discussed in Section 3.

Note that instances under the model may now have start
time t 6= 0. Therefore, when solving the MDP, a new start
state is introduced where t is unknown. The only action
available at this state is a ‘fan-out’ action which transitions
to ‘sub start’ states with t = 0 to t = T with uniform prob-
ability. T is chosen to be large enough so that no time con-
suming attributes are measured from that state. After the
policy has been computed and instances are being classified
online, we start the measurement policy at the appropriate
sub start state. If the instance has been waiting longer than
T , the policy starting at sub start state T is followed.

4.2 Estimating opportunity costs
We will examine three methods for estimating the oppor-

tunity cost incurred by delaying processing on the instances
in the queue.

A very conservative estimate of opportunity cost simply
sums the incremental time cost incurred on each instance in
the queue, assuming that processing will begin on every one
of these instances, simultaneously, after δ time units have
elapsed:

COC(δ|q, t) =
X

i∈q

C∆(δ|t − tai
) (3)

A second estimate takes into account that before processing
can begin on instance i+1, instance i must first be classified.
Given a classification/measurement policy π computed on
the single instance problem, the estimated time to complete
the active instance given the current state can be computed
in a bottom up manner. The time remaining distribution
from state s given the time remaining distributions of all
child states s′ reached by following the action π(s) is

p(td|s) =
X

s′

p(s′|s, π(s))p(td − t(s, s′)|s′)

where t(s, s′) is the time difference between states s and s′.
With this probability, the starting times of all instances in
the queue can be estimated:

p(tsi+1
= tdi

+ tsi
) = p(tsi

)p(tdi
|〈f?, tsi

− tai
〉) (4)

The start time of instance 1 is set to be the current time t
of the active instance.

Once the start time distributions of all instances in the
queue are computed, the opportunity cost can be estimated
as the total estimated time cost incurred by delaying the
estimated start times of all instances in the queue by δ:

COC(δ|q, t) =
X

i∈q

X

tsi

p(tsi
)C∆(δ|tsi

− tai
) (5)

The above methods assume that the only costs incurred by
delaying instances will be time costs. In reality, the pol-
icy for an instance that begins processing with substan-
tial waiting time already elapsed will generally measure less
time consuming attributes to avoid the continually increas-
ing time penalties. We can then expect smaller attribute
measurement costs at the expense of higher MC costs.

A third opportunity cost estimation looks at the difference
in expected costs incurred for all queued instances before
and after an action taking δ time units is taken in the active
instance. Given the single instance policy π, the expected
total cost incurred C from state s can be computed in a
similar manner as the time remaining distributions:

p(C|s) =
X

s′

p(s′|s, π(s))p(C − c(s, s′)|s′)

where c(s, s′) is the cost incurred between states s and s′.
With this expected cost distribution, the expected cost in-
curred on all queue instances can be computed, given the
current time of the active instance.

C〈f,t〉 =
X

i∈q

X

C

X

tsi

p(tsi
)p(C|〈f?, tsi

− tai
〉)C

where the start time distributions p(tsi
) are computed using

equation 4 starting from time t.
The final opportunity cost estimate is the difference in

expected costs when making a transition from state 〈f , t〉 to
〈f ′, t′〉 is:

COC(δ|q, t) = C〈f ′,t′〉 − C〈f,t〉 (6)

4.3 Queue approximations
An exact representation of the state of the instance queue

would contain the arrival times (relative to the arrival time
of the active instance) for every waiting instance. Clearly
this representation would cause an exponential blowup in
the total size of the state space. Instead we choose to repre-
sent the queue using simple features describing the state of
the queue. In this work, we use two features: the total num-
ber of instances in the queue and the average arrival time
of those instances. A manually tuned parameter for each
feature controls the resolution: as the resolution increases
there are less total queue states, which results in smaller
searches but lower quality opportunity cost estimates.

5. EXPERIMENTAL

5.1 Setup
We use three data sets in the following experiments: ‘breast,’

‘pima,’ and ‘bupa’ from the UCI repository [4]. All at-
tributes are discretized into three bins so as to maximize
the information gain of the class labels for the entire data
set. The class labels for all data sets are binary. The breast
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Figure 3: Average total costs for bupa with τ = 4

data set has nine attributes in 683 instances (444 negative,
239 positive). The pima data has eight attributes in 768 in-
stances (500 negative, 268 positive). The bupa data set has
five attributes in 345 instances (169 negative. 176 positive).

These data sets all have associated attribute measurement
costs, but in these experiments we set wM to zero so as to
ignore attribute measurement costs, as time and MC costs
are the primary focus of this study. For each data set the
attributes with highest information gain (seven in breast,
six in pima, four in bupa) are given time measurement dis-
tributions that are normal with mean 6 and standard devia-
tion 2. The remaining attributes can be measured instantly.
This assignment of time does not reflect the actual time to
measure for these attributes, which for these data sets are
unknown. In lieu of that knowledge, we can most effectively
study the tradeoff between misclassification and time costs
by imposing measurement times on the most predictive at-
tributes. The time cost weight wT is set to 1. The time cost
function CT (t) = t2. Time is discretized using the method
discussed in Section 3.4 on the single instance problem. We
use τ = 8 for pima and breast, and τ = 4 for bupa.

MC costs are set up for each instance so that correct pre-
dictions have penalty zero, the more frequent class A has
penalty 1, and the less frequent class B has misclassifica-
tion cost penalty (|A|/|B|)2. This reflects the fact that in
most CSC problems, the rarer class is more costly to label
incorrectly. Misclassification cost weights are set to 1000.

Arrival of new instances in the queue at each time unit
is sampled from a Bernoulli distribution where a single in-
stance arrives at each time unit with probability a. This
parameter is varied to simulate a variety of loads on the se-
quential classifier: a = 0.05, 0.1, 0.2, 0.4. When solving the
MDP using τ > 1, the probability of n instances arriving
during the unit of τ is computed from the binomial distri-
bution Pa(n|τ ). The resolution of the queue average waiting
time parameter was set to τ , and the number of instances
parameter to τ/2.

Five fold stratified cross validation was performed on each
data set/arrival rate pair, with a 2/3 vs. 1/3 split between
training and testing data.

5.2 Results
Figures 3, 4, and 5 show the average total cost per instance

incurred in each of the three data sets for each of the four
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Figure 4: Average total costs for pima with τ = 8]

instance arrival rates. Figure 5 shows a typical breakdown
between time and MC costs. The labels ‘a’, ‘b’, and ‘c’ rep-
resent the OC estimation methods presented in equations 3,
5, and 6 respectively, while ‘none’ indicates the performance
of the single instance policy that is ignorant of waiting in-
stances. We see that estimating the opportunity cost results
in lower cost policies in all data sets and all arrival rates than
following the single instance policy. There is no clear winner
among the three OC approximation schemes.

One obvious question is why didn’t method ‘c’ perform
better? This stems from the fact that the estimated cost
distributions in method ’c’ are computed using a single in-
stance policy. The distribution of costs in the single instance
policy is likely to be significantly different from the distri-
bution that would be seen given the current state of the
queue. Costs in the current instance are likely to be larger
(due to MC costs) when many instances are waiting. The
costs from the single policy distribution are thus often too
small, resulting in substantial underestimates of the actual
OC. Further research will address this shortcoming by iter-
atively re-estimating the cost distribution: the policy πc is
first computed using cost and time distributions from the
single instance policy, as usual. We can then solve for a new
policy using cost and time distributions estimated from πc.
This process can iterate until the policy no longer changes
from iteration to iteration.

Additionally, we can observe evidence of overfitting in the
bupa and pima cases. For example, the single instance pol-
icy on pima incurs lower costs as the arrival rate increases.
Because queued instances are ignored, start times for indi-
vidual instances increase with arrival rate. The policies for
higher start times measure less instances, which results in
smaller MC costs on test data versus policies that measured
many attributes and overfit the training data. Overfitting
must be given careful consideration in further research.

6. CONCLUSIONS
Existing cost-sensitive classification algorithms have fo-

cused solely on misclassification and attribute measurement
costs. Yet for many applications, good responsiveness is
a desirable and often necessary property. In this research
we have shown novel methods for dealing with time sensi-
tive classification problems in both the single instance and
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Figure 5: Costs for breast with τ = 8

sequential cases. By intelligently discretizing time and ef-
fectively approximating opportunity costs, policies can be
computed for a wide range of classification problems.

Avenues for further research involve relaxing the attribute
measurement model. These include allowing for stochas-
tic attribute values and repeated measurement of said at-
tributes. A differentiation should also be made between
‘blocking’ and ‘nonblocking’ measurement actions. During a
blocking measurement, the processor is busy performing the
measurement computations. However, during a nonblocking
measurement, such as retrieving a document over the In-
ternet, other measurements (including those in subsequent
instances) can simultaneously be performed.
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ABSTRACT 
This paper examines whether classifier utility can be improved by 
altering the misclassification cost ratio (the ratio of false positive 
misclassification costs to false negative misclassification costs) 
associated with two-class datasets. This is evaluated by varying 
the cost ratio passed into two cost-sensitive learners and then 
evaluating the results using the actual (or presumed actual) cost 
information.  Our results indicate that a cost ratio other than the 
true ratio often maximizes classifier utility. Furthermore, by using 
a hold out set to identify the “best” cost ratio for learning, we are 
able to take advantage of this behavior and generate classifiers 
that outperform the accepted strategy of always using the actual 
cost information during the learning phase. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Induction 
H.2.8 [Database Management]: Applications - Data Mining 

General Terms  
Algorithms 

Keywords 
Data mining, machine learning, induction, cost-sensitive learning, 
utility-based data mining 

1. INTRODUCTION 
Classifier induction programs have traditionally made a number of 
assumptions. One such assumption is that the best class distribu-
tion for learning is the true underlying distribution—the one that 
the classifier will eventually be applied to. Recent research has 
shown that this assumption is often not true and that improved 
performance can be achieved by using a modified class distribu-
tion [6]. This leads us to ask a similar question, “can classifier 
performance be enhanced by employing cost-sensitive learning 
and altering the ratio of true misclassification costs?” That is, can 
we obtain better classifier performance by training with a cost ra-
tio that is not the same as the one that will be used to evaluate the 

Permission to make digital or hard copies of all or part of this work for 
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classifier? This is the principle question that we investigate in this 
paper and, somewhat to our surprise, the answer is “yes”. 

Much early work on machine learning and data mining did not 
consider issues of utility, including how a classifier will be used. 
In particular, misclassification errors typically have non-uniform 
costs. These misclassification costs are often determined by the 
class associated with an example, such that for two-class prob-
lems, the cost of a false positive prediction is not equal to the cost 
of a false negative prediction. In these circumstances accuracy is a 
poor utility metric [4] and for that reason we consider cost infor-
mation when evaluating the utility of a classifier. 

In this paper we vary the cost ratios employed in the learning 
phase, and analyze how this impacts the performance of the clas-
sifier, based on the presumed “actual” cost information associated 
with the data set. Besides helping us answer the practical question 
posed earlier, about whether one can improve performance by al-
tering the cost ratio during learning, a secondary benefit is that we 
gain insight into cost-sensitive learning. 

2. BACKGROUND AND TERMINOLOGY 
We begin by introducing the basic terminology used to describe 
the behavior of a classifier for a two-class data set. This is pro-
vided in Table 1, which shows a confusion matrix. Note that in 
Table 1 “ACTUAL” represents the true class for an example, 
whereas “PREDICTED” represents the label assigned by the clas-
sifier. Misclassified examples are those that are either false posi-
tives or false negatives and accuracy is defined as: (TP + TN)/(TP 
+ FP + TN + FN). 

Table 1: Confusion Matrix Terminology 

 ACTUAL 

 Positive class 
Negative 

class 

Positive 
class 

True positive 
(TP) 

False positive 
(FP) 

PREDICTED 

Negative 
class 

False negative 
(FN) 

True negative 
(TN) 

 

One can apply different cost (or profit) values to each of the four 
possible outcomes listed in Table 1. For cost-sensitive learning, 
one typically specifies only the costs for the false positives and 
false negatives and assigns a cost of zero to the true positives and 
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true negatives. In this case, the construction of the classifier will 
only be affected by the ratio of the two non-zero misclassification 
costs. Throughout this paper we specify the cost ratios as the ratio 
of false positive costs to false negative costs. So, a cost ratio of 
1:5 indicates that the cost of a false negative is five times that of a 
false positive. Holding with established convention, the minority 
class is considered the positive class. This is often the class of 
primary interest, as in the case of medical diagnosis (most patients 
do not have the sickness for which they are being tested). In these 
situations, the cost assigned to a false negative is generally greater 
than the cost assigned to a false positive, since this leads to classi-
fiers that correctly classify a greater percentage of the minority-
class examples. 

In this paper, we are interested in two cost ratios. The actual cost 
ratio is based on the characteristics of the domain and is typically 
provided by a domain expert. We refer to this as the evaluation 
misclassification cost ratio, or, more simply, as the Evaluation 
Cost Ratio, abbreviated ECR. This name reflects the fact that this 
cost ratio is used when evaluating the utility of the classifier. In 
particular, we measure the quality of the classifier based on total 
cost, which is calculated using the equation below (the evaluation 
cost ratio is FPcost: FNcost). 

     Total cost = FP * FPcost + FN * FNcost                          [1] 

Under normal circumstances, the evaluation cost ratio is passed to 
the classifier induction program, assuming that it is capable of 
cost-sensitive learning. However, in this paper we often utilize a 
different cost ratio in the learning phase. We refer to this ratio as 
the Training misclassification Cost Ratio, abbreviated TCR. For 
most of our experiments, TCR ≠ ECR. TCR affects the construc-
tion of the classifier but not the evaluation of the classifier. 

Our paper is organized as follows.  In Section 3 we describe our 
experiments. Results are then described in Section 4 and are dis-
cussed in Section 5. Section 6 describes related work and Section 
7 presents our conclusions. 

3. EXPERIMENTS 

3.1 Data Sets 
Our empirical study analyzes the relationship between TCR and 
ECR for the twelve data sets described in Table 2.  

Table 2: Description of Data Sets 

Data Set 
Number of 
Attributes 

Minority Class % Total Size 

Cover-Type* 55 48% 581,012 

Adult 15 24% 21,281 

Coding 16 50% 20,000 

Letter-Vowel* 17 24% 16,122 

Blackjack+ 5 36% 15,000 

Boa1+ 69 50% 11,000 

Mushroom 23 48% 8,124 

Weather+ 36 40% 5,597 

Splice-Junction* 62 24% 3,175 

Move+ 11 50% 3029 

OCR1 577 18% 2,283 

The majority of the twelve data sets are available from the UCI 
Repository [3]. The remaining ones, identified by a “+” sign in 
Table 2, were originally supplied by AT&T and have been used in 
several published research papers. All of the data sets employed in 
this study are two-class data sets. Those that originally had more 
than two classes are identified by a “*”. These were converted to 
two-class data sets by assigning one class, typically the least fre-
quently occurring class, to the minority class, and then mapping 
all remaining classes to a single, majority, class. 

3.2 Classifier Induction Programs 
The majority of experiments described in this paper utilize C5.0, a 
commercial decision tree induction tool by Rulequest research. 
C5.0 is an updated, commercial version of Quinlan’s popular C4.5 
program [5]. To demonstrate the generality of our results, some 
experiments were repeated using the decision tree tool incorpo-
rated into Enterprise Miner™, an integrated suite of data mining 
tools from SAS Corporation. Both learners are capable of cost-
sensitive learning.  

3.3 Experimental Methodology 
The primary purpose of the experiments described in this paper is 
to determine if one can improve classifier learning by using a 
training cost ratio (TCR) that is not equal to the evaluation cost 
ratio (ECR). Thus, the experiments in this paper vary the TCR 
value used during the learning phase and then evaluate the in-
duced classifiers using the evaluation cost ratio. In order to run 
our experiments, we need to specify the TCR and ECR values for 
each data set. Because actual cost information is not available for 
most of the data sets we analyze (either because the costs are not 
known or not provided), we evaluate a wide range of ECR values 
rather than just one value. Because we are interested in how dif-
ferent TCR values impact performance, we also evaluate a wide 
variety of these values. For simplicity, we evaluate the same set of 
cost ratios for training (TCR) and evaluation (ECR). For each of 
the twelve datasets we evaluate the following nineteen cost ratios, 
for training and evaluation: 1:10, 1:9, … 1:2, 1:1, 2:1, …, 9:1, 10:1. 

If we only wanted to understand the relationship between TCR 
and ECR (i.e., how a TCR value affects the performance of a clas-
sifier with a specified ECR), or whether a TCR equal to ECR 
yields the best classifier performance, then we would only need a 
training set for learning and a test set for classifier evaluation. 
However, we want to go further; we want to come up with a strat-
egy for selecting, during the learning phase, a good TCR for 
learning, such that the utility of the induced classifier is improved. 
We therefore utilize a hold out set to identify the best TCR for 
learning (i.e., the one that yields the lowest total cost on the hold 
out set). We refer to this strategy as the TCR identification strat-
egy, or simple TCR identification. The results using the TCR 
identification strategy are therefore based on using this identified 
TCR for classifier construction and then evaluating this classifier 
on the independent test set. Note, however, that since we are also 
interested in understanding how the choice of TCR and ECR im-
pact classifier performance, we also report results using other 
TCR values. For the C5.0 experiments in this paper, each data set 
is partitioned as follows: 40% for the training set, 30% for the 
hold out set and 30% for the test set. 

The above description was for our primary learner, C5.0. Our ex-
periments that use the decision tree tool that is part of Enterprise 
Miner are slightly different. When using Enterprise Miner, we 
used the following seven cost ratios for training and evaluation: 
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1:10, 1:5, 1:2, 1:1, 2:1, 5:1, 10:1. We used fewer cost ratios for 
our Enterprise Miner experiments because of our time constraints 
and because it is much harder to automate the experiments when 
using Enterprise Miner (automation is more difficult because En-
terprise Miner employs a graphical user interface, whereas C5.0 
uses a command line interface). Furthermore, we did not utilize a 
hold out set for these experiments. For this reason, for our Enter-
prise Miner results we focus on how the choice of TCR affects 
total cost for different ECR values. Nonetheless, as we discuss 
later, the Enterprise Miner results tend to support the results and 
conclusions obtained using C5.0. 

4. RESULTS 
Experiments were run to determine the total costs produced by 
C5.0 and Enterprise Miner when the TCR and ECR values were 
varied for the data sets used in our study. In Section 4.1 we pro-
vide a detailed analysis of the coding data set. In Section 4.2 we 
briefly describe the detailed results for some other data sets and 
provide pointers to an on-line appendix [7] that includes the de-
tailed statistics for all twelve data sets.  Section 4.3 then provides 
the data set specific results using Enterprise Miner. This is fol-
lowed by Section 4.4, which provides summary results for both 
C5.0 and Enterprise Miner. Our most important results are pre-
sented in Section 4.4. 

4.1 Detailed Analysis of the Coding Data Set 
We begin by showing the results for the Coding data set using 
C5.0. We chose to show detailed results of the coding data set be-
cause they are representative of the data sets that benefited from 
the TCR identification strategy. Table 3 shows the confusion ma-
trix values for the Coding data set. Table 3 shows that as the cost 
ratio of FP to FN changes from 1:10 to 10:1 and false positive 
predictions become much more costly, then more negative predic-
tions are made and the number of false positives decreases while 
the number of false negatives increases. We see that once the cost 
ratio reaches 3:1, every example is classified as a negative exam-
ple. 

Table 3: Confusion Matrix Values for Coding Data Set 

TCR FP FN TP TN 

1:10 2073 119 3381 427 

1:9 1981 180 3320 519 

1:8 1876 234 3266 624 

1:7 1812 259 3241 688 

1:6 1752 287 3213 748 

1:5 1465 482 3018 1035 

1:4 1303 634 2866 1197 

1:3 1177 767 2733 1323 

1:2 933 1104 2396 1567 

1:1 592 1676 1824 1908 

2:1 245 2502 998 2255 

3:1 0 3500 0 2500 

… 0 3500 0 2500 

10:1 0 3500 0 2500 

The utility of the classifier, as measured by total cost, is impacted 
by the evaluation cost ratio. Figure 4 shows the ECR curves for 
the coding data set, for ECR values 1:4, 1:3, 3:1 and 4:1 (for read-
ability we do not show the ECR curves for all nineteen evaluated 
ECR values). Note that all of the curves flatten out at a TCR of 
3:1, the point at which all examples are classified as the negative 
class. The different total cost values are due to the fact that three 
of the four curves have different false positive costs. 
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Figure 1: ECR Curves for the Coding Data Set 

Each curve in Figure 1 has a square marker to indicate the point at 
which TCR=ECR. In none of the cases does this point yield the 
minimum total cost. This is especially true when the ECR is 1:4 or 
1:3, in which case the savings appears to be very significant. This 
indicates that one might be able to improve classifier performance 
by selecting a TCR that is not equal to the ECR. However, for the 
TCR identification strategy to yield improved classifier perform-
ance, the results on the test data must be similar to the results for 
the hold out set, which are shown in Figure 1. 

This leads us to Table 4, which compares the effectiveness of the 
TCR identification strategy to two other strategies for selecting 
the training cost ratio. The default strategy is what is commonly 
done—always setting the TCR to the ECR. The omniscient strat-
egy involves selecting the TCR that produces the best results on 
the test set and then using that for learning. This strategy is not 
one that can be fairly used in practice, since it requires an oracle 
capable of knowing the performance of the classifier on future 
examples. However, it does provide an upper bound on the possi-
ble savings due to the TCR identification strategy and also allows 
us to see how effective the hold out set results are at identifying 
the optimal TCR for learning. For TCR identification and the om-
niscient strategy, the selected TCR value is specified along with 
the resulting total cost (for the default strategy the TCR is always 
equal to the ECR and so is not specified explicitly). The last two 
columns compare TCR identification to the default strategy and 
the omniscient strategy to the default strategy. The savings that 
are listed are relative savings. Note that all results in Table 4 are 
based on the test set. A TCR value of 2-10:1 is equivalent to 2:1-
10:1 and means that all nine TCR values in this range yield identi-
cal results. 
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Table 4: Comparison of Three TCR Selection Strategies 

Default TCR Identifi-
cation Omniscient % Savings 

(vs. Default) 
ECR 

Cost TCR Cost TCR Cost 
TCR 

Identifi-
cation 

Omnis-
cient  

1:10 3664 1:10 3664 1:10 3664 0 0 

1:9 3843 1:10 3501 1:10 3501 8.9 8.9 

1:8 4052 1:10 3338 1:10 3338 17.6 17.6 

1:7 3987 1:10 3175 1:10 3175 20.4 20.4 

1:6 3782 1:10 3012 1:10 3012 20.4 20.4 

1:5 4200 1:10 2849 1:10 2849 32.2 32.2 

1:4 4153 1:10 2686 1:10 2686 35.3 35.3 

1:3 3552 1:10 2523 1:10 2523 29.0 29.0 

1:2 3229 1:6 2422 1:9 2359 25.0 26.9 

1:1 2289 1:4 1972 1:3 1930 13.9 15.7 

2:1 2926 1:1 2826 1:1 2826 3.4 3.4 

3:1 3500 2:1 3136 2:1 3136 10.4 10.4 

4:1 3500 2:1 3346 2:1 3346 4.4 4.4 

5:1 3500 2-10:1 3500 2-10:1 3500 0 0 

6:1 3500 2-10:1 3500 2-10:1 3500 0 0 

7:1 3500 2-10:1 3500 2 -10:1 3500 0 0 

8:1 3500 2-10:1 3500 2:-10:1 3500 0 0 

9:1 3500 2-10:1 3500 2:-10:1 3500 0 0 

The results in Table 4 demonstrate that in many cases very sub-
stantial reductions in cost are possible if TCR identification is 
used instead of the default strategy. The majority of situations 
where this is not true are when the TCR value is greater than 4:1. 
Note, however, that we are generally most concerned with the 
TCR values where the positive (minority-class) examples are 
given more weight—and this occurs in the range 1:2 to 1:10. Ta-
ble 4 also shows us that the TCR identification strategy yields the 
same performance as the omniscient strategy in all but two cases 
(for ECR values of 1:2 and 1:1). The underlying data indicates 
that the hold out set identifies the TCR that gives the best test set 
results for all but these two cases.  

4.2 Additional Detailed Results 
In section 4.1 we provided the detailed results for the coding data 
set, using C5.0. In this section we briefly describe the results for 
the other eleven data sets included in our study, using C5.0. Due 
to space considerations, the detailed results are included in the on-
line appendix [7], available at http://storm.cis.fordham.edu/ 
~gweiss/ubdm05-appendix.html. However, summary statistics for 
all twelve data sets are provided in Section 4.3. 

Figures analogous to Figure 1, but for the letter-vowel and adult 
data set, are provided in Figures A1 and A2 in the on-line Appen-
dix, respectively. Tables analogous to Table 4 are also provided in 
the on-line appendix for all twelve data sets (Tables A1-A12). The 
one difference is that the tables in the appendix include one addi-
tional field, labeled “Hold Out Set Effectiveness”. This field de-
scribes how close the hold out data set came to predicting the 

TCR with the lowest total cost.  A value of ‘1’ in that column 
means that the hold out set successfully predicted the TCR with 
the lowest total test-set cost.  A value of n means that the hold out 
set predicted the TCR with the nth lowest total cost, when evalu-
ated on the test data; thus a value of 19 would indicate that the 
TCR identification strategy identified the worst TCR value (since 
we evaluate 19 total TCR values). Based on Tables A1-A12, we 
see that the TCR identification strategy often identifies the TCR 
with the lowest total cost, and when it does not, it usually comes 
close.  

If we analyze the behavior of the letter-vowel data set, using Fig-
ure A1 and Table A4, we see that TCR identification improves 
classifier performance over the default strategy in almost all cases, 
but unlike the results for the coding data set, the most substantial 
improvements are in the range 2:1-9:1, where the false positive 
cost is greater than the false negative cost. If we look at the results 
for the adult data set, in Figure A2 and Table A2, we see more 
ambiguous results. For that data set, TCR identification leads to 
small reductions in total cost in some cases and small increases in 
others. For detailed dataset-specific results, see Tables A1-A12 in 
the on-line appendix. 

4.3 Enterprise Miner Results 
Figures 2 and 3 show the ECR curves for the Adult data set and 
the Boa1 data set, respectively, when using SAS Enterprise Miner. 
As with the majority of C5.0 results, we see that the TCR that 
yields the best results is not always the one that equals the ECR. 
For Figure 2, the TCR value that generates the lowest total cost is 
always either 1:10 or 10:1; thus when the ECR value is not equal 
to one of these values (for an ECR of 1:5 or 5:1), suboptimal re-
sults are produced. 
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Figure 2: Enterprise Miner ECR Curves for Adult Data Set 

Figure 3 shows that suboptimal results occur when the ECR is 1:2, 
since the best results occur for TCR values of 1:5 and 1:10, and 
for an ECR of 2:1 the best results occur for a TCR of 5:1 or 10:1. 
A detailed analysis of the Enterprise Miner results shows that, as 
with C5.0, the default strategy of setting the TCR equal to the 
ECR often does not provide the best performance. Section 4.4, 
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which provides summary results for all C5.0 and Enterprise Miner 
data sets, will quantify the potential savings. 
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Figure 3: Enterprise Miner ECR Curves for Boa1 Data Set 

4.4 Summarized Results over all Data Sets 
This section summarizes the results over all of the data sets. The 
purpose of this section is to quantify the effectiveness of the TCR 
identification strategy and to identify any patterns or trends in the 
results. Table 5 shows how TCR identification compares to the 
default strategy of setting the TCR equal to the ECR, when evalu-
ating classifier performance using total cost. The comparison is 
based on the performance over all nineteen cost ratio values. 

Table 5: Comparison of TCR Identification vs. Default (C5.0) 

Data Set % Avg. Savings 
(1:10 – 10:1) 

% Avg. 
Savings 

(1:10 -1:1) 
Win/Loss/Tie 

Cover-Type -30.8% (-33.6%) 0.7% 4/13/2 

Adult 0.0% (0.0%) 0.3% 6/8/5 

Coding 11.6% (18.4%) 20.3% 12/0/7 

Letter-Vowel 7.4% (8.3%) 1.4% 15/2/2 

Blackjack -0.2% (-1.1%) -0.4% 1/3/15 

Boa1 0.0% (0.0%) 0.0% 0/0/19 

Mushroom 47.4% (100.0%) 60.0% 9/0/10 

Weather -0.2% (-0.4%) 0.3% 4/8/7 

Network1 5.4% (7.3%) 5.7% 12/2/5 

Splice-Junction 2.0% (2.2%) -5.9% 8/9/2 

Move 3.9% (9.3%) 3.4% 4/4/11 

OCR1 23.4% (24.7%) 11.4% 15/3/1 

TOTAL 5.8% (11.3%) 8.1% 90/52/105 

 
The second column in Table 5 specifies the savings (i.e., relative 
reduction in cost) averaged over the full range of nineteen cost 
ratios. In parenthesis next to this number is the average savings if 
all ties between the TCR identification and default strategies are 

omitted. The third column shows the average savings over the ten 
cost ratios from 1:10 – 1:1. We break down the results for these 
cost ratios separately because, as mentioned earlier, one is typi-
cally most interested in this range since it leads to improved per-
formance on the minority class, which otherwise might rarely be 
predicted. The last column in Table 5 provides the win/loss/tie 
record for each data set over the nineteen cost ratios. 

Table 5 shows that the TCR identification performs substantially 
better than the default strategy of always using the ECR for train-
ing, although the performance varies widely for each data set.  For 
the five data sets highlighted in bold and for which the row is 
shaded, TCR identification greatly outperforms the default strat-
egy, in that it performs better for almost all of the nineteen cost 
ratios and consistently produces substantial savings. The four data 
sets that produced essentially neutral results are underlined. These 
include the boa1 data set, which produced perfectly identical re-
sults to the default strategy for all nineteen cost ratios, as well as 
the adult, blackjack and weather data set, which produced either 
very slight positive or negative savings. The move and splice-
junction data sets can be considered moderate wins, when the en-
tire range of cost ratios is considered. Finally, the Cover-type data 
set is the only true loss, over all nineteen cost ratios. However, for 
this data set the TCR identification strategy provides no loss (i.e., 
a very slight win) over the TCR range we are most interested in 
(1:10-1:1). If we focus exclusively on the range 1:10 – 1:1, then 
we see that there is only one moderate loss (splice-junction), 
while there are still many substantial wins. 

In summary, our results indicate that of the twelve cases, averaged 
over the nineteen cost ratios, TCR identification produces sub-
stantially better results than the default strategy in five cases and 
worse results in one case; the remaining six cases produce am-
biguous results. If we focus on the more important 1:10-1:1 TCR 
range, then the one significant loss is eliminated and the only loss 
at all is a moderate one, for the splice-junction data set. Due to 
space considerations, Table 5 does not compare the TCR identifi-
cation strategy to the omniscient strategy, but that information is 
provided, at a more detailed level, in tables A1-A12 in the on-line 
appendix. 

We now turn to the summary results for Enterprise Miner (EM). 
Because we did not utilize a hold out set for identifying the best 
TCR to use, we can only compare the omniscient strategy to the 
default strategy. This will put an upper bound on the savings that 
are possible. However, we expect that most of the savings we see 
with the omniscient strategy could be realized if a hold out set 
were used, since this is what we saw with C5.0. The results of this 
comparison are shown in Table 6. 

Table 6: Comparison of Omniscient vs. Default Strategy (EM) 

Data Set % Avg. Savings 

Cover-Type 22.7% 

Adult 11.1% 

Boa1 4.1% 

Weather 19.1% 

Network2 46.2% 

Splice-Junction 1.9% 

Move 18.7% 

TOTAL 17.7% 
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Table 6 clearly demonstrates that the best TCR for learning is not 
equal to the ECR. While we have not demonstrated that these sav-
ings can be realized, we feel that the use of a hold out set would 
allow us to realize most of these savings. 

5. DISCUSSION 
This paper looks at two questions: does the evaluation cost ratio 
always produce the best results when used for training and 2) can 
we identify an alternative cost ratio for training such that classifier 
performance is improved. Our results indicate that the answer to 
the first question is “no”, the best cost ratio for training is gener-
ally not the evaluation cost ratio and that the answer to the second 
question is “yes”, we can identify an cost ratio for learning that 
outperforms the evaluation cost ratio. 

Our main results show only one substantial failure for the TCR 
identification strategy, for the cover-type data set when all nine-
teen cost ratios were considered. Why were the results poor in this 
case? The detailed results for this data set, available in Table A1 
in the on-line appendix, shows us the reason is that the hold out 
set did not effectively identify the best TCR, with respect to the 
test set performance, when the cost ratio was between 1:4 and 
10:1. Even in the cases where our strategy did poorly, the omnis-
cient strategy performed well. Our results may have been better 
for this data set, and for all data sets, had we employed multiple 
runs and averaged the results. In the only other failure, for the 
splice-junction data set for cost ratios 1:10 – 1:1, the failure re-
sulted because the best TCR for learning, based on the test set, 
was 1:6, and the TCR identification strategy identified the best 
TCR (using the hold out data) as 1:7 (see Table A10). Thus, this 
failure was due to a slight difference between the selected and op-
timal TCR values. 

Our results with Enterprise Miner support the conclusions reached 
using C5.0. Enterprise Miner also performed better when the TCR 
was set to a value other than the ECR. In the future we plan to 
incorporate the use of a hold out set to show that much of the po-
tential reduction in total cost that is available can be realized.  

Our study evaluated nineteen different evaluation cost ratios. An 
ECR of 1:1 is special, since it corresponds to the accuracy metric, 
which is very commonly used and therefore is, most likely, the 
metric for which most classifiers are optimized. Thus, it is worth-
while to analyze our results for an ECR of 1:1. For this ECR, for 
five of the twelve data sets a TCR of 1:1 provides the best per-
formance and for three data sets the best performance is achieved 
with a TCR of 2:1. For the remaining four data sets, the best per-
formance is achieved with a cost ratio of 1:3, 1:4, 3:1, or 4:1. No 
other ECR performed as well using the default strategy. For in-
stance, with an ECR of 4:1, the best TCR ranged from 1:4 to 9:1 
and a TCR of 4:1 yielded the lowest total cost only for one data 
set. Thus, our results indicate that the default strategy of setting 
the TCR to the ECR is generally quite appropriate for maximizing 
classifier accuracy. 

This paper has focused on the issue of how the choice of the train-
ing cost ratio impacts classifier performance, as measured by total 
cost. Because one can effectively modify the misclassification 
cost ratio for a data set by altering the class distribution of the 
training set1, our results have some additional implications. Spe-
                                                                 
1 For example, to impose a misclassification cost ratio of 1:2 

without using a cost-sensitive learner, one need only increase 
the ratio of positive to negative examples by a factor of 2 [2]. 

cifically, our results seem to imply that one should often be able 
to benefit by altering the class distribution of the domain. In fact, 
this conclusion is seemingly supported by existing research [6], 
which showed that the naturally occurring class distribution often 
does not provide the best classifier performance. This connection, 
however, is not as clear. The research previously noted [6] 
showed that altering the class distribution improves learning when 
the training set size is held fixed; it did not examine the case 
where training examples were added. Also, the results in this pa-
per can only be used to conclude that altering the class distribu-
tion will improve learning only if one can draw new training 
examples. However, most research on altering the class distribu-
tion of a training set utilizes sampling to change the distribution. 
Sampling involves either discarding examples of one class (under-
sampling) or duplicating examples of one class (oversampling). 
Both of these methods have drawbacks; undersampling throws 
away potentially useful data and oversampling may lead to over-
fitting the data. Thus, even though there is an equivalency be-
tween changing the cost ratio and altering the training sets class 
distribution, it is not clear that our results show that changing the 
class distribution of the training data will necessarily improve 
classifier performance. 

Finally, we turn to the question of why the best cost ratio for train-
ing is not always the evaluation cost ratio. It is useful to start with 
accuracy, which is based on an ECR of 1:1. Our results indicate 
that in this case the default strategy of setting TCR to ECR per-
forms quite well. This is encouraging, since it doesn’t seem likely 
that a classifier would consistently perform sub-optimally for ac-
curacy, the metric that most classifiers were originally optimized 
for. However, that still leaves us with the question as to why C5.0 
and Enterprise Miner perform best for a training cost ratio other 
than the evaluation cost ratio when there are non-uniform misclas-
sification costs. The only apparent answer is that these cost-
sensitive learners do not handle non-uniform misclassification 
costs well. We are not sure why this is true, but feel that is an im-
portant area for future research. The only insight we have is that, 
for decision tree learning, it may be more difficult to label a leaf 
node with the correct class for non-uniform error costs, where the 
class probability threshold will not be 0.5. Our conjecture is that 
as the decision threshold moves away from 0.5, it becomes more 
difficult to accurately label the node, especially if there are only a 
small number of training examples. However, the evaluation of 
this conjecture is left for future work. 

6. RELATED WORK 
Research by Weiss and Provost [6] looked at the impact of class 
distribution on learning, when training data is costly and one is 
only able to purchase a fixed number of examples. That research 
found that improved classifier performance was possible by using 
a class distribution other than then naturally occurring distribu-
tion. That article then went on to show that one could use an adap-
tive, progressive, sampling strategy to identify a “good” class 
distribution for learning and thus actually improve classification 
performance. In many ways the research in this paper parallels 
that research, except that here we alter the cost ratio of the train-
ing set instead of its class distribution. In fact the results here 
might appear to be implied by those earlier results, since altering 
the class distribution of the training data is, as Elkan [2] pointed 
out, in some ways equivalent to altering the cost ratio. However, 
there is an important difference. In the earlier work, when the 
class distribution was changed, measures were taken to adjust the 
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classifier so that it was not biased to favor the over-sampled class. 
Thus, changing the class distribution was not equivalent to alter-
ing the cost ratio, and the results in this paper are not implied by 
that earlier work. 

Domingos [1] developed a method called Metacost that can trans-
form a wide variety of error-based classifiers into cost-sensitive 
classifiers. Metacost re-labels the training set examples with their 
optimal class, or the class that minimizes conditional risk, and 
then relearns the classifiers with the modified training data. While 
both Metacost and the TCR identification method alter the train-
ing data or how the classifier treats the training data, the methods 
are incomparable because 1) TCR identification requires a cost-
sensitive learner and 2) TCR identification identifies a cost ratio 
that is different from the one that would be derived from the cost 
matrix, while Metacost uses the one derived from the cost matrix 
(i.e., the ECR). However, Metacost could be adapted to do some-
thing similar to TCR identification and alter the class probability 
thresholds so that TCR ≠ ECR for the entire classifier, or could 
even use different class probability thresholds for different parts 
of the classifier (e.g., different rules). 

There is great deal of additional research on cost-sensitive learn-
ing, but we are not aware of any studies that examine the impact 
of the changing the cost ratio during the learning process in order 
to assess the impact that this has on the quality of the induced 
classifier. This can be contrasted to the wealth of research that 
examines how changing the class distribution can improve learn-
ing from skewed class distributions. 

7. CONCLUSION 
In this paper we demonstrated that the performance of a classifier, 
when the misclassification costs are not uniform, is generally 
maximized when the training cost ratio is set equal to a value 
other than the evaluation cost ratio. This was shown for commer-
cially available classifier induction programs, C5.0 and Enterprise 
Miner. We furthermore showed that, for C5.0, we could success-
fully identify good training cost ratios for learning, using a hold 
out test set, such that classifier performance could be improved 
over the standard practice of setting the training cost ratio to the 
evaluation cost ratio. Our results showed that for five of twelve 
data sets, the TCR identification strategy led to substantial reduc-
tions in total cost and only in one case did it lead to substantial 
increases in total cost. Furthermore, when the evaluation of the 
TCR evaluation strategy considered only cost ratios between 1:10 
and 1:1, this one loss disappeared.  The implications of our results 

are significant—that classifier induction programs may perform 
poorly—unnecessarily poorly—when handling non-uniform mis-
classification costs. These results are particularly notable since we 
analyzed popular state-of-the-art commercial classifiers. The 
“wrapper” approach we introduced in this paper can be used to 
overcome some of the weaknesses of these cost-sensitive learners. 

The fact that the TCR identification strategy yields a net im-
provement in classifier performance indicates that the induced 
learners exhibit a systematic bias (altering the cost ratio will al-
ways increase the frequency that one class is predicted over the 
other). The main areas for future work are to better understand 
why these cost-sensitive learners perform sub-optimally and how 
this behavior can be remedied. Other areas for future work include 
analyzing additional cost-sensitive learners, analyzing data sets 
which exhibit more extreme class imbalance and analyzing addi-
tional data sets. 
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ABSTRACT
This paper presents a new formulation for cost-sensitive
learning that we call the One-Benefit formulation. Instead
of having the correct label for each training example as in
the standard classifier learning formulation, in this formula-
tion we have one possible label for each example (which may
not be the correct one) and the benefit (or cost) associated
with that label. The goal of learning in this formulation
is to find the classifier that maximizes the expected bene-
fit of the labelling using only these examples. We present
a reduction from One-Benefit learning to standard classifier
learning that allows us to use any existing error-minimizing
classifier learner to maximize the expected benefit in this
formulation by correctly weighting the examples. We also
show how to evaluate a classifier using test examples for
which we only the benefit for one of the labels. We present
preliminary experimental results using a synthetic data gen-
erator that allows us to test both our learning method and
our evaluation method.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning - Induction; H.2.8
[Database Management]: Applications - Data Mining

General Terms
Algorithms

Keywords
data mining, cost-sensitive learning

1. INTRODUCTION
In standard classifier learning, we are given a training set
of examples of the form (x, y), where x is a feature vector
and y is a class label. These examples are assumed (at
least, implicitly) to be drawn independently from a fixed
distribution D with domain X × Y, where X is a feature

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. UBDM ’05 , August 21, 2005, Chicago, Illinois,
USA. Copyright 2005 ACM 1-59593-208-9/05/0008 ... $5.00.

space and Y is a (discrete) class label space. The goal is to
learn a classifier h : X → Y that minimizes the expected
error rate on examples drawn from D, given by

Ex,y∼D[I(h(x) 6= y)] (1)

where I(·) is the indicator function that has value 1 in case
its argument is true and 0 otherwise.

The traditional formulation assumes that all errors are equally
costly. However, this is not true for many domains for which
one would like to obtain classifiers. For example:

• In one-to-one marketing, the cost of making an offer to
a person who does not respond is small compared to
the cost of not contacting a person who would respond.

• In medicine, the cost of prescribing a drug to an al-
lergic patient can be much higher than the cost of not
prescribing the drug to a nonallergic patient.

• In image or text retrieval, the cost of not displaying a
relevant item may be lower or higher than the cost of
displaying an irrelevant item.

One extension to the standard classifier learning formulation
that has received considerable attention in the past few years
is the cost matrix formulation [2, 4, 3]. In this formulation,
we specify a cost matrix C for the domain in which we would
like to learn a classifier. If there are k classes, the cost matrix
is a k× k matrix of real values. Each entry C(i, j) gives the
cost of predicting class i for an example whose actual class
is j. Now, instead of minimizing the error rate given by
equation 1, we would like to find a classifier h that minimizes
the expected cost of the labeling, given by

Ex,y∼D[C(h(x), y)]. (2)

Research on cost-sensitive learning has traditionally been
couched in terms of costs, as opposed to benefits or rewards.
However, in many domains, it is easier to talk consistently
about benefits than about costs. The reason is that all ben-
efits are straightforward cash flows relative to a baseline
wealth of $0, while some costs are counterfactual oppor-
tunity costs [3]. Instead of specifying a cost matrix, we can
equivalently specify a benefit matrix B, where each entry
of the matrix describes the benefit (or reward) of predicting
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class i for an example whose actual class is j. Then, instead
of minimizing 2, we maximize

Ex,y∼D[B(h(x), y)].

The benefit matrix formulation assumes that the benefits
are fixed, i.e., that they only depend on the predicted and
actual classes, but not on the example itself. However, more
often than not, benefits in real-world domains are example-
dependent. For example, in direct marketing, the benefit
of classifying a respondent correctly depends on the profit
that the customer generates. Similarly, in credit card fraud
detection, the benefit of correctly identifying a fraudulent
transaction depends on the amount of the transaction.

Zadrozny and Elkan [6] extend the benefit matrix formula-
tion to the example-dependent case by allowing each entry
to depend on the particular feature vector x. In this case,
the benefits are given by a function B(i, j, x), where i is the
predicted class, j is the actual class and x is the feature
vector of the example. Accordingly, we would now like to
find a classifier h that maximizes the expected benefit of the
labeling, given by

Ex,y∼D[B(h(x), y, x)]. (3)

Because the benefit matrix formulation assumes that the
benefits are fixed for all examples, it also implicitly assumes
that they are known in advance. However, when we allow
example-dependent benefits, it might be the case that the
benefits are not known for all of the possible labels of all
the training examples. An example of an application where
this is the case is direct marketing. In this case, x is the
description of a customer (which may include, for example,
past purchases) and y is a marketing action (such as mailing
a catalog or a coupon). The benefit for each y is the profit
attained if the customer responds to the action or $0 if he
does not respond to it. Therefore, in order to measure the
benefits for each possible y, it would be necessary to take
all possible actions with the same customer, which is not
feasible1 .

A similar situation occurs in medical treatment, here x is
the description of a patient and y is a possible treatment.
Usually only one treatment is assigned to each patient, so
we only have information about the benefit of one treatment
per person. Therefore, the example-dependent formulation
is not directly applicable here.

In this paper, we introduce a new formulation of the cost-
sensitive learning problem that does not require that all of
the benefits (or costs) for each of the labels are known for
each training example. We call this formulation the One-
Benefit formulation. We present an algorithm for learning
under this formulation that is in fact a reduction to standard
classifier learning. In other words, it is an algorithm that
transforms a cost-sensitive learning problem of this type into

1Note that previous work in cost-sensitive learning applied
to direct marketing[6] dealt with a special case in which
there were only two possible actions (mail/not mail). The
“not mail” action had a fixed benefit of zero and all the cus-
tomers in the training set had been mailed. Therefore, the
benefits for each label were known for each training example

a standard classifier learning problem. We call this reduc-
tion the One-Benefit reduction. The main advantage of a
reduction is that it allows the use of any classifier learner
as a black box. For other details and advantages of reduc-
tions, see Beygelzimer et al. [1]. We also present a method
for evaluating classifiers under the One-Benefit formulation.
Finally, we show some preliminary results on a synthetic
dataset.

2. CLASSIFIER LEARNING UNDER THE
ONE-BENEFIT FORMULATION

We assume that we have m training examples (x, y, b) drawn
from a joint distribution D with domain X × Y × B where
X is an (arbitrary) space, Y is a (discrete) label space and
B is a (nonnegative, real) benefit space, where the benefit
of assigning label y to example x is is given by a stochastic
function B : X × Y → [0,∞] (that is b ∼ B(x, y)).

We call this formulation the One-Benefit formulation. Note
that instead of having the correct label for each training
example as in the standard classifier learning formulation,
in this formulation we have one possible label (which may
not be the correct one) and the benefit associated with that
label. If we know the benefit of more than one possible label,
we can create one example per benefit.

Our goal is to find the classifier h : X → Y that maximizes
the expected value of the benefit given by

Ex∼D[B(x, h(x))] (4)

using only the available examples.

We also want to be able to evaluate an existing classifier
using only examples of the form (x, y, b). That is, we want
to be able to obtain an estimate of the expected benefit of
the classifier (given by equation 4).

Standard classifier learners try to find H to maximize the
accuracy

1

m

∑

(x,y)

I(H(x) = y)

but, according to the translation theorem in Zadrozny et al.
[8], can be made to maximize a weighted loss

1

m

∑

(x,y,w)

wI(H(x) = y), (5)

where w is a importance weight given to each example.

The following theorem shows that the expected benefit in (4)
can be rewritten in a way that allows us to use a classifier
learner that maximizes (5) to learn the classifier h.

Theorem 1. For all distributions, D, for any determin-

istic function, h : X → Y and for any stochastic function

B : X × Y → [0,∞], if we assume that P (y|x) > 0 ∀x, y
then

ED[B(x, h(x))] = ED

[

b

P (y|x)
I(h(x) = y)

]
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Proof.

ED

[

b

P (y|x)
I(h(x) = y)

]

= Ex,y,b∼D

[

B(x,y)
P (y|x)

I(h(x) = y)
]

= ED

[

B(x,y)
P (y|x)

∣

∣

∣
h(x) = y

]

P (h(x) = y)

= ED

[

b(x,h(x))
P (h(x)=y|x)

∣

∣

∣
h(x) = y

]

P (h(x) = y)

=
∫

x

B(x,h(x))
P (h(x)=y|x)

P (x|h(x) = y)P (h(x) = y)dx

=
∫

x

B(x,h(x))
P (h(x)=y|x)

P (x, h(x) = y)dx

=
∫

x
B(x, h(x))P (x)dx

= ED[B(x, h(x))]

From this theorem, it follows that

1

m

∑

(x,y,b)

b

P (y|x)
I(h(x) = y) (6)

is an unbiased empirical estimate of the expected benefit of
classifier h. Thus, if we know P (y|x), that is, the probability
that label y is assigned to example x in the training data, we
can use a classifier learner to learn the classifier from these
examples. Looking back at (5) we see that we simply have
to weigh each example (x, y, b) by b

P (y|x)
.

Note that the theorem holds only if ∀x, y P (y|x) > 0, that is,
in order to guarantee convergence to the optimal classifier,
we require that in the training data each label have non-zero
probability of being assigned to each example. However, the
reduction degrades gracefully even when this is not the case
if we define that

I(h(x) = y)

P (y|x)
= 0

when I(H(x) = y) = 0 and P (y|x) = 0. In this case, it
is easy to see that the reduction will converge to a classi-
fier that is optimal, except that label y is not allowed for
example x.

This theorem demonstrates that in this formulation we have
to account both for the benefits (given by the numerator in
the first factor of equation 6) and for the fact that the labels
are not assigned at random to the examples (given by the
denominator in the first factor of equation 6).

Zadrozny et al.[8] showed that learning from a weighted dis-
tribution of examples is not straightforward with many clas-
sifier learners but that “costing”, a method based on rejec-
tion sampling, achieves good results in practice. For this
reason, we recommend using costing here, where instead
of using misclassification costs as weights we use the ratio

b

P (y|x)
as a weight for each example (x, y, b). Another option

is to use learners that accept weights directly, such as naive
Bayes and SVM.

In practice, we may not know the probabilities P (y|x) for
the training examples in advance. However, we can estimate
these using the available training data by applying a classi-
fier learning method that estimates conditional probabilities
or by transforming the outputs of a classifier into accurate
probability estimates [7].

One-Benefit Reduction(Training Set S = (x, y, b))

1. Learn a model for P (y|x) using S.

2. Calculate a weight for each example (x, y, b):
w = b

P (y|x)

3. Learn a classifier h using a cost-sensitive learner
on S′ = (x, y, w).

4. Output h.

Table 1: The One-Benefit Reduction.

Table 1 shows the pseudo-code for this reduction. Given
a training set of the form (x, y, b), we first learn a model
for P (y|x). This can be accomplished by using a classifier
learner that outputs class membership probability estimates.
We then calculate weights for each example (x, y, b) by di-
viding b by P (y|x). We can now use a cost-sensitive learning
method that takes examples (x, y, w) as input, such as the
ones presented in Zadrozny et al.[8] to learn a classifier that
maximizes the expected benefit.

3. CLASSIFIER EVALUATION UNDER THE
ONE-BENEFIT FORMULATION

The most obvious way to estimate the expected benefit of
a classifier h in the One-Benefit formulation is to select the
test examples (x, y, b) for which h(x) = y, since these are
the examples that tell us the benefit of the label predicted
by the classifier. Then, we can average the benefits b from
each of the selected examples to obtain an estimate of the
expected benefit of the classifier. This is reasonable if the
number of possible labels is small, so that we can obtain
enough examples that agree with the classifier.

Nonetheless, even when this condition is true, selecting the
examples in this manner may result in a biased estimate of
the expected benefit of the classifier. This can happen be-
cause the examples are being selected according to a criteria
that is not necessarily independent of the feature vector x.
For example, in the direct marketing case, each example x
describes a particular customer. If we have a classifier that
is more likely to agree with the data for the “rich customers”
(who presumably tend to buy more), by using this kind of
evaluation we may think it is a very good classifier. How-
ever, if we apply the classifier to the general population of
customers it may not perform as well.

As we did for learning, we can use theorem 1 for evaluation.
According to theorem 1, the expected benefit of a classifier
h is given by

ED[B(x, h(x))] = ED

[

b

P (y|x)
I(h(x) = y)

]

.

Therefore, an empirical estimate of the expected benefit of
the classifier is the following sum for a set of m test exam-
ples:

1

m

∑

(x,y,b)

b

P (y|x)
I(h(x) = y),

that is, we sum over the test examples whose labels agree
with the label selected by the classifier h, but we weigh
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them by the ratio of their benefit divided by the conditional
probability that the label appears in the data. Again, the
probabilities P (y|x) have to be estimated (and validated)
using the training data.

4. EXPERIMENTAL RESULTS
We present experimental results using a synthetic data gen-
erator that is a modification of the IBM Quest Synthetic
Data Generation Code for classification (Quest)[5]. Quest
randomly generates examples for a person data set in which
each person has the nine attributes described below.

• Salary: uniformly distributed between 20000 and 150000.

• Commission: if Salary ≥ 75000, Commission = 0, else
uniformly distributed between 10000 and 75000.

• Age: uniformly chosen from 60 integer values (20 to
80).

• Education: uniformly chosen from 4 integer values.

• CarMake: uniformly chosen from 20 integer values.

• ZipCode: uniformly chosen from 9 integer values.

• HouseValue: uniformly distributed from 50000 k to
150000 k, where 0 ≤ k ≤ 9 and depends on the ZipCode.

• YearsOwned: uniformly distributed from 1 to 30.

• Loan: uniformly distributed between 0 and 500000.

In the original Quest generation code, there are a series of
classification functions of increasing complexity that used
the above attributes to classify people into different groups.
After determining the values of different attributes of an ex-
ample and assigning it a group label according to the clas-
sification function, the values for non-categorical attributes
are perturbed. If the value of an attribute A for an example
x is v and the range of values of A is a, then the value of
A for x after perturbation becomes v + r ∗ a, where r is a
uniform random variable between -0.5 and +0.5.

We modified Quest to include both label generation func-
tions and benefit generation functions. These are used to
generate examples of the form (x, y, b), where x is a person
described by the attributes above, y is a label describing a
marketing action taken for that person (such as mailing a
particular catalog) and b is the benefit received after the ac-
tion described by y is taken (such as the amount purchased
from the catalog).

We use two different label generation functions that were
created based on classification functions already implemented
in Quest. The functions are non-deterministic. For each ex-
ample, they specify a probability for each label. The labels
are then randomly drawn according to these probabilities.
The label generation functions are shown in Table 2.

Given an example x and a label y, the benefit generation
function determines a benefit for labeling person x as be-
longing to class y. We use two different benefit generation
functions, which are shown in Table 3.

Labelling Function 1 Labelling Function 2

if (Age< 40)
if (50000≤Salary≤100000)
probClass1 = 0.3;
else
probClass1 = 0.7;

else
if (40 ≤Age< 60)
if (75000≤Salary≤125000)
probClass1 = 0.1;
else
probClass1 = 0.9;

else
if (25000≤Salary≤75000)
probClass1 = 0.4;
else
probClass1 = 0.6;

if (probClass1>rand())
y=1;
else
y=0;

if (Age<40)
probClass1 = 0.2;

else
if (40≤Age<60)
probClass1 = 0.8;

else
probClass1 = 0.2;

if (probClass1>rand())
y=1;

else
y=0;

Table 2: Label generation functions. The function
rand() generates a random number drawn uniformly
from the interval [0, 1].

Benefit Function 1 Benefit Function 2

if (YearsOwned<20)
equity = 0;
else
equity = 0.1∗YearsOwned

- 2;

disposable = 2*Salary/3

- Loan/5

+ 5000∗Education
+ equity/5

- 10000;

if (disposable>0)
if (y = 0)
b = randn(250,20);
else
b = randn(200,20);

else
if (y = 0)
b = randn(80,20);
else
b = randn(150,20);

if (Age<40)
if (Education∈ {0, 1})
if (y= 0)
b = randn(100,20);
else
b = randn(80,20);

else
if (y= 0)
b = randn(50,20);
else
b = randn(120,20);

else
if (40 ≤Age< 60)
if (Education∈ {1, 2, 3})
if (y= 0)
b = randn(100,20);
else
b = randn(150,20);

else
if (y= 0)
b = randn(120,20);
else
b = randn(140,20);

else
if (Education∈ {2, 3, 4})
if (y= 0)
b = randn(90,20);
else
b = randn(70,20);

else
if (y= 0)
b = randn(50,20);
else
b = randn(70,20);

Table 3: Benefit generation functions. The function
randn(µ,σ) generates a random number drawn from
a Gaussian with mean µ and standard deviation σ.
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The advantage of using a synthetic data generator is that
we can evaluate any classifier by generating the benefits for
each possible action, which is not possible with real data.
In the real-world, we cannot “reset” customers to the same
state and mail a different catalog as if the customer had not
received the first one, but we can do this with Quest.

We applied the One-Benefit reduction 1 to three training
sets of 50000 examples generated using three settings of
the label and benefit generation functions (Label1-Benefit1,
Label1-Benefit2 and Label2-Benefit2).For obtaining the es-
timates of P (y|x) we use naive Bayes followed by the PAV
calibration algorithm [7]. For learning the main classifier,
we use three methods:

• weighted Naive Bayes,

• costing with Naive Bayes as base learner,

• costing with C4.5 as base learner.

For evaluating the classifiers, we use the simulator to gen-
erate three test sets of 50000 examples. We evaluate the
classifiers using three methods:

• True: use the generator to obtain benefit values for
the two labels for each test example and average the
benefits for the labels chosen by the classifier (unbiased
but unrealistic in a data mining setting).

• Biased: select only the test examples that agree with
the classifier and average the benefits for those exam-
ples.

• Corrected: select only the test examples that agree
with the classifier and use the bias correction method
proposed in Section 3 to calculate the expected benefit
of the classifier (unbiased and realistic).

The probabilities P (y|x) necessary for the bias correction
method are obtained by applying the model learned on the
training set to the test examples.

Table 4 summarizes the results obtained. For comparison
purposes, it also includes the average benefit of the training
labels, of the best possible labelling and of the worst possible
labelling.

In all cases, the One-Benefit reduction improves upon the
training labels. Furthermore, by comparing the two set-
tings with the same benefit function and different training
labelling, we see that the particular training labelling does
not greatly influence the final result. The different learning
algorithms (weighted NB, costing NB and costing C4.5) in
general led to classifiers that are equally good, except that
costing C4.5 resulted in a better classifier for the settings
with Benefit2.

Whereas using only the selected examples to evaluate the
classifier yields incorrect estimates of the value of the classi-
fier, the evaluation using the bias correction method yields
results that are very close to the true (but unrealistic) eval-
uation.

Labelling Function 1 - Benefit Function 1
Evaluation Method

Classifier True Biased Corrected
worst possible 146.94 - -
best possible 206.31 - -
training labels 178.06 - -
weighted NB 192.74 180.74 191.86
costing NB 192.30 180.80 191.80
costing C.45 190.94 180.23 190.78

Labelling Function 1 - Benefit Function 2
Evaluation Method

Classifier True Biased Corrected
worst possible 73.87 - -
best possible 116.01 - -
training labels 102.99 - -
weighted NB 107.21 115.65 107.85
costing NB 107.06 115.53 107.76
costing C.45 112.45 120.30 112.56

Labelling Function 2 - Benefit Function 2
Evaluation Method

Classifier True Biased Corrected
worst possible 73.87 - -
best possible 116.01 - -
training labels 96.12 - -
weighted NB 107.08 112.20 108.50
costing NB 107.09 112.34 108.56
costing C.45 112.67 116.41 112.52

Table 4: Experimental results.
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5. CONCLUSIONS
We present here a new formulation for the cost-sensitive
learning problem that we call the One-Benefit formulation.
Instead of assuming that the benefits for each of the labels is
known for each training example as in previous cost-sensitive
formulations, this formulation only assumes that the bene-
fit for one of the possible labels for each training example
is known at training time. We argue that this is a realistic
setup for some cost-sensitive domains such as direct market-
ing and medical treatment.

We show that it is possible to learn under this formulation
by presenting a reduction from One-Benefit learning into
standard classifier learning. The reduction requires that we
first learn P (y|x), that is, the conditional probability of the
labels that appear in the training data, and then use the
benefits and the conditional probabilities to correctly weigh
the training data before applying the classifier learner. We
also show how to correctly evaluate a classifier when only
One-Benefit test examples are available, again by correctly
weighting the examples.

We present some preliminary experimental results using a
synthetic data generator. The advantage of using the gener-
ator is that we can evaluate the classifiers without resorting
to the proposed evaluation method and, therefore, we can
assess the accuracy of our evaluation method. Our results
show that by using the One-Benefit reduction it is possible
to learn a classifier that has greater expected benefit than
the classifier used to label the training examples. Also, our
proposed evaluation method succeeds in correctly measuring
the expected benefit of the classifiers.

In future work, we would like to apply this method to real
data sets from the direct marketing and medical treatment
domains.
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ABSTRACT 
In corporate data mining applications, cost-sensitive learning is 
firmly established for predictive classification algorithms. 
Conversely, data mining methods for regression and time series 
analysis generally disregard economic utility and apply simple 
accuracy measures. Methods from statistics and computational 
intelligence alike minimise a symmetric statistical error, such as 
the sum of squared errors, to model ordinary least squares 
predictors. However, applications in business elucidate that real 
forecasting problems contain non-symmetric errors. The costs 
arising from over- versus underprediction are dissimilar for errors 
of identical magnitude, requiring an ex-post correction of the 
prediction to derive valid decisions. To reflect this, an asymmetric 
cost function is developed and employed as the objective function 
for neural network training, deriving superior forecasts and a cost 
efficient decision. Experimental results for a business scenario of 
inventory-levels are computed using a multilayer perceptron 
trained with different objective functions, evaluating the 
performance in competition to statistical forecasting methods.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Applications – Data Mining 

General Terms 
Algorithms, Management, Economics 

Keywords 
Data Mining, cost-sensitive learning, asymmetric costs, neural 
networks, time series analysis 

1. INTRODUCTION 
Profit and costs drive the utility of every corporate decision. As 
corporate decision making, from strategic to operational planning, 
is based upon future realisations of the decision parameters, e.g. 
telecommunications demand [1] or the likelihood of responders 

reacting to a mailing campaign [2], predictions or forecasts are a 
prerequisite for all managerial decisions. The quality of a forecast 
must be evaluated considering its ability to enhance the quality of 
the resulting decision. In management decisions, the utility arising 
to the decision maker from decisions based upon sub-optimal 
forecasts is measured in profit and costs. As a consequence, costs 
need to be incorporated to guide the predictions and ultimately 
derive valid corporate decisions.  

In predictive data mining, the relevance of incorporating the costs 
resulting from a decision is reflected in approaches of cost-
sensitive learning [3]. For classification, the costs for accurately 
predicting class membership of instances are proportional to the 
amount of accurately predicted instances. In addition, the costs 
associated with true versus false prediction of positives and 
negatives are often asymmetric [4] and are routinely used to guide 
the parameterisation and selection process of a wide range of 
classifiers, e.g. MetaCost [5] or cost sensitive boosting [6]. 
Consequently, robust evaluation techniques like the ROC convex 
hull method [7, 8] or the area under the ROC curve [9] have been 
proposed to enable classifier assessment in accordance with 
managerial objectives.  

Similarly, for the predictive data mining problems of regression 
and time series analysis [10, 11] the costs arising from invalid 
point prediction of the true realisation increase with the 
magnitude of the error. In addition, the costs of the decisions 
derived from positive versus negative errors, or underprediction 
versus overprediction, are also often asymmetric. For example, in 
inventory management of retail outlets, keeping units of consumer 
goods in stock or on shelf in order to satisfy customer demand  the 
effect of overstocking a product may induce increased stock 
holding costs for a single period versus the costs of understocking 
leading to lost sales revenue and dissatisfied customers. In both 
cases, the final evaluation of a forecast must be measured by the 
monetary costs arising from setting suboptimal decisions based on 
imprecise predictions of future demand [12], for asset transactions 
or inventory levels alike. Consequently, they depend on the given 
decision environment and a chosen behavioural strategy resulting 
from the decisions. These costs arising from over- and 
underprediction are typically not quadratic in form and frequently 
non-symmetric [13]. In addition, it is the asymmetry of costs that 
determines corporate policy, e.g. setting a target of satisfying 95% 
of demand. 

However, for regression problems these asymmetries are largely 
neglected. Particularly in the field of data driven time series 
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analysis and prediction, predictors of continuous scale are 
routinely evaluated using accuracy based evaluations through 
statistical error measures, such as the mean squared error or 
absolute error, eluding the reality of asymmetric costs of over- and 
underprediction. While this may seem unsurprising in the domain 
of econometric modelling of conventional statistical methods such 
as regression, autoregressive methods and exponential smoothing, 
these practices also persist in the domain of novel methods from 
computational intelligence, permitting minimisation of arbitrary 
objective or error functions through adaptive learning algorithms. 

Artificial neural networks (NN) have found increasing 
consideration in forecasting theory, leading to successful 
applications in time series and explanatory sales forecasting [14, 
15]. Based upon modest research in non-quadratic error functions 
in NN theory [15, 16] and asymmetric costs in prediction theory 
[13, 17-19], a set of asymmetric cost functions was recently 
proposed as objective functions for neural network training [20]. 
In this paper, we analyse the efficiency of a linear asymmetric cost 
function in inventory management decisions, training a multilayer 
perceptron to find a cost efficient stock-level for a set of seasonal 
time series directly from the data. As a consequence, the NN is 
trained directly using the ideas developed in utility based or cost-
sensitive learning within the data mining domain.  

Following a brief introduction to neural network prediction in 
inventory management, Section 3 assesses statistical error 
measures and asymmetric cost functions for neural network 
training. Section 4 gives an experimental evaluation of neural 
networks trained with asymmetric cost functions, outperforming 
expert software-systems for time series prediction. Conclusions 
are given in Section 5. 

2. NEURAL NETWORK PREDICTIONS 
FOR INVENTORY DECISIONS  
2.1 Forecasting for inventory management 
In inventory management, forecasts of future demands are 
generated to select an efficient inventory level, balancing 
inventory holding costs for excessive stocks with costs of lost 
sales-revenue through insufficient stock [21, 22]. Although the 
amount of costs will generally increase with the numerical 
magnitude of the forecast errors, the costs arising from over- and 
underprediction are frequently neither symmetric nor quadratic 
[12, 19].  

A service-level is routinely determined from strategic objectives 
or according to the actual costs arising from the decision, e.g. 
aiming to fulfil 98.5% of customer demand to balance this trade-
off. Assuming Gaussian distribution, setting the inventory level to 
the optimum predictor will only fulfil 50% of all customer 
demand. Therefore, safety-stocks are calculated to reach the 
service level, using assumptions of the conditional distribution of 
the ex post forecast errors of the method applied [22].  

For the decision of an inventory level for a single product in a 
single period of time the classic “newsboy”-problem is applicable. 
The decision rule for a service level resulting from a given cost of 
underprediction cu and overprediction co reads  

( )
ou

u
y cc

c
Qp

+
=<

*    , (1) 

giving the value for a lookup of k in the probability table of the 
valid distribution, with ( )p � denoting the probability of sales y 
being lower than an optimal inventory quantity Q* held in each 
period. The final stock-level s is calculated using the forecast 
ˆt hy +  of the sales volume y and adding a safety stock (SS) of k 

standard deviations of the forecast errors [22]: 

eht kys δ+= +ˆ   . (2) 

Consequently, the precision of the forecasts directly determines 
the safety stocks kept, the inventory level and the inventory 
holding costs. Hence, forecasting methods with superior accuracy 
such as NN may significantly reduce inventory holding costs [22]. 

2.2 Neural networks for time series analysis 
Forecasting time series with non-recurrent NNs is generally based 
on modelling the network in analogy to a non-linear 
autoregressive AR(p) model [23]. At a point in time t, a one-step 
ahead forecast 1ˆ +ty  is computed using n observations 

11 ,,, +−− nttt yyy �  from n preceding points in time t, t-1, t-
2, …, t-n+1, with n denoting the number of input units of the NN. 
This models a time series prediction of the form  

( )111 ,...,,ˆ +−−+ = ntttt yyyfy    . (3) 

The architecture of a feed-forward multilayer perceptron (MLP) of 
arbitrary topology together with the resulting residuals of invalid 
forecasts denoted as the absolute error (AE) is displayed in Fig. 1.  
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Figure 1. Neural network application to time series forecasting 
in inventory management, applying a MLP with 4 input units 
for observations in t, t-1, t-2, t-3, 4 hidden nodes and 1 output 

node for time period t+1.  

The task of the MLP is to model the underlying generator of the 
data during training, so that a valid forecast is made when the 
trained network is subsequently presented with a new value for 
the input vector [16]. Therefore the objective function used for 
NN training determines the resulting system behaviour and 
performance [15].  

The objective functions routinely employed in neural network 
training differ from the objective function of the underlying 
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inventory management decision in slope, scale and ratio of 
asymmetry. Following, alternate objective functions are discussed 
to incorporate the original objective structure in NN training. 

3. OBJECTIVE FUNCTIONS FOR COST-
SENSITIVE REGRESSION LEARNING  
Supervised online-training of a MLP is the task of adjusting the 
weights of the links ijw  between units i,j and adjusting their 
thresholds to minimise the error jδ  between the actual and a 
desired system behaviour [24]. Gradient descent algorithms 
traditionally minimise the modified sum of squared errors (SSE) 
as the objective function, ever since the popular description of the 
back-propagation algorithm by Rumelhart, Hinton and Williams 
[25].  

The SSE, as all statistical error measures, produces a value of 0 for 
an optimal forecast and is symmetric about et=0, implying 
symmetric costs of errors in predicting future demand for 
inventory levels. The consistent use of the modified SSE in time 
series forecasting with NN is motivated primarily by analytical 
simplicity [15] and the similarity to statistical regression 
problems, modelling the conditional distribution of the output 
variables [24]. As neural network theory and applications 
consistently focus on the symmetric SSE-function for training, 
therewith modelling least squares predictors as well, the forecasts 
also need to be adjusted using safety stocks to attain a desired 
service-level. 

Following, we propose an asymmetric cost function (ACF), 
modelling the objective function of the costs arising in the 
original decision problem instead of least squares predictors. 
These costs are often not only non-quadratic, but also non-
symmetric in form. The objective function in NN training, 
determining the size of the error in the output-layer, may thus be 
interpreted as the actual costs arising from an overprediction or an 
underprediction of the current pattern p, comprising all input and 
output information for the MLP, in training.  

Recently, we introduced a linear ACF to NN training [20], 
originally developed by Granger for statistical forecasts in 
inventory management problems [19]. The LINLIN cost function 
(LLC) is linear to the left and right of 0. The parameters a and b 
give the slopes of the branches for each cost function and measure 
the costs of error for each stock keeping unit (SKU) difference 
between the forecast hty +ˆ  and the actual value hty + . The 
parameter co corresponds to an overprediction and the resulting 
stock-keeping costs, while cu relates to the costs of lost sales-
revenue for each underpredicted SKU. The LLC yields:  
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The shape of one asymmetric LLC, as a valid linear approximation 
of a real cost function in our corresponding inventory 
management problem, is displayed in Fig. 2.  

 
Figure 2. Empirical Asymmetric Cost Function showing cost 
arising for over- and under-prediction, using co=£0.01 and 

cu=£1.00 in comparison to the SE. 

For u oc c≠  these cost functions are non-symmetric about 0 and 
are hence called asymmetric cost functions. The degree of 
asymmetry is given by the ratio of co to cu [17]. For co = cu =1 the 
LLC equals the statistical absolute error measure AE. The linear 
form of the ACF represents constant marginal costs arising from 
the business decision. Our model therefore coincides with the 
analysis of business decisions based on linear marginal costs and 
profits. 

Yang, Chan and King introduce a classification-scheme for 
objective functions, introducing dynamic non-symmetric margins 
for support vector regression [17]. Applied to objective functions 
in NN training it allows a classification of all symmetric statistical 
error functions and asymmetric cost functions previously 
developed. Linear, non-linear and mixed ACFs have been 
specified in literature [13, 17-19] while variable or dynamic 
objective functions to account for varying or heteroscedastic 
training objectives have not yet been developed for NN-training, 
as shown in Table 1. 

Table 1. Objective functions for neural network training  

Symmetry of objective function Variability 
Symmetric Non-symmetric 

Fixed 
SE, AE, ACE. 

statistical error functions 
LINLIN etc.  

asymmetric cost functions 

Variable - - 

Asymmetric transformations of the error function alter the error 
surface significantly, resulting in changes of slope and creating 
different local and global minima. Therefore, using gradient 
descent algorithms, different solutions are found minimising cost 
functions instead of symmetric error functions, finding a cost 
minimum prediction for the inventory management problem. 
These asymmetric cost functions may be applied in NN training 
using a simple generalisation of the error-term of the back-
propagation rule and its derivatives, amending only the error 
calculation for the weight adaptation in the output layer [20], but 
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applying alternative training methods or global search methods to 
allow network training [15]. For the following simulation 
experiments, we developed a simulator allowing minimisation of 
arbitrary, non-differentiable objective functions through the use of 
gradient decent and code controlling for non-defined derivatives. 

4. SIMULATION EXPERIMENT OF COST-
SENSITIVE TIME SERIES ANALYSIS  
4.1 Experimental time series data 
Following, we conduct an experiment to evaluate the ability of a 
MLP to evolve a set of weights minimising an LLC asymmetric 
cost function for a seasonal time series. We analyse a set of 
benchmark time series for seasonal time series prediction recently 
published in a study by Zhang and Qi [26]. In order to exemplify 
the potential impact of asymmetric cost functions in an empirical 
setting while controlling for problems of model misspecification 
and selection, we limit our analysis to the three artificial time 
series, closely resembling the seasonality and length of real 
department store sales [26]. The simulated series were created 
using a multiplicative seasonal model without trend 

100t t ty SI E= +  , (5) 

with SIt the seasonal index for each month, Et the additive error 
term following a normal distribution ( )0,N µ and t denoting the 
time index. The seasonal indices to calculate each observation are  

{ }.75;.80;.82;.90;.94;.92;.91;.99;.95;1.02;1.20;1.80tSI = . (6) 

To estimate the effect of different noise levels on the forecasting 
accuracy the authors apply three levels of error 
variance { }2 1;25;100σ = to construct three time series A, B 
and C. A total of 1200 points is generated for each time series of a 
particular noise level. In order to control for external influences 
we sourced the original time series from the authors, to realign the 
properties of the random noise with the original series. A part of 
the time series is presented in Figure 3. 

A.) 

 

B.) 

 

C.) 

Figure 3. Part of three artificial time series A, B and C. 

An analysis of the autocorrelations (AC) and partial 
autocorrelations (PAC) reveals the purely seasonal pattern of the 
time series. An analysis of the noise reveals the structure 
documented by Zhang and Qi and no significant AC or PAC. 

 
Figure 4. Autocorrelation function and partial autocorrelation 

function of the seasonal SIt without added noise. 

The autocorrelation function (ACF) of the undifferenced series of 
the seasonal factors without noise reveals a seasonal pattern with 
significant spikes at lagged 12 months apart with decaying 
magnitude, indicating a seasonal autoregressive process an the 
absence of a moving average process. As expected, first seasonal 
differencing D=1 eliminates all AC and PAC across all lags. 
Similarly, for all three noisy time series first seasonal differencing 
eliminates all significant ACs and PACs at all lags.  

4.2 Objective functions 
To exemplify the effect of different objective functions on NN 
predictions, we compare three objective functions. Firstly, we 
train a set of NN using a squared error (SE) objective function, 
NNSE, modelling least squares predictors to find the mean of the 
distribution, implying equal costs cu=co=1 and 50% service level.  

Secondly, we train a set NNLLC-1 using an asymmetric cost 
function to reflect the estimation of a cost efficient inventory 
level. In order to specify the underlying costs arising from the 
decision process we specify a particular cost trade-off reflecting 
an empirical cost relationships in fast moving consumer goods 
retailing, also reflecting the original motivation of the artificial 
time series from the retail domain. A retail outlet needs to allocate 
products to customer demand for each period. Overprediction of 
consumer demand leads to unsold items and inventory holding 
costs co for another period while underprediction results in costs 
cu through lost sales-revenue per product, assuming cu>co  and 
disregarding fixed costs of the decision. As a consequence, we 
construct a newsboy decision problem, reflecting the single period 
inventory model without backordering, as outlined under section 
2.1. We create an linear asymmetric cost function LLC-1 of 
(co=$0.1; cu=$1.00), implying high costs of running out of stock 
and therefore the need of increased inventory levels or predictions 
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respectively. The asymmetric cost relationship relates to a 90% 
service level, by 

( )* 1.00
-1: 0.90

1.00 0.10
u

y
u o

c
LLC p Q

c c< = = =
+ +

   . (7) 

In addition, we train a third set of NNLLC-2 using an objective 
function LLC-2 of (co=$1.00; cu=$0.10) implying high costs of 
overstocking as the reverse quantile of LLC-1, as in 

( )* 0.10
-2 : 0.10

0.10 1.00
u

y
u o

c
LLC p Q

c c< = = =
+ +

   . (8) 

While a 10% service level seems implausible from a corporate 
policy perspective, it may serve to evaluate the NN ability to 
estimate arbitrary quantiles on both sides of distribution.  

4.3 Design of the forecasting methods 
Each of the three time series of n=1200 observations is split into 
three disjoint datasets for NN training, validation and testing, 
using the last 300 observations for out-of-sample evaluation in the 
test dataset, 300 observations for early stopping and selection of 
the best NN model in the validation dataset and the rest of the 600 
observations for parameterisation in the training dataset. This 
results in 588, 300 and 300 predictable patterns in each set. 
Considering the limited length of the time series for training and 
testing, only an approximation and no exact estimation of the 
quantile and service level minimizing the costs appears feasible.  

All data was scaled from a range of 0 to 210 into the interval 
[-1;1] applying a headroom of 20% to avoid saturation effect of 
the nonlinear activation functions. It should also be noted, that the 
ability of NN to forecast seasonal and trended time series patterns 
has recently been questioned [26], leading to recommendations to 
deseasonalise and detrend time series prior to training the 
networks. With regard to our own research findings we refrain 
from preprocessing the time series this way, and train the NN on 
the original, seasonal auto regressive patterns. 

To determine an efficient and parsimonious network architecture 
while limiting experimental complexity, we pre-evaluated a set of 
input vectors applying different lag structures from {t-1,…t-36}, a 
number of {0…20} nodes in a single hidden layer with different 
sigmoid activation functions {tanh; logistic} and different output 
functions in the output layer {tanh; logistic; identity} 
simultaneously. We evaluated 594 network topologies on 10 
initialisations each with randomised starting weights to account 
local minima. The results were analysed conducting a 
multifactorial analysis of variance (ANOVA) with equal cell sizes 
to identify significant suboptimal topologies. While topologies 
with 0 or 1 hidden nodes showed reduced accuracy, no significant 
differences between topologies with hidden nodes n>2 could be 
identified using a multiple comparison test of homogeneous 
subgroups of estimated marginal means. The impact of activation 
functions showed a negative effect of the sigmiod function in the 
output layer and a negative interaction effect between tanh and 
non-tanh functions in the output layer. It found no significant 
difference in performance between tanh in both hidden and output 
layer and sigmoid in hidden and identify in the output layer. As a 
consequence, we selected the most parsimonious topology with 
the lowest MSE and variance on the validation dataset for further 
experimentation. We chose a fully connected MLP without 

shortcut connections, applying a topology of 12 input nodes for 
the time lags t-1,…,t-12 to exploit all feasible yearly time-lags of 
a monthly series, 2 hidden nodes and 1 output node. Additionally, 
one bias unit models the thresholds for all units in the hidden and 
output layer. All units in the hidden layer use a summation as an 
input-function, the logistic function as a semilinear activation 
function and the identity function as an output function. The unit 
in the output layer uses a nonlinear, unbounded identity function.  

Three sets of networks NNSE, NNLLC-1 and NNLLC-2 were trained 
using different objective functions. Each MLP was initialised and 
trained for twenty times to account for [-0.6;0.6] randomised 
starting weights. We applied a standard backpropagation 
algorithm, using an initial learning rate of �=0.5 decreased by a 
cooling factor of .99 after every epoch, and a momentum term of 
ϕ=.4. Training consisted of a maximum of 1000 epochs with a 
validation after every epoch, applying early stopping if a 
composite of 50% training and 50% validation error did not 
decrease by 0.01% for 10 epochs. After training a total of 189 NN 
across 3 time series and for 3 objective functions, the results for 
the best network within each subgroup, chosen on its objective 
function performance on the validation set, was computed for all 
three data subsets. Consequently, NNSE was selected on lowest 
mean squared error (MSE) on the validation set, NNLLC-1 on 
lowest mean LLC1 and NNLLC2 on lowest mean LLC2 on the 
validation set respectively. Only the test dataset is used to measure 
generalisation, applying a simple hold out method for out-of-
sample evaluation or generalisation.  

To compare the performance on achieving a 90% service level, we 
need to extend the NNSE predictions through the calculation of 
safety stocks. We generate business forecasts based upon ordinary 
least-squares predictors of the best NNSE and conventional 
statistical methods and calculate additional safety stocks necessary 
to achieve the desired service level using the standard formulas. 
As statistical benchmarks, the Naïve1 method using last periods 
sales as a forecast, 1ˆt ty y+ = , exponential smoothing and ARIMA 
were computed. The statistical predictions were computed using 
the benchmark software system Forecast Pro, which selects and 
parameterises appropriate models of exponential smoothing or 
ARIMA intervention models based upon statistical testing and 
expert knowledge based on the properties of each time series [27]. 
For the predictions by NNSE and the Naïve method the final 
inventory level was calculated as in ForecastPro, using  

ˆ 2.33t h es y σ+= +   , (9) 

for an ex-post correction of the ordinary least squares predictor by 
adding k=2.33 standard deviations σ to derive a cost efficient 
service level of 90.0% for the given inventory problem, assuming 
Gaussian distribution and homoscedastiticity of the residuals, as 
confirmed by Kolmogorov-Smirnov tests.  

In contrast, the asymmetric cost predictor NNLLC-1 was trained to 
predict the cost efficient inventory level, equal to a 90% service 
level, for each month directly from the training process. 
Following the experiments we assess the ex-post performance of 
the competing approaches in the following section.  

All neural network experiments were computed using the NN 
software simulator “Intelligent Forecaster”, developed within our 
research group to compute and compare multiple NN time series 
experiments on arbitrary objective functions. Average runtime for 
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training a NN, creating predictions and saving results was 2.75 
seconds on a Pentium IV 3.8 GHz, 4GB RAM, 1TB disk drive. 

4.4 Experimental impact of cost functions 
First, we evaluate the ability of a NN to estimate a predetermined 
service level from the cost relationship of over- versus 
underprediction. Consequently, we compare the forecasts and 
resulting service levels of the three sets of NNs to evaluate their 
ability to adhere to different objectives during the training process 
across the three time series.  

Table 2 displays the results using mean error measures computed 
on each dataset to allow comparison between datasets of varying 
length. The results are given in the form (training set / validation 
set / test set) to allow interpretation. The descriptive performance 
measure of the alpha-service-level gives the amount of suppressed 
sales occurrences per dataset. All methods are evaluated ex-post 
on their performance by mean SE (MSE) and the ex post mean 
LINLIN costs (MLLC) for each objective function MLLC-1 and 
MLLC-2 respectively. In addition, the NN predictions on the test 
set for out-of-sample evaluation are presented in figures. The 
results reflect the impact of different objective functions SE, 
LLC-1 and LLC-2. Each set of NN shows lower mean errors or 
costs across all time series A, B, and C for its individual training 
objectives. E.g. NNSE shows significantly lower MSE then 
NNLLC-1 and NNLLC-2. Vice versa, NNLLC-1 shows robust 
minimisation of MLLC-1 in- and out-of-sample as opposed to 
both other sets of trained networks. These results are confirmed in 
a multifactorial ANOVA, revealing two homogeneous subsets of 
the method trained on minimising the particular error measure 
versus the two other methods. An analysis of the service levels 
further reveals, that each method approximates the target service 
level of 50%, 90% and 10% within and out-of-sample robustly 
and accurately, considering the achievable degree of accuracy 
determined through the length of the time series. We may 
therefore conclude, that NN allow minimisation of arbitrary 
objective functions to estimate different service levels. 

Various additional results may be drawn from the experiment. As 
expected, the best selected NNSE trained on the standard SE 
approximates the seasonal time series pattern and generates valid 
and reliable t+1 predictions on validation and test dataset across 
all three time series, as visible in the results of Table 2 and the 
part of the test set predictions given in Figure 5. With regard to 
the decreasing signal to noise ratio the predictions show 
increasing deviations from the actual data from time series A to B 
and C, as must be expected.  

 
Figure 5. Predictions of a NNSE trained on minimising the 

symmetric SE to forecast monthly retail sales across three time 
series A, B and C from above. The graph shows the time series 
of retail demand in blue versus the NN forecast in red on the 

test dataset.  

Nevertheless, the artificial data pattern underlying the generated 
time series is robustly extracted by NNSE regardless of the 
increasing noise level, demonstrating only limited overfitting 
through the training process. In cost and inventory terms, the NN 
are trained on equal costs of over- versus underprediction in order 
to estimate a 50% service level relating to the ordinary mean 
predictor, as shown in Figure 5. As a consequence, we are unable 
to confirm recent findings in the forecasting and management 
science domain, that NN are incapable of predicting seasonal time 
series patterns without prior deseasonalisation.  

The level of predictions given by the NNs trained on minimizing 
the asymmetric cost function LLC-1 presented in Figure 6 differs 
significantly from the predictions by the NNSE. Analysing the 
behaviour of the forecast based upon the asymmetry of the costs 
function, the neural network NNLLC-1 raises its predictions in 
comparison to the NNSE trained on squared errors to achieve a 
cost efficient forecast of the optimum inventory level. Predictions 
on the test set are displayed in Figure 6, with identical patterns on 
the training and validation set omitted due to the length of the 
time series and space restrictions. 

 

Table 2. Results on Forecasting Methods and NNs trained on linear Asymmetric Costs and Squared Error Measures 

Error Measures Service Level Objective 
Function 

Time 
Series NN no. 

MSE(e) MLLC-1 (e) MLLC-2 (e) alpha  
NNSE  A (#30)  1.35 1.45 1.23  .47 .51 .43  .55 .55 .54  50.9% 49.0% 54.0% 
 B (#96)  26.63 28.00 30.17  2.26 2.14 2.56  2.27 2.44 2.26  49.7% 50.0% 47.0% 
 C (#147)  104.77 88.08 100.35  4.78 4.36 4.27  4.15 3.86 4.32  49.3% 49.7% 54.7% 
NNLLC-1  A (#53)  4.50 4.77 4.14  1.79 1.79 1.67  0.23 0.26 0.21  90.3% 87.3% 93.0% 
 B (#98)  78.44 75.90 83.50  7.11 6.96 7.44  0.99 1.04 1.05  92.5% 91.7% 90.0% 
 C (#158)  246.85 221.95 219.87  12.28 11.89 11.46  1.82 1.77 1.69  90.5% 91.7% 90.7% 
NNLLC-2 A (#1)  4.23 4.28 4.20  .22 .23 .21  1.68 1.66 1.72  7.3% 9.7% 6.7% 
 B (#109)  81.93 84.16 76.71  .93 1.00 .96  7.25 7.50 6.90  7.7% 10.7% 6.3% 
 C (#163)  267.46 251.13 279.30  1.84 1.69 2.00  13.14 12.99 13.73  9.4% 10.7% 13.7% 
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Figure 6. NNLLC-1 predictions on a part of the test dataset 

across time series A, B and C from top to bottom, aiming to 
minimise inventory costs through an service level of 90%. The 
upper red line denotes the forecasts, the lower blue the actuals. 

The network accounts for higher costs of underpredicition versus 
overprediction through increased predictions, therefore avoiding 
costly stock-outs. The predictions estimate a cost minimal point 
depending on the varying distributions of the error residuals, as 
visible in level of predictions increasing with the size of the error 
distribution from time series A to C. This is also evident in the 
lack of stock-outs represented by the increased service-level of 
93.0%, 90.0% and 90.7% on time series A, B and C.  

To evaluate the validity and reliability of the NN training, we 
estimate an inverse ACF of the given problem domain, estimating 
the 10% quantile. As shown in Figure 7, the NN alters its 
estimation on asymmetric costs by lowering its predictions to 
robustly achieve a 10% service level across all three time series. 

 
Figure 7. NNLLC-2 predictions on a part of the test dataset 

across time series A, B and C, aiming at a service level of 10%. 
The lower red line denotes the forecasts, the upper the actuals. 

Consequently, a neural network may be trained to not only predict 
the expected mean of a time series but instead produces a biased 
optimum predictor, as intended by Grangers original work 
through ex post correction of the original predictor [19]. This may 
be interpreted as finding a valid approximation for a point on the 
conditional distribution of the optimal predictor depending on the 
standard-deviation, or quantile autoregression. Within an 
inventory management problem, the network finds a cost efficient 
inventory level without the separate calculation of safety stocks 
directly from the cost relationship. This reduces the complexity of 
the overall management process of stock control, successfully 
calculating a cost efficient inventory level directly through a 
forecasting method using only a cost function and the data. 

The results of the adjusted in relation to the increasing noise 
levels become visible in a PQ-scatterplott in Figure 8. 

 Objective Function 
 SE  LLC-1 LLC-2  
A.) 

B.) 

  
C.) 

   
Figure 8. PQ-scatter plots of actual values versus predicted 

values for three time series A, B and C and objective functions 
indicating accuracy and lack of biases in predictions 

A set of insignificant Kolmogorov-Smirnov tests confirms the 
normality of the residuals for all predictions, with the residuals of 
the NNSE being centred around zero while the residuals of 
NNLLC-1 and NNLLC-2 are centred around the relevant quantile. As 
a consequence we may use the standard formula to estimate the 
90% quantile or service level to compare the methods 
performance on the estimated inventory levels in the next section. 

4.5 Experimental accuracy of inventory levels 
After determining the general ability of NN to predict a cost 
efficient inventory level for the newsboy problem directly through 
training with an asymmetric cost function, we seek to evaluate 
their accuracy in comparison to a conventional ex-post correction 
of the mean estimator of a statistical forecasting method. 

We utilise the predictions of the NNSE for time series A, B and C 
and add a safety stock of k=2.33 standard deviations to the 
individual prediction, in accordance with the Gaussian noise and 
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homoscedasticity of the residuals as confirmed by nonparameric 
testing. In addition, we use ForecastPro to generate statistical 
forecasts for each time series, selecting three different seasonal 
ARIMA (p,d,q)(P,D,Q) models all with log transform as optimum 
methods. For time series A, ForecastPro selects an 
ARIMA(2,0,2)*(0,1,1), for time series B an 
ARIMA(1,0,0)*(0,1,1) and an ARIMA(0,0,3)*(0,1,1) with log 
transform for time series C. In addition, the software uses an 
internal expert procedures for residual analysis and safety stock 
calculation to achieve a 90.0% service level based upon its 
forecasts and the adequate distribution of the residuals directly.  

We compute ex post accuracy on the business objective, using the 
actual costs occurring form each unit out-of-stock and each item 
left overstocked for each period t in the dataset, approximated by 
LLC-1. The ex-post costs arising from over- and underprediction 
alike represent the true variable decision costs and therefore a 
valid business objective in operational inventory management. In 
addition, we compute the number of stock-out and overstock 
occurrences to evaluate the frequency in which suboptimal 
decisions were made regardless of the magnitude of the errors. 
The results are provided in Table 3 with parts of the time series 
and calculated inventory levels provided in separate figures. 

Unsurprisingly, all methods outperform the benchmark naïve 
method, showing significantly better results through robust 
identification and extrapolation of the seasonal time series pattern 
in forecast and inventory levels.  

The best NNLLC-1 trained with the asymmetric LINLIN cost 
function LLC-1 gives an overall superior forecast regarding the 
business objective of minimising costs, achieving the lowest mean 
costs in-sample on training and validation data as well as out-of-
sample on the test-data and across all three time series A, B and 
C. For the noisy time series C, it exceeds all inventory methods, 
and clearly outperforms forecasts of NN trained with the SE 
criteria and added safety stocks, as presented in Figure 9. An 
analysis of the marginal means reveals two homogeneous subsets 
of costs. While the differences between NNLLC-1 and all other 
methods prove statistically significant, no significant differences 
could be confirmed between NNSE forecasts and ARIMA forecasts 
using the conventional calculation of safety stock. 
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Figure 9. Comparison of predictions by NNSE plus 2.33 

standard deviations of safety stock (����) versus direct inventory 
calculation by NNLLC-1 (∆∆∆∆) on time series C. 

In addition, NNLLC-1 outperforms the best automatically selected 
and parameterised ARIMA model and safety stocks selected by 
the software expert system, as displayed in Figure 10. Considering 
the inferior quality of the predictions provided by the Naïve 
method, its benchmarks may be excluded from further analysis. 
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Figure 10. Comparison of inventory levels from the Naïve 

method (€€€€) and ForecastPro (ΟΟΟΟ) plus 2.33 standard deviations 
of safety stock (����) versus NNLLC-1 (∆∆∆∆). on time series C. 

 

Table 3. Results on Forecasting Methods and NNs trained on linear Asymmetric Costs and Squared Error Measures 

  Cost Error Measures Descriptive Error Measures of Inventory Holding 
Sum of LLC-1 (e,) with co=0.1; cu=1 No. of overstocked occurrences No. of out-of-stock occurrences Time 

Series 
Forecasting  

Method Training  Validation  Test  Training  Validation  Test  Training  Validation  Test  
A NNLLC-1 inventory  129.95  68.61  64.49  531  262  279  57  38  21 
 NNSE + safety stock   163.74  82.80  85.05  586  289  289  2  2  2 
 ForecastPro   137.71  69.14  71.70  580  296  295  8  4  5 
 Naïve Method  4870.74  2495.11  2485.25  588  300  300  0  0  0 

B NNLLC-1 inventory  558.57  299.74  291.20  544  275  270  44  55  30 
 NNSE + safety stock   725.51  379.59  364.92  587  297  298  1  3  2 
 ForecastPro   694.82  358.67  341.35  582  296  299  6  4  1 
 Naïve Method  5014.08  2557.91  2558.13  588  300  300  0  0  0 

C NNLLC-1 inventory  1099.74  491.78  592.35  532  275  272  56  25  28 
 NNSE + safety stock   1361.14  689.33  734.17  580  297  294  8  3  6 
 ForecastPro   1257.56  655.08  684.18  578  298  294  10  2  6 
 Naïve Method  5171.19  2636.68  2642.80  587  300  298  1  0  2 
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Figure 11. Comparison of predictions by NNSE (����) and a 

ForecastPro ARIMA model (ΟΟΟΟ) plus 2.33 standard deviations 
of safety stock (����) versus NNLLC-1 (∆∆∆∆) on time series B.  

While these results prove consistent across all time series, the 
differences in prediction for time series B become smaller due to 
the reduced noise levels and prove insignificant in testing, also 
apparent in Figure 11 for time series B. For time series C of the 
lowest noise level, the differences in accuracy between the 
competing methods prove statistical non-significant. Nevertheless, 
NNLLC-1 demonstrates a competitive performance in comparison 
to established forecasting and inventory methods. 
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Figure 12. Comparison of predictions by NNSE (����) and a 

ForecastPro ARIMA model (ΟΟΟΟ) plus 2.33 standard deviations 
of safety stock (����) versus NNLLC-1 (∆∆∆∆) on time series A. 

Our earlier experimental results demonstrated that NN may be 
trained on arbitrary objective functions to predict predetermined 
quantiles on an empirically estimated distribution. Moreover, the 
results in comparing conventional statistical approaches versus an 
integrated modelling though simultaneous prediction and safety 
stock calculation indicate, that NN trained on minimizing the 
appropriate cost function directly from the training data may also 
outperform conventional approaches of inventory level 
calculations. This may be attributed to a more accurate 
approximation of the true distribution of the residuals given a 
reduced sample size in empirical experiments or to reduced errors 
in the modelling process itself, limiting effects of suboptimal 
selection and parameterisation of the forecasting model, 
identification of the error distribution and estimation of the cost 

efficient point on the distribution. However, these indications 
require additional experimentation to rationalize the origin of 
increased validity and reliability of the proposed approach. 

5. CONCLUSION 
We have examined symmetric and asymmetric error functions as 
performance measures for neural network training. The restriction 
on using squared error measures in neural network training may 
be motivated by analytical simplicity, but it leads to biased results 
regarding the final performance of forecasting methods if the true 
objective is not the estimation of the mean. Asymmetric cost 
functions may capture the actual decision problem directly and 
allow a robust minimization of relevant costs using standard MLP 
and training methods, finding optimum inventory levels. Our 
approach to train neural networks with asymmetric cost functions 
has a number of advantages. Minimising an asymmetric cost 
function allows the neural network not only to forecast, but 
instead to reach optimal business decisions directly, taking the 
model building process closer towards business reality. As 
demonstrated, considerations of finding optimal service levels in 
inventory management are incorporated within the NN training 
process, leading directly to the forecast of a cost minimum stock 
level without further computations. 

As we attempted to exemplify a NN’s ability to minimise LLC 
and produce valid predictions of a given quantile on a probability 
density function, we limited design complexity to three simple 
and homogeneous artificial time series, albeit minimising the 
ability to generalise from the results to other artificial or empirical 
time series as well as varying and inconsistent time series patterns. 
While length and form of the time series were selected to balance 
the tradeoff between empirical relevance and feasibility in our 
experiments, it holds only for the evaluated time series.  

However, the limitations and promises of using asymmetric cost 
functions with neural networks justify systematic analysis. Future 
research may incorporate the modelling of dynamic carry-over-, 
spill-over-, threshold- and saturation-effects for exact asymmetric 
cost functions where applicable. In particular, verification on 
multiple time series, other network topologies and architectures is 
required, in order to evaluate current research results. As a 
consequence, the experiments particularly require extension to 
additional artificial time series and multiple step-ahead forecasts 
for multiple origins, in contrast to the multi-origin single step-
ahead forecasts implemented to model newsboy decisions. Further 
experiments may also be extended to incorporate the estimation of 
multiple points on different, non Gaussian error distributions to 
facilitate generalization. In addition, the experiments need to be 
reevaluated using large scale corporate forecasting competition 
data as the M3-benchmark to evaluate the empirical relevance for 
corporate decision making. 
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ABSTRACT 
A highly-skewed class distribution usually causes the learned 
classifier to predict the majority class much more often than the 
minority class.  This is a consequence of the fact that most classi-
fiers are designed to maximize accuracy.  In many instances, such 
as for medical diagnosis, the minority class is the class of primary 
interest and hence this classification behavior is unacceptable.  In 
this paper, we compare two basic strategies for dealing with data 
that has a skewed class distribution and non-uniform misclassifi-
cation costs. One strategy is based on cost-sensitive learning while 
the other strategy employs sampling to create a more balanced 
class distribution in the training set.  We compare two sampling 
techniques, up-sampling and down-sampling, to the cost-sensitive 
learning approach.  The purpose of this paper is to determine 
which technique produces the best overall classifier—and under 
what circumstances. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Induction 
H.2.8 [Database Management]: Applications - Data Mining 

General Terms 
Algorithms 

Keywords 
Cost-sensitive learning, sampling, data mining, induction, deci-
sion trees, rare classes, class imbalance 

1. INTRODUCTION 
In many real-world domains, such as fraud detection and medical 
diagnosis, the class distribution of the data is skewed and the cost 
of misclassifying the minority class is substantially greater than 
the cost of misclassifying the majority class. In these cases, it is 
important to create a classifier that minimizes the overall misclas-

sification cost.  This tends to cause the classifiers to perform bet-
ter on the minority class than if the misclassification costs were 
equal.  For highly skewed class distribution, this also ensures that 
the classifier does not only predict the majority class. 

The most direct method for dealing with highly skewed class dis-
tributions with unequal misclassification costs is to use cost-
sensitive learning.  An alternate strategy for dealing with skewed 
data with non-uniform misclassification costs is to use sampling 
to alter the class distribution of the training data so that the result-
ing training set is more balanced.  There are two basic sampling 
methods for achieving a more balanced class distribution: up-
sampling and down-sampling (also referred to as over-sampling 
and under-sampling).  In this context, up-sampling replicates mi-
nority class examples and down-sampling discards majority class 
examples. 

This paper compares cost-sensitive learning, up-sampling, and 
down-sampling to determine which method leads to the best over-
all classifier performance, where the best overall classifier is the 
one that minimizes total cost. Since sampling is often used instead 
of cost-sensitive learning in practice, we compare these methods 
to see which yields better results. Our conjecture is that cost-
sensitive learning will outperform both up-sampling and down-
sampling because of well-known problems (described in the next 
section) with these sampling methods. We evaluate this conjecture 
using C5.0 [18], a more advanced version of Quinlan’s popular 
C4.5 program. We also evaluate this conjecture for data sets that 
are not skewed (but have non-uniform misclassification costs) to 
broaden the scope of our study. We compare cost-sensitive learn-
ing only to the basic up-sampling and down-sampling methods 
because these are the only methods available to most practitioners 
(some of the variants developed by researchers to address the 
weaknesses with sampling are discussed in Section 7). 

2. BACKGROUND 
In this section we provide basic background information on cost-
sensitive learning, sampling, and the connection between the two.  
Some related work is also described. 

2.1   Cost-Sensitive Learning 
In this paper we focus our attention on two-class learning prob-
lems.  The behavior of a classifier for such problems can be de-
scribed by a confusion matrix.  Figure 1 provides the terminology 
for such a confusion matrix.  Holding with established practice, 
the positive class is the minority class and the negative class is the 
majority class. 
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Figure 1: A Confusion Matrix 

Corresponding to a confusion matrix is a cost matrix. The cost 
matrix will provide the costs associated with the four outcomes 
shown in the confusion matrix, which we refer to as CTP, CFP, 
CFN, and CTN. As is often the case in cost-sensitive learning, we 
assign no costs to correct classifications, so CTP and CTN are set to 
0. Since the positive (minority) class is often more interesting than 
the negative (majority) class, typically CFN > CFP (note that a false 
negative means that a positive example was misclassified). 

A cost-sensitive learner can accept cost information from a user 
and assign different costs to different types of misclassification 
errors. Learners can implement cost-sensitive learning in a variety 
of ways. One common method is to alter the class probability 
thresholds used to assign the classification value. For example, in 
a decision tree learner the probability threshold associated with a 
terminal node is typically set to 0.5, so that the node is labeled 
with the most probable class. If the ratio of misclassification costs 
for a two-class problem is set to 2:1, then the class probability 
threshold would be 0.33 [9, 17].  Note that in this implementation 
of cost-sensitive learning no data is discarded or replicated. 

When misclassification costs are known or can be assumed the best 
metric to evaluate overall classifier performance is total cost. To-
tal cost is the only evaluation metric used in this paper and is used 
to evaluate the results for both cost-sensitive learning and sam-
pling. The formula for total cost is shown below, in equation 1. 

Total Cost = (FN × CFN) + (FP × CFP)                         [1] 

2.2   Sampling 
Sampling can be used to alter the class distribution of the training 
data.  As described earlier, this can be accomplished via up-
sampling or down-sampling.  Both sampling methods have been 
used to deal with skewed class distributions [1, 2, 3, 6, 10, 11].  
The reason that altering the class distribution of the training data 
aids learning with highly-skewed data sets is that it effectively 
imposes non-uniform misclassification costs.  For example, if one 
alters the class distribution of the training set so that the ratio of 
positive to negative examples goes from 1:1 to 2:1, then one has 
effectively assigned a misclassification cost ratio of 2:1.  This 
equivalency between altering the class distribution of the training 
data and altering the misclassification cost ratio is well known and 
was formally established by Elkan [9]. 

Previous research on learning with skewed class distributions has 
altered the class distribution using up-sampling and down-
sampling.  There are disadvantages to using sampling to imple-
ment cost-sensitive learning, however. The disadvantage with 
down-sampling is that it discards potentially useful data. There are 
two disadvantages with up-sampling. First, it increases the size of 

the training set, which will increase the time necessary to learn the 
classifier.  Second, since most up-sampling methods generate 
exact copies of existing examples, overfitting is likely to occur in 
that classification rules may be formed to cover a single, repli-
cated example. 

2.3   Why Use Sampling? 
Given the disadvantages with sampling, it is worth asking why 
anyone would use sampling to deal with highly-skewed class dis-
tributions (with non-uniform misclassification costs) when cost-
sensitive learning appears to be a more direct solution.  In this 
section, we discuss several reasons for this.  The most obvious 
reason is that many learning algorithms are not cost-sensitive and 
therefore a wrapper approach, like the one using sampling, is the 
only option.  This is certainly less true today than in the past, but 
many of the older non-commercial learners still provide no 
mechanism for cost sensitive learning. 

A second reason is that many highly skewed data sets are enor-
mous and therefore require the size of the training set to be re-
duced.  In this case, down-sampling seems to be a reasonable, and 
valid, strategy.  In this paper, we do not consider the need to re-
duce the training set size.  We would point out, however, that if 
one needs to discard some training data, it still might be beneficial 
to discard some of the majority class examples in order to reduce 
the training set size to the required size, and then also employ 
cost-sensitive learning, so that the amount of training data is not 
reduced beyond what is absolutely necessary. 

A final reason one might give for using sampling instead of cost-
sensitive learning is that the misclassification costs are often not 
known. This is not a valid reason for using sampling over cost-
sensitive learning, however, since the same issue arises with sam-
pling—what is the proper sampling rate? Ideally, the sampling 
rate should be based on the cost information. If that is not avail-
able, one might try various sampling rates and look at the per-
formance of the induced classifier. However, the same strategy 
can be employed with cost-sensitive learning—various cost ratios 
can be evaluated and one can select the cost ratio based on the 
observed performance characteristics of the induced classifier. 
Alternatively, if misclassification costs are not known one can 
evaluate the performance of a classifier over a range of costs by 
using ROC analysis. 

Overall, we feel that the only reason to use sampling to handle 
skewed class distributions is if the amount of available training 
data cannot be handled by the learning algorithm. Otherwise, our 
conjecture is that cost-sensitive learning should be used. We 
evaluate this conjecture in this paper. 

3. DATA SETS 
We used a total of fourteen data sets in our experiments.  Twelve 
of the data sets were obtained from the UCI Repository and two of 
the data sets came from AT&T and were used in previously pub-
lished work done by Weiss and Hirsh [16].  A summary of these 
data sets is provided in Table 1.  The data sets are listed in de-
scending order according to class imbalance (the most imbalanced 
data sets are listed first).  The data sets marked with an asterisk (*) 
were originally multi-class data sets that were previously mapped 
into two classes for work done by Weiss and Provost [17].  The 
letter-a and letter-vowel data sets are derived from the letter rec-
ognition data set that is available from the UCI Repository. 
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The data sets were chosen on the basis of their class distributions 
and data set sizes.  Although the main focus of our research is to 
compare cost-sensitive learning and sampling for classifying rare 
classes in imbalanced data sets, we also included a few data sets 
with more balanced class distributions to see if and how the over-
all results would differ.  The boa1, promoters, and coding data 
sets each had an evenly balanced 50-50 distribution, so they were 
used for the sake of comparison.  We used data sets of varying 
sizes to see how this would affect our results. One would expect 
that cost-sensitive learning would outperform down-sampling for 
small data sets, since throwing away any data in this situation 
should be harmful. 

Since these data sets do not come with misclassification cost in-
formation, we evaluated the cost-sensitive and sampling strategies 
using a wide variety of costs. This is described in detail in the 
next section. 

Table 1: Data Set Summary 

Data Set % Minority 
Total 

Examples 

Letter-a* 4% 20,000 
Pendigits* 8% 13,821 
Connect-4* 10% 11,258 
Bridges1 15% 102 
Letter-vowel* 19% 20,000 
Hepatitis 21% 155 
Contraceptive 23% 1,473 
Adult 24% 21,281 
Blackjack 36% 15,000 
Weather 40% 5,597 
Sonar 47% 208 
Boa1 50% 11,000 
Promoters 50% 106 
Coding 50% 20,000 

4. EXPERIMENTS 
In this section we begin by describing C5.0, the learner used for 
our experiments. We then describe our experimental methodology 
for using cost-sensitive learning and sampling. 

4.1 C5.0 
All of our experiments utilize C5.0 [18], a commercial classifier 
induction program, which is a more advanced version of Quin-
lan’s popular C4.5 and ID3 learners [14, 15]. Unlike these older 
programs, C5.0 supports cost-sensitive learning. 

Both the cost-sensitive learning and sampling experiments used 
75% of the data for training and 25% for testing. Each experiment 
was run ten times, using random sampling to create these two data 
sets. All results shown in this paper are the averages of these ten 
runs. Classifiers are evaluated using total cost, which was defined 
earlier in equation 1. 

4.2 Cost-Sensitive Learning 
In our experiments, we are interested in targeting the cases where 
the cost of incorrectly classifying a minority (positive) class ex-
ample will have a higher cost than the cost of incorrectly classify-

ing a majority (negative) class example. Hence we applied a 
higher misclassification cost to CFN, the cost of a false negative 
misclassification. For our experiments, a false positive prediction, 
CFP, was assigned a cost of 1, while CFN was allowed to vary. For 
the majority of the experiments CFN was evaluated for the values: 
1, 2, 3, 4, 6, and 10, although for some experiments the costs were 
allowed to increase beyond this point. 

4.3 Sampling 
Up-sampling and down-sampling were used to implement the 
desired misclassification cost ratios, as described in Section 2.2.  
Since C5.0 does not provide the necessary support for sampling, 
the required sampling was done external to C5.0 and the resulting 
sampled training data was then passed to C5.0. No changes were 
made to the test data, but none were necessary since the resulting 
classifiers were evaluated using total cost, based on the cost in-
formation associated with each experiment. The misclassification 
cost ratios used for sampling were the same ones for cost-sensitive 
learning. Note that the greater cost ratio, the more training exam-
ples had to be discarded when down-sampling.  The test set size 
was held fixed for all experiments. 

5. RESULTS 
Classifiers were generated for each data set using cost-sensitive 
learning, up-sampling and down-sampling for a variety of mis-
classification cost ratios. These classifiers were evaluated using 
total cost. We generated one figure for each of the fourteen data 
sets, showing how the total cost varies when cost-sensitive learn-
ing, up-sampling and down-sampling are used. Some of these 
figures are included in this section while the remaining figures can 
be found in the Appendix. After presenting these detailed results 
for each data set, summary statistics are provided which make it 
easier to compare and contrast the cost-sensitive learning method 
with the two sampling methods. 

The results for the letter-a data set in Figure 2 show that cost-
sensitive learning and up-sampling performed similarly whereas 
down-sampling performed much worse for all cost ratios (note 
that all methods will perform the same for 1:1). The letter-vowel 
data set, shown in Figure A1 in the Appendix, provides nearly 
identical results except that cost-sensitive learning performed 
slightly better than up-sampling for most cost ratios (both still 
outperform down-sampling). 
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Figure 2: Results for Letter-a 
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The results for the weather data set, provided in Figure 3, show 
that up-sampling consistently performed much worse than down-
sampling and cost-sensitive learning, both of which performed 
similarly.  This exact same pattern also occurs in the results for 
the adult and boa1 data sets, which are provided in Figures A2 
and A3, respectively, in the Appendix. 
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Figure 3: Results for Weather 

The results for the coding data set in Figure 4 show that cost-
sensitive learning outperformed both sampling methods, although 
the difference in total cost is much greater when compared to up-
sampling. As we shall see shortly in Table 3, however, cost-
sensitive learning still outperforms down-sampling by 9%, a sub-
stantial amount (it outperforms up-sampling by 20%). 
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Figure 4: Results for Coding 

The blackjack data set, shown in Figure 5, is the only data set for 
which all three methods yielded nearly identical performance for 
all cost ratios. The connect-4 data set (Figure A4) yielded nearly 
identical costs for all three methods as well, except for the highest 
cost ratio, 1:25, in which case up-sampling performed the worst. 
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Figure 5: Results for Blackjack 

There were three data sets for which the cost-sensitive method 
underperformed the two sampling methods for most cost ratios. 
This occurred for the contraceptive, hepatitis, and bridges1 data 
sets.  The results for the contraceptive data set are shown in Fig-
ure 6, while the results for the hepatitis data set and bridges1 data 
set can be found in Figures A5 and A6 in the Appendix. 
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Figure 6: Results for Contraceptive 

The sonar data set (Figure A7) is the only data set for which 
down-sampling consistently beats both the cost-sensitive and up-
sampling method. The promoters data set (Figure A8) is the only 
data set for which up-sampling consistently beat the other two 
methods. We previously noted that the coding data set (Figure 4) 
is the only one in which the cost-sensitive method consistently 
beat the two sampling methods. Thus, we see that it is quite rare 
for any of the three methods to beat both of the other two meth-
ods—although it is common for each to beat one of the other 
methods. The only data set not yet discussed is the pendigits data 
set (Figure A9). Overall, the cost-sensitive learning method tends 
to beat both sampling methods for this data set, although the re-
sults vary by cost ratio. 

Tables 2 and 3 summarize the performance of up-sampling, down-
sampling, and cost-sensitive learning for all fourteen data sets. 
Table 2 specifies the first/second/third place finishes over the 
evaluated cost ratios for each data set and method. For example, 
Table 2 shows that for the letter-a data set up-sampling generates 
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the best results (i.e., lowest total cost) for 4 of the 7 evaluated cost 
ratios and the second best result for 3 of the 7 cost ratios. 

Table 2: First/Second/Third Place Finishes 

Data Set 
Up-

sampling 
Down-

sampling 
Cost-

Sensitive 
Letter-a 4/3/0 0/0/7 3/4/0 
Pendigits 3/1/3 1/2/4 3/4/0 
Connect-4 2/0/3 0/3/2 3/2/0 
Bridges1 5/0/0 0/5/0 0/3/2 
Letter-vowel 4/1/0 0/0/5 1/4/0 
Hepatitis 3/2/0 2/3/0 0/5/0 
Contraceptive 3/2/0 2/3/0 0/1/4 
Adult 2/3/0 3/1/1 0/4/1 
Blackjack 1/1/3 2/1/2 3/2/0 
Weather 0/0/5 4/1/0 1/4/0 
Sonar 2/3/0 3/2/0 0/2/3 
Boa1 0/0/5 4/1/0 2/3/0 
Promoters 5/0/0 0/2/3 0/3/2 
Coding 0/2/3 0/3/2 5/0/0 
Total 33/18/22 21/27/26 21/41/12 

The problem with Table 2 is that it does not quantify the im-
provements—the reduction in total cost. It treats all “wins” as 
equal even if the difference in costs between the methods is quite 
small.  Table 3 remedies this by providing the relative reduction 
in cost for the strategies. The second and third columns compare 
cost-sensitive learning (abbreviated “Cost”) versus up-sampling 
and down-sampling, respectively. The last column compares up-
sampling to down-sampling. A negative value indicates an in-
crease in cost rather than a reduction in cost. As an example, the 
results in Table 3 for the letter-a data set indicate that cost-
sensitive learning performs slightly worse than up-sampling 
(-0.9%) but much better than down-sampling (37.9%) and that up-
sampling performs much better than down-sampling (38.4%). 

Table 3: Comparison of Relative Improvements 

Data Set 

Cost vs. 
Up-

Sampling 

Cost vs. 
Down-

Sampling 

Up- vs. 
Down- 

Sampling 

Letter-a -0.9% 37.9% 38.4% 
Pendigits 3.5% 5.4% 0.9% 
Connect-4 3.2% -0.1% -3.9% 
Bridges1 -38.4% -8.6% 21.2% 
Letter-vowel -7.7% 18.0% 23.7% 
Hepatitis -11.4% -8.2% 2.3% 
Contraceptive -11.9% -11.6% -0.9% 
Adult 8.7% -0.8% -12.0% 
Blackjack 0.5% 0.5% 0.0% 
Weather 27.9% -1.3% -50.0% 
Sonar -0.9% -23.8% -33.78% 
Boa1 17.6% -0.6% -30.0% 
Promoters -40.6% -1.2% 28.2% 
Coding 20.0% 9.1% -18.0% 
Ave Savings -2.2% 1.1% -2.4% 
Total Wins 7 6 6 

The results from Table 2 and Table 3 show that cost-sensitive 
learning, as implemented in C5.0, does not consistently beat both 
or either of the sampling methods. Furthermore, none of three 
methods is a clear winner over all, or either, of the other methods.  
Overall, up-sampling seems to perform the best, by a relatively 
small margin, followed by cost-sensitive learning, with down-
sampling doing the worst (based on total average savings).  How-
ever, the results vary widely for each of the data sets. The best 
way to characterize the overall performance of the cost-sensitive 
approach based on Table 2 is that it rarely performs the worst. 
Even up-sampling, which performs the best overall, comes in last 
many more times (22 versus 12). Thus, one conclusion is that 
performance of cost-sensitive learning does not fluctuate quite as 
much as the sampling methods, over the different data sets. 

6. DISCUSSION 
Based on the results from all of the data sets, there was no defini-
tive winner between cost-sensitive learning, up-sampling and 
down-sampling. Given that there is no clear and consistent win-
ner, the logical question to ask is whether we can characterize 
under what circumstances each method performs best. We begin 
by analyzing the impact of data set size. Our study included four 
data sets (bridges1, hepatitis, sonar, and promoters) that are sub-
stantially smaller than the rest. If we compute the 
first/second/third place records for these four data sets from Table 
2, we get the following results: up-sampling 15/5/0, down-
sampling 5/12/3 and cost-sensitive learning 0/13/7. Based on this 
data, up-sampling clearly does much better than down-sampling 
and cost-sensitive learning. The data in Table 2 also supports this 
conclusion. The one exception is the sonar data set, where down-
sampling beats up-sampling. 

With the exception of the sonar results, the sampling results make 
sense. That is, we expect down-sampling, which throws away 
data, to perform more poorly than up-sampling for small data sets. 
The data also implies that up-sampling also outperforms cost-
sensitive learning in these cases, however. One possible explana-
tion for the failure of cost-sensitive learning in this situation is 
that when there is very little training data, it will be difficult to 
accurately estimate the class-membership probabilities—
something that is required in order to get good results from cost-
sensitive learning. 

If we look at the eight data sets with over 10,000 examples each 
(letter-a, pendigits, connect-4, letter-vowel, adult, blackjack, boa, 
and coding), our results are as follows for first/second/third place 
finishes: up-sampling 16/11/17, down-sampling 10/11/2, and 
cost-sensitive 20/23/1. The results from Table 3 show that over 
these eight data sets the average improvement between cost-
sensitive learning and up-sampling is 5.5% and between cost-
sensitive learning and down-sampling is 5.7%. Thus, for the large 
data sets, cost-sensitive learning does often yield the best results. 
Perhaps cost-sensitive learning does well in these cases because 
the larger amount of training data makes it easier to more accu-
rately estimate the class-membership probabilities. 

Another factor worth considering is the degree to which the class 
distribution of the data set is unbalanced.  This will impact the 
extent to which sampling must be used to get the desired distribu-
tion.  The results in Tables 2 and 3, which are ordered by decreas-
ing class imbalance, show no obvious pattern, however. 
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Our results do not generally support our conjecture that cost-
sensitive learning should outperform sampling for obtaining the 
best classifier performance. However, the results tend to indicate 
that the conjecture may hold for larger data sets. This suggests 
that perhaps cost-sensitive learning performs well only when there 
are sufficient data to generate accurate probability estimates (for 
c5.0 this translates to having many examples at each leaf node). 
We have found some supporting evidence to suggest why cost-
sensitive learning is not a clear winner in all cases. Recent re-
search [7] has shown that cost-sensitive learning, including C5.0’s 
implementation of cost-sensitive learning, does not always pro-
duce the desired, and expected, results. Specifically, this research 
showed that one can achieve lower total cost by using a cost ratio 
for learning that is different from the actual cost information. This 
tends to indicate that there may be a problem with the cost-
sensitive learning process. 

7. RELATED WORK 
Previous research has compared cost-sensitive learning and sam-
pling. The experiments that we performed are similar to the work 
that was done by Chen, Liaw, and Breiman [6], who proposed two 
methods of dealing with highly-skewed class distributions based 
on the Random Forest algorithm. Balanced Random Forest (BRF) 
uses down-sampling of the majority class to create a training set 
with a more equal distribution between the two classes, whereas 
Weighted Random Forest (WRF) uses the idea of cost-sensitive 
learning. By assigning a higher misclassification cost to the mi-
nority class, WRF improves classification performance of the 
minority class and also reduces the total cost. However, although 
both BRF and WRF outperform existing methods, the authors 
found that neither one is consistently superior to the other. Thus, 
the cost-sensitive version of the Random Forest does not outper-
form the version than employs down-sampling. 

Drummond and Holte [8] found that down-sampling outperforms 
up-sampling for skewed class distributions and non-uniform cost 
ratios. Their results indicate that this is because up-sampling 
shows little sensitivity to changes in misclassification cost, while 
down-sampling shows reasonable sensitivity to these changes. 
Breiman et al. [2] analyzed classifiers produced by sampling and 
by varying the cost matrix and found that these classifiers were 
indeed similar. Japkowicz and Stephen [10] found that cost-
sensitive learning outperforms under-sampling and over-sampling, 
but only on artificially generated data sets. Maloof [12] also com-
pared cost-sensitive learning to sampling but found that cost-
sensitive learning, up-sampling and down-sampling performed 
nearly identically. However, because only a single data set was 
analyzed, one really could not draw any general conclusions from 
that data. Since we analyzed fourteen real-world data sets, we 
believe our research extends this earlier work and provides the 
most conclusive evidence that cost-sensitive learning does not 
clearly, or consistently, outperform up-sampling or down-
sampling. 

8. CONCLUSION 
The results from our study indicate that between cost-sensitive 
learning, up-sampling, and down-sampling, there is no clear or 
consistent winner for maximizing classifier performance when 
cost information is known. If we focus exclusively on large data 
sets with more than 10,000 total examples, however, it appears 

that cost-sensitive learning often outperforms the sampling meth-
ods—although it still does not happen in every case.  Note that in 
this study our focus was on using the cost information to improve 
the performance of the minority class, but in fact our results are 
much more general; they can be used to assess the relative per-
formance of the three methods for implementing cost-sensitive 
learning. Our results also allow us to compare up-sampling to 
down-sampling. We found that up-sampling performed better than 
down-sampling overall, although the behavior varies widely for 
each data set. 

There are a variety of enhancements that people have made to 
improve the effectiveness of sampling. While these techniques 
have been compared to up-sampling and down-sampling, they 
generally have not been compared to cost-sensitive learning. This 
would be worth studying in the future. Some of these enhance-
ments include introducing new “synthetic” examples when up-
sampling [5], deleting less useful majority-class examples when 
down-sampling [11] and using multiple sub-samples when down-
sampling such than each example is used in at least one sub-
sample [3]. 

In our research, we plotted classifier performance for different 
cost ratios and then summarized the results by recording the num-
ber of first/second/third place finishes for each method and also 
by averaging the results. We did this based on the assumption that 
the actual cost information will be known or can be estimated. 
This is not always the case and the reporting of our results could 
benefit by using other methods, such as ROC analysis or cost 
curves. 

The implications of this research are significant. The fact that 
sampling, a wrapper approach, performs competitively—if not 
better—than a commercial tool that implements cost-sensitivity 
raises several important questions.  These questions are: 1) why 
doesn’t the cost-sensitive learner perform better given the known 
drawbacks with sampling, 2) are there ways we can improve cost-
sensitive learners and 3) are we better off not using the cost-
sensitivity features of a learner and using sampling instead. We 
hope to address these questions in future research. 
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APPENDIX 

 
The results for the letter-vowel data set in Figure A1 show that 
up-sampling performed better than cost-sensitive learning for 
some cost ratios.  Furthermore, both up-sampling and cost-
sensitive learning perform better than down-sampling.  
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Figure A1: Results for Letter-vowel 

The results for the adult data set in Figure A2 and the boa1 data 
set in Figure A3 both have up-sampling performing much worse 
than down-sampling and cost-sensitive learning, both of which 
perform similarly.  These results mimic those of the weather data 
set in Figure 3 in the main body of this paper. 
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Figure A2: Results for Adult 
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Figure A3: Results for Boa1 

The connect-4 data set yields nearly identical performance for 
all three methods (like the blackjack data set in Figure 5), except 
for the 1:25 cost ratio. 
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Figure A4: Results for Connect-4 

The results for the hepatitis and bridges1 data sets in Figures A5 
and A6 have the cost-sensitive method underperforming the two 
sampling methods for most cost ratios.  The contraceptive data 
set in Figure 6 exhibited similar behavior. 
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Figure A5: Results for Hepatitis 
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Figure A6: Results for Bridges1 

The sonar data set is the only data set in which down-sampling 
substantially beat both cost-sensitive learning and up-sampling.  
This is unexpected since the sonar data set is quite small and one 
would expect down-sampling to perform worst in this situation 
(for other small data sets, down-sampling did in fact tend to 
perform poorly). 
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Figure A7: Results for Sonar 

The promoters data set is the only data set for which up-
sampling substantially beat both down-sampling and up-
sampling. 
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Figure A8: Results for Promoters 

The results for the pendigits data set in Figure A9 vary for the 
different cost ratios, although the cost-sensitive learning method 
performs best overall. 
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Figure A9: Results for Pendigits 
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ABSTRACT
Finding a minimal decision tree consistent with the exam-
ples is an NP-complete problem. Therefore, most of the
existing algorithms for decision tree induction use a greedy
approach based on local heuristics. These algorithms usually
require a fixed small amount of time and result in trees that
are not globally optimal. Recently, the LSID3 contract any-
time algorithm was introduced to allow using extra resources
for building better decision trees. A contract anytime algo-
rithm needs to get its resource allocation a priori. In many
cases, however, the time allocation is not known in advance,
disallowing the use of contract algorithms. To overcome this
problem, in this work we present two interruptible anytime
algorithms for inducing decision trees. Interruptible any-
time algorithms do not require their resource allocation in
advance and thus must be ready to be interrupted and re-
turn a valid solution at any moment. The first interruptible
algorithm we propose is based on a general technique for
converting a contract algorithm to an interruptible one by
sequencing. The second is an iterative improvement algo-
rithm that repeatedly selects a subtree whose reconstruc-
tion is estimated to yield the highest marginal utility and
rebuilds it with higher resource allocation. Empirical eval-
uation shows a good anytime behavior for both algorithms.
The iterative improvement algorithm shows smoother per-
formance profiles which allow more refined control.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept-learning,
Induction; H.2.8 [Database Management]: Applications—
Data Mining

General Terms
Algorithms, Experimentation

Keywords
Decision trees, Anytime algorithms, Anytime learning, Cost-
quality tradeoff, Hard concepts
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1. INTRODUCTION
Despite the recent progress in developing advanced induc-
tion algorithms, such as Support Vector Machines [7], de-
cision trees [6, 22] are still considered attractive for many
real-life applications mostly due to their interpretability [13].
Craven and Shavlik [8] listed several reasons for the impor-
tance of the comprehensibility of learned classifiers. These
reasons include, among others, the possibility to validate the
induced model by human and to generate human-readable
explanations for the classifier predictions.

Another model evaluation criterion that is mentioned in [8]
is the flexibility of the model representation. In this manner,
decision trees have a great advantage: they can be easily
converted into logical rules. When classification cost is an
important factor, decision trees are favored since they test
only values of the features on the path from the root to
the relevant decision leaf. In terms of accuracy, decision
trees were shown to be competitive with other classifiers for
several learning tasks [12, 28, 15, 32].

Based on the Occam’s Razor principle [2], small decision
trees that are consistent with the training examples have
better predictive power than their larger counterparts. Find-
ing the smallest consistent tree, however, was shown to be
NP-complete [16, 19]. For this reason, most existing deci-
sion tree induction algorithms take a greedy approach and
use local heuristics for choosing the best splitting attribute.

The greedy approach indeed performs quite well for many
learning problems, and is able to generate decision trees very
fast. In some cases, however, when the concept to learn is
hard and the user is willing to allocate more time, the exist-
ing greedy algorithms are not able to exploit the additional
resources for generating a better decision tree.

Algorithms that are able to trade resources for the quality of
the output are called anytime algorithms [25, 3]. Recently,
the LSID3 algorithm for anytime induction of decision trees
has been introduced [9]. The algorithm performs repeated
lookahead probes in order to evaluate candidate splitting
attributes. The number of repetitions is determined in ad-
vance according to the allocated time.

LSID3 requires that the allocated time will be known ahead
and does not guarantee any solution if the allocation is not
honored, and hence is called a contract anytime algorithm.
As such, LSID3 has two shortcomings. First, in many real-
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life applications the time allocated for the learning phase is
not known a priori. One example for such a setup is when
the user is willing to allow the induction algorithm to run
until the classifier is needed, and the time for this event is
not known in advance. Another example is an application
where the user wants the induction algorithm to run until
it reaches some expected accuracy on a set-aside validation
set. A second problem is that LSID3 assumes a mapping
from the time allocation to the contract parameter, i.e., to
the number of lookahead probes the algorithm can afford.
In many cases, however, such a mapping is not possible.

To overcome the above problems, we need to come up with
an interruptible anytime algorithm, which does not require
the allocated time in advance and can therefore be inter-
rupted anytime. In this work we present two interrupt-
ible anytime algorithms for decision tree induction, that can
trade off the learning cost for the quality of the produced hy-
pothesis and allow queries for solution at any moment. We
start with a method that converts LSID3 to an interruptible
algorithm using the general sequencing method described in
[26]. This conversion, however, uses the contract algorithm
as a black-box and hence cannot take into account specific
aspects of decision tree induction. Next, we present a new
repair-based algorithm, IIDT, that repeatedly replaces sub-
trees of the current hypothesis by subtrees generated with
higher resource allocation and are therefore expected to be
better. The two methods are empirically tested on datasets
representing difficult concepts. Note that in this paper we
assume a batch setup where all the training examples are
given at the beginning of the learning process, unlike the
incremental setup in which the induced tree is restructured
when a new training instance becomes available [30].

2. CONTRACT INDUCTION OF DECISION
TREES

The interruptible algorithms presented in the next sections
both use a contract algorithm as a component. Specifically,
in this paper we use the LSID3 algorithm. This section gives
a short overview of this algorithm.

LSID3 adopts the top-down induction of decision trees (TDIDT)
scheme. Under this framework, an attribute is chosen to par-
tition the entire dataset into subsets, each of which is used
to recursively build a subtree.

In ID3 each candidate split is evaluated by the information
gain it yields and the attribute that maximizes this measure
is selected. In LSID3 we measure the usefulness of a candi-
date split by the expected size of the subtree it results in.
One can estimate this size by calling ID3 itself. Nevertheless,
this results in a fixed time algorithm rather than in an any-
time one. Moreover, ID3 might be insufficient to correctly
predict the size. Therefor, in order to produce a better es-
timation of the tree size, instead of calling ID3 once, LSID3
samples the space of “good” trees by repeatedly invoking a
stochastic version of ID3 (SID3). In SID3, instead of choos-
ing the attribute that maximizes the information gain, the
splitting attribute is drawn randomly with a likelihood that
is proportional to the attribute’s information gain. Since
SID3 is not a deterministic algorithm, different runs of it
might return different trees of different sizes. The size of
each tree is an upper bound on the optimal tree size and

Procedure LSID3-Choose-Attribute(E, A, r)
If r = 0

Return ID3-Choose-Attribute(E, A)
Foreach a ∈ A

Foreach vi ∈ domain(a)
Ei ← {e ∈ E | a(e) = vi}
mini ←∞
Repeat r times

T ← SID3(Ei, A− {a})
mini ← min (mini,Size(T ))

totala ←
P|domain(a)|

i=1 mini

Return a for which totala is minimal

Figure 1: Attribute selection in LSID3.

Procedure Sequenced-LSID3(E, A)
T ← ID3(E, A)
i ← 0
While not-interrupted

r ← 2i

T ← LSID3(E, A, r)
i ← i + 1

Return T

Figure 2: Conversion of LSID3 to an interruptible
algorithm by sequenced invocations.

hence we consider the minimal one as the estimator.

Given an attribute a, LSID3 partitions the set of examples
according to the different values a can take and calls SID3
several times for each subset. a is evaluated by summing up
the estimated size of each subtree. For each subtree there
are several estimations obtained from several calls to SID3.
The algorithm considers the minimal one.

LSID3 is a contract algorithm parameterized by r, the num-
ber of times SID3 is called for each candidate. LSID3 with
r = 0 is defined to be ID3. Figure 1 formalizes the choice
of splitting attributes as made by LSID3. The runtime of
LSID3 grows linearly with r. Let m be the number of exam-
ples and n = |A| be the number of attributes. The worst-
case time complexity of ID3 is O(mn2) [30]. It is easy to see
that SID3 has the same worst-case complexity. LSID3(r)
invokes SID3 r times for each candidate split. Recall the
analysis in [30] for the time complexity of ID3, we can write
the runtime of LSID3(r) as

Pn
i=1 r · i ·O(mi2). An empirical

based average-case analysis for ID3 showed that the com-
plexity of ID3 is actually linear in n rather than quadratic
i.e., O(nm) [29]. Hence, we derive that the average case
complexity of LSID3 is

nX
i=1

r · i ·O(mi) =

nX
i=1

O(rmi2) = O(rmn3). (1)

3. SEQUENCING CONTRACT ANYTIME AL-
GORITHMS

By definition, every interruptible algorithm can serve as a
contract one. Russell and Zilberstein [26] showed that any
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contract algorithm A can be converted into an interrupt-
ible algorithm B with a constant penalty. B is constructed
by running A repeatedly with exponentially increasing time
limits τ, 2τ, . . . , 2iτ, . . . where τ is a free parameter that af-
fects the granularity of the composed algorithm. Smaller
values of τ will yield more frequent improvements, but there
is no benefit in setting it to a too low value for which the
improvement in quality is insignificant. It can be shown that
the above sequence of runtimes is optimal when the different
runs are scheduled on a single processor [26].

This general approach can be used to convert LSID3 into
an interruptible algorithm. LSID3 gets its contract time in
terms of r, the number of samplings per node. When r = 0,
LSID3 is defined to be identical to ID3 which requires much
less time than LSID3 with r = 1. Therefore, we slightly
modify the sequencing method by first calling LSID3 with
r = 0 and then continue according to the original method
with exponentially increasing values of r, starting from r =
1. Figure 2 formalizes the resulting algorithm.

One problem with the sequencing approach is the exponen-
tial growth of the gaps between the points of time at which
an improved result can be obtained. This is due to the gen-
erality of the algorithm that views the contract algorithm
as a black-box. Thus, in the case of LSID3 at each iteration
the whole decision tree is rebuilt. In Section 4 we present
an interruptible anytime algorithm that instead of trying to
rebuild the whole tree, iteratively improves subtrees.

4. INTERRUPTIBLE INDUCTION BY IT-
ERATIVE IMPROVEMENT

In this section we present IIDT, an interruptible algorithm
for decision-tree learning. As in LSID3, IIDT exploits ad-
ditional resources in attempt to produce better trees. The
key difference between the algorithms is that LSID3 uses
the available resources to induce a decision tree top-down,
where each decision made at a node is final and does not
change. IIDT, on the contrary, does not get its resource al-
location in advance and might be queried for a solution at
any moment.

IIDT first performs a quick induction of an initial tree by
calling ID3. It then iteratively attempts to improve the cur-
rent tree by choosing a node, computing its next resource
allocation and rebuilding the subtree below it. If the newly
induced subtree is better than the existing one, a replace-
ment takes place. We formalize IIDT in Figure 3.

Figure 4 illustrate the way IIDT works. The target concept
is a1(x) ⊕ a2(x) with additional two irrelevant attributes
a3 and a4. The leftmost tree was constructed using ID3.
In the first iteration the subtree rooted at the bolded node
is selected for improvement and replaced by a smaller tree
(surrounded by a dashed line). Next, the root is selected for
improvement and the whole tree is replaced by a tree that
perfectly describes the concept.

IIDT is designed as a general framework for interruptible
learning of decision trees that allows using different approaches
for choosing the node to improve, for allocating resources for
an improvement iteration, for rebuilding a subtree and for
deciding whether an alternative subtree is better or not. In

Procedure IIDT(E, A)
T ← ID3(E, A)
While not-interrupted

node ← Choose-Node(T, E, A)
t ← subtree of T rooted at node
Anode ← {a ∈ A | a /∈ ancestor of node}
Enode ← {e ∈ E | e reaches node}
r ← Next-R(node)
t′ ← Rebuild-Tree(Enode, Anode, r)
If Evaluate(t) > Evaluate(t′)

replace t with t′

Return T

Figure 3: Interruptible learning of decision trees.

the remainder of this section we focus on the components of
IIDT and suggest a possible implementation that is based
on LSID3.

4.1 Reconstructing a Subtree
After deciding upon the amount of resources allocated for
the reconstruction process, the problem becomes a task for
a contract algorithm. A good candidate for such an algo-
rithm is LSID3 which exhibited good anytime performance
in the empirical study reported in [9]. We expect that call-
ing LSID3 with higher resource allocation will result in a
better subtree.

4.2 Choosing a Subtree to Improve
Intuitively, the next node we would like to improve is the
one with the highest expected marginal utility, i.e., the one
with the highest ratio of expected benefit and expected cost
[14, 24]. Estimating the expected cost and expected gain of
rebuilding a subtree is a difficult problem. There is no ap-
parent way for estimating the expected improvement either
in terms of tree size or generalization accuracy. In addi-
tion, precise prediction of the resources to be consumed by
LSID3 is not an easy task. In the remainder of this sub-
section we show how to approximate these values, and how
to incorporate these approximations into the node selection
algorithm.

4.2.1 Resource Allocation
The LSID3 algorithm receives its resource allocation in terms
of r, the number of samplings devoted for each attribute.
We adopt here the above mentioned strategy that doubles
the amount of resource allocation at each iteration. Thus,
if the resources allocated for the last improvement attempt
of node were r = Last-R(node), the next allocation will be
2r.1

4.2.2 Expected Cost
The expected cost can be approximated using the aver-
age time complexity of LSID3 as expressed by Equation
1. For each node, we estimate the expected runtime of
LSID3(r) to rebuild the subtree below it by Cost(node) =
Next-R(node) ·m · n3.

1Note that Last-R can be inherited from an ancestor of
node, in case the subtree rooted at node was reproduced as
a part of a containing tree.
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Figure 4: Iterative improvement of the decision tree produced for the 2-XOR concept a1(x) ⊕ a2(x) with
additional two irrelevant attributes a3 and a4.

We observe that in terms of expected cost, subtrees rooted
in deeper levels are preferred since they have less examples
and attributes to consider and thus have shorter expected
runtime. We also observe that since for each node the next
time allocation doubles the previous one, nodes that were
previously selected for improvement a large number of times,
will have higher associated costs and thus are less likely to
be chosen again.

4.2.3 Expected benefit
The whole framework of decision trees induction rests on
the assumption that smaller consistent trees are better than
large ones. Therefore the size of a subtree can serve as a
measure for its quality. We cannot, however, know or es-
timate the size of the reconstructed subtree before actually
building it. Therefore, we use instead an upper limit on the
reduction in size that can be achieved.

The minimal size possible for a decision tree is obtained
when all examples are labelled with the same class. Such
cases are easily recognized by the greedy ID3 and by LSID3.
Similarly if a subtree was replaceable by another subtree of
depth 1, i.e., consists of a single split, ID3 (and LSID3)
would have chosen the smaller subtree. Thus, the maximal
reduction of the size of an existing subtree is to the size of
a tree of depth 2. Assuming that the maximal number of
values per attribute is b, the maximal size of such a tree
(measured by the number of leaves) is b2. Hence, an upper
bound on the benefit from reconstructing a tree t that was
previously induced is Size(t)− b2.

Ignoring the expected costs, and relying solely on the ex-
pected benefit results in always giving the highest score to
the root node. This makes sense: assuming we have infinite
resources, we would attempt to improve the whole decision
tree rather than parts of it.

4.2.4 Granularity
Considering the cost and benefit approximations described
above, the selection procedure would prefer deep nodes (that
are expected to have low costs) with large subtrees (that are
expected to yield large benefits). When no such large sub-
trees exist, our algorithm may repeatedly attempt to im-

prove smaller trees rooted at deep nodes due to their low
associated costs. In the short term, such a behavior would
indeed be beneficial but in the long term it can be harmful
since when the algorithm later improves subtrees in upper
levels, the resources spent on deeper nodes are wasted. On
the other hand, if the algorithm would have first selected
the upper level trees, this waste would be avoided, but the
time gaps between potential improvements would have been
increased.

To allow control of the tradeoff between the efficiency of re-
source usage and the flexibility of anytime control we add a
granularity parameter 0 ≤ g ≤ 1 that serves as a threshold
for the minimal time allocation to an improvement phase.
A node can be selected for improvement only if its normal-
ized expected cost is above g. To compute the normalized
expected cost, we divide the expected cost by the expected
cost of the root node. Note that by this definition, it is pos-
sible to have nodes with cost which is higher than the cost of
the root node, and therefore with relative cost higher than
one. Such nodes, however, can never be selected for im-
provement since their expected benefit is necessarily lower
than the expected benefit of the root node. Hence, when
g = 1, IIDT is forced to choose the root node and its behav-
ior becomes identical to the sequencing algorithm described
in Section 3.

Figure 5 formalizes the procedure for choosing a node for
reconstruction.

4.3 Evaluating a Subtree
Although LSID3 was shown to produce better trees when
allocated more resources, an improved result is not guar-
anteed. Thus, to avoid a degradation in the quality of the
induced tree, we replace an existing subtree only if the al-
ternative is expected to improve the quality of the complete
decision tree. Following Occam’s Razor, we measure the
usefulness of a subtree by its size. Only if the reconstructed
subtree is of a smaller size, would it replace an existing sub-
tree. This guarantees that the size of the complete decision
tree is monotonically decreasing.

Another possible measure is the accuracy of the decision

81



Procedure Choose-Node(T, E, A)
Foreach node ∈ T

Anode ← {a ∈ A | a /∈ ancestor of node}
Enode ← {e ∈ E | e reaches node}
rnode ← Next-R(node)
costnode ← rnode · |Enode| · |Anode|3
max-cost ← Next-R(root) · |E| · |A|3
If (costnode/max-cost) > g

l-bound ← (mina∈Anode |Domain(a)|)2
∆q ← Leaves(node)− l-bound
unode ← ∆q/costnode

best ← node that maximizes unode

Return 〈best, rbest〉

Procedure Next-R(node)
If Last-r(node) = 0

Return 1
Else

Return 2 · Last-R(node)

Figure 5: Choosing a node for reconstruction.

tree on a set-aside validation set of examples. Only if the
accuracy on the validation set increases, the modification
is applied. This measure suffers from two drawbacks. The
first is that putting aside a set of examples for validation
results in a smaller set of training examples and thus makes
the learning process harder. The second is the bias towards
overfitting the validation set, that might reduce the gener-
alization abilities of the tree.

5. EXPERIMENTAL EVALUATION
A variety of experiments were conducted to test the per-
formance and anytime behavior of IIDT. We compare two
versions of IIDT to the fixed time algorithms ID3 and C4.5.
Both versions of IIDT use the components described in Sec-
tion 4. IIDT(1) is parameterized with a granularity factor
1 and thus behaves exactly as the sequencing method de-
scribed in Section 3, while in IIDT(0.1) the granularity fac-
tor is set to 0.1. In addition, we tested a version of IIDT
that evaluates subtrees by their accuracy on a validation set
rather than their size. However, this modification did not
help and in some cases a degradation in the performance
was observed. Thus, in what follows we describe the results
for the size-based estimation.

The behavior of anytime learners on easy concepts is not
interesting since the greedy algorithms are able to produce
good trees with small allocation of resources. Therefore, we
present here the results for more complex concepts that can
benefit from larger resource allocation: the Glass and the
Tic-Tac-Toe UCI datasets [1], the 20-Multiplexer dataset
[23] and the 10-XOR dataset, generated with additional 10
irrelevant attributes. Table 1 summarizes the basic charac-
teristics of the used datasets.

The performance of the different algorithms is compared
both in terms of generalization accuracy and size of the in-
duced trees, measured by the number of leaves. Following
the recommendations of Bouckaert [4], 10 runs of 10-fold
cross-validation experiment were conducted for each dataset.

Instances Attributes

Dataset Nominal Numeric Classes

Glass 214 10 9 7

Tic-Tac-Toe 958 9 0 2

Multiplexer-20 500 20 0 2

XOR-10 10000 20 0 2

Table 1: Characteristics of the datasets used.
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Figure 6: Anytime behavior on the Glass dataset.

Figures 6, 7, 8 and 9 show the anytime graphs for both tree
size and accuracy for the 4 datasets. Each graph represents
an average of 100 runs (for the 10× 10 cross validation). In
all cases the both anytime versions indeed exploit the ad-
ditional resources and produce better trees, both in terms
of size and accuracy.2 Since our algorithm replaces a sub-
tree only if the new one is smaller, all size graphs decrease
monotonically. The most interesting anytime behavior is for
the difficult 10-XOR problem. There, the tree size decreases
from 4000 leaves to almost the optimal size 210, and the ac-
curacy is increased from 50% (which is the accuracy achieved
by ID3 and C4.5) to almost 100%. The shape of the graphs
is typical to anytime algorithms with diminishing returns.
The difference between the performance of the two anytime
algorithms is interesting. IIDT(0.1) with the lower granu-

2Note that in some cases C4.5 produces smaller (yet less
accurate) trees since it allows inconsistency with the training
data by post-pruning the tree.
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Figure 7: Anytime behavior on the 10-XOR dataset.

larity parameter indeed produces smoother anytime graphs
(with lower volatility) which allows for better control and
better predictability of return. Moreover, in large portions
of the time axis, the IIDT(0.1) graph dominates the one for
IIDT(1) due to its more sophisticated node selection.

The smoothness of the IIDT(0.1) graph is somehow mis-
leading since it represents an average of 100 step graphs
with steps occurring in different time points (vs. the graph
for IIDT(1) where the steps are roughly at the same time
points). Figure 10 shows one anytime graph (out of the
100). We can see that although the IIDT(0.1) graph is less
smooth than the average, it is still much smoother than the
corresponding IIDT(1) graph.

6. RELATED WORK
While, to our knowledge, no other work tried specifically to
design an anytime interruptible algorithm for decision tree
induction, there are several related works that need to be
discussed here. Opitz introduced an anytime approach for
theory refinement [20]. This approach starts by generating a
knowledge-base neural network from a set of rules, and then
it uses the training data and the additional time resources
in an attempt to improve the resulted hypothesis.

Lizotte et al. [18] presented a model for a budgeted learn-
ing task. In their work the term budgeted learning refers
to the problem of collecting a data sample under budget
constraints for the total cost of the tests that can be taken.
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Figure 8: Anytime behavior on the Tic-Tac-Toe
dataset.

Although this notation is equivalent to anytime contract al-
gorithms the problem dealt by Lizotte et al. is different
than this faced by our anytime approach: while the first at-
tempts to find the best way to spend a budget for collecting
a sample of data, we assume that the dataset has already
been obtained and address the question of how to exploit
our budget to learning a better hypothesis from this data.

Pruning techniques also attempt to obtain smaller decision
trees, but their goals and their search space are different.
The main goal of pruning is to avoid overfitting the data.
Pruning techniques are orthogonal to our approach and tackle
different problems. We intend to integrate pruning phases
in IIDT and thus allow handling overfitting problems.

Ensemble-based methods can also be viewed as anytime al-
gorithms. The boosting method [27] iteratively refines the
constructed ensemble by increasing the weight of misclassi-
fied instances and adding a new hypothesis learned based
on the updated weights. This process can continue as long
as the time allocation allows. In bagging [5] a committee
of trees is formed by making bootstarp replicates of the
training set and using each such replication to learn a deci-
sion tree. Additional resources can be exploited to generate
larger committees. Unlike the problem we face in this work,
the classifiers constructed by the boosting and bagging al-
gorithms consist of ensembles of decision trees rather than
a single tree. A major problem with ensemble-based meth-
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Figure 9: Anytime behavior on the 20-Multiplexer
dataset.

ods is that in many cases the induced ensemble is large,
complex and difficult to interpret [11]. Another problem is
that when the concept to learn is hard, greedy trees are un-
able to discover any knowledge about the target concept and
hence their combination cannot improve the performance.
To experimentally test this, we examined the performance
of Bagging on the XOR10 dataset. Our results indicate that
the committee failed to learn the concept and performed no
better than a random guesser, even for a large number of
tree-members (up to 1000). In the future, we intend to em-
pirically compare the anytime behavior of of other ensemble
methods such as Boosting and Random Decision Tree [10]
to IIDT, as well as examining committees of trees produced
by more expensive algorithms such as LSID3.

Papagelis and Kalles [21] presented GATree, an algorithm
that uses genetic algorithms to evolve decision trees. When
tested on several UCI datasets, GATree was reported to pro-
duce trees as accurate as C4.5 but of significantly smaller
size. GATree can be viewed as an anytime interruptible
algorithm that uses additional time to produce more and
more generations. We conducted several experiments with
GATree, with its default parameters as reported in [21]. For
this purpose we used the free GATree version available in
http://www.GATree.com. The results indicate that the any-
time behavior of GATree is problimatic. Although improve-
ments were observed, they were not consistent and the re-
sults suffered from considerable fluctuations. In addition,
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we tested our IIDT on the parity concepts used to evalu-
ate GATree. Although we could not use exactly the same
datasets, we followed the same method to create them and
the results show that IIDT achieved better results than those
reported for GATree. For example, for the 4 attributes par-
ity problem with 6 additional irrelevant attributes, IIDT was
able to reach 99% accuracy while GATree was reported to
have 85% average accuracy.

Utgoff [31] presented DMTI, an induction algorithm that
uses a direct measure of tree quality instead of greedy heuris-
tic to evaluate the possible splits. Several possible tree mea-
sure were examined and the MDL (Minimum Description
Length) measure had the best performance. DMTI can use
a fixed amount of additional resources and hence cannot
serve as interruptible anytime algorithm. Further, DMTI
uses the greedy approach to produce the lookahead trees
and that might be insufficient to well-estimate the useful-
ness of a split.

Last et al. [17] introduced an interruptible anytime algo-
rithm for feature selection. Their proposed method selects
features by constructing an information-theoretic connec-
tionist network, which represents interactions between the
input attributes and the target class.

7. CONCLUSIONS
In this work explored the problem of how to produce bet-
ter decision trees when more time resources are available.
Unlike the contract setup that was addressed in a previous
study, this work does not assume a priori knowledge of the
amount of the resources available and allows the user to in-
terrupt the learning phase at any moment.

The major contribution of this paper is the IIDT frame-
work that can be adjusted to use any contract algorithm
for reproducing a decision tree and any measure for choos-
ing the subtree to rebuild. We studied an instantiation of
this framework that bases the decision of what subtree to
rebuild next on the expected cost and expected benefit and
uses LSID3 for rebuilding subtrees.

The reported experimental study shows that IIDT exhibits
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a good anytime behavior allowing a tradeoff between the
cost of the learning process and the quality of the induced
hypothesis. The smoothness of the performance profiles was
shown to be flexibly controlled by the granularity parameter.

In the future we, intend to apply monitoring techniques for
optimal scheduling of IIDT. In addition, we plan to integrate
pruning phases in the IIDT framework as well as examining
several different strategies for choosing nodes and improving
subtrees.
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ABSTRACT
The contextual recommender task is the problem of making
useful offers, e.g., placing ads or related links on a web page,
based on the context information, e.g., contents of the page
and information about the user visiting, and information on
the available alternatives, i.e., the advertisements or relevant
links. In the case of ads for example, the goal is to select ads
that result in high click rates, where the (ad) click rate is
some unknown function of the attributes of the context and
ad. We describe the task and make connections to related
problems including recommender and multi-armed bandit
problems.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning - Induction

General Terms
Algorithms

Keywords
Recommenders, Multi-Armed Bandit, Personalization,
Exploration-Exploitation, Regression, Reinforcement Learn-
ing, Data Mining, Utility

1. INTRODUCTION
Users (browsers) select pages to view and the task is to put

one or more ads on such pages. The contextual (ad) problem
consists of making such selection and placement decisions in
order to maximize the expected return over some period of
time, where expected return is a function of the likelihood
of the ads being clicked – and possibly even a transaction
or purchase taking place – and the prices of those clicked
ads. Information that may significantly aid such decisions
include page and user attributes, such as content and site
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information and users’ recent behavior, and attributes of the
available ads, such as ad content and bid prices. The horizon
or time period for optimization will also implicitly or explic-
itly figure into the problem. However, a major challenge is
sparsity: there may be many ads available (e.g., millions),
whereas the number of interactions we may get from a single
typical user, in a time period of interest, may be very small
in comparison (e.g., a handful a day), and furthermore click
rates for arbitrary ads are relatively small as well (e.g., one
percent).

We explore a number of different ways of viewing the prob-
lem. These viewpoints reveal the different aspects of the
task, or may just reflect the type of available resources and
data. While we focus on the task of selecting ads to show
(contextual adevertising), we expect that the abstraction,
the contextual recommendation problem, applies to other
tasks such as (personalized) web search and web page or-
ganization (see Section 7). Our focus in this paper is on an
informal exploration. We leave fomralizations and concrete
solutions to future work.

The paper is organized as follows. Section 2 describes the
information that should be useful. It identifies an important
distinction: the system has some control over choice of ads
but does not have control over choice of users or, in general,
contexts. Section 3 discusses the contextual problem as a
prediction problem, ignoring the controllable (decision theo-
retic) aspects of the problem. Section 4 discusses a simplified
version of the contextual task as a standard n-armed (multi-
armed) bandit problem. Section 5 extends the n-armed ban-
dit viewpoint and explains connections with typical recom-
mender problems. The number of users of the system can
be in millions and the collaborative or the “community”
aspects of the problem can help significantly in addressing
sparsity and making better decisions. Section 6 in turn com-
bines the problems of Sections 3 and 5 and describes perhaps
the most general problem in which information about con-
texts and ads are represented as points in large dimensional
spaces, but the decision theoretic, multi-armed bandit, and
community aspects may all be taken into account for better
performance. The contextual task is a challenging problem
in which increasing utility is a direct function of improving
algorithms.

2. THE AVAILABLE INFORMATION
In this paper, for simplicity, we assume that the objective

is to maximize ad click rates. Two major types of informa-
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tion that we may have to make optimal decisions are: (1)
the context attributes, such as information about the user
and site, and (2) the information about the arms, e.g., in-
formation about the ads, which we refer to as arm attributes,
such as ad topics and bid prices. The distinction is that we
(the decision maker) do not have control over the choice of
context attributes but we can choose from among the arms
and therefore we have some control over the choice of arms
and their attribute values.

Attributes (features) of the overall context, include page
attributes, such as: page content, page topics, site, source,
time and date. Context also includes attributes of the user,
such as: user id, demographics, overall interests, and recent
searches. Attributes of the arms (mostly ads) include: click
price, overall click rate, ad contents, advertiser account id,
ad topics, ad url and contents of the page pointed to. We
may also have some control over the presentation of the page
with the ads, placement of the ads, highlighting, and so on.
Therefore, the list of potentially predictive features (both for
contexts as well as arms) is long. These features may have
different feature types (numeric, boolean, probabilistic, ..).
Furthermore, not all the attribute values may be available
at all times (missing values). The ideal system handles all
these possibilities effectively.

Depending on the exact problem formulation, we may
need other information. For example in the Bayesian for-
mulation of the problem, we need priors over ad click rates
(given context and arm attributes), and the horizon we want
to optimize over [2]. Finally, while we don’t have control
over context attributes, we may know something about the
distribution of what we will encounter.

3. THE PREDICTION PROBLEM
Assume we had access to a function that would predict

the click rate well given the context and arm information.
Such a function would be able to handle a large number
of features, potentially with many missing values. Given a
sufficiently large matrix of feature values and click outcomes,
we could learn such a function via various algorithms (linear
methods, decision trees, knn, ..). This problem is basically
a typical machine learning problem (prediction, regression,
etc). However, an issue is how the training data is produced
or how to obtain such data. The context of feature values
should be representative of the distribution of contexts we
get.1 But another potentially bigger issue is the choice of
arm(s) for each context. This is under our control, and the
question is how to make such decisions. There are several
alternatives to choosing arms, including:

1. Uniformly at random (pure exploration). This may be
fine if we don’t have too many arms or possible arm
feature values and/or we have a significant amount of
time to explore, without much concern for exploita-
tion.

2. We have strong beliefs/priors that only a limited num-
ber of arm values are relevant for each context. Then
problem reduces to a series of smaller explore-exploit
problems, and we can apply the appropriate strategy
(e.g., random sampling of 1) in this case.

1However exceptions exist, for example when we are trying
to focus on some subset of the feature space or when active
learning.

3. (dynamic) Experiment design: in this case, we want
to be more selective in the choice of arms, depending
on the contexts, in order to increase our accumulated
rewards while we are learning more about the world
(exploring). A number of methods, ranging from stan-
dard multi-armed bandit to optimization algorithms
such as genetic algorithms could be explored. See sec-
tion 4.

Note that we may require not just the click rate (an ex-
pectation), but ideally a distribution to be output from such
a function, in order to capture the level of uncertainty of
the function over the predicted expectation. In practice, we
expect that the training matrix will always be relatively lim-
ited compared to the space of possible feature values, and
therefore significant uncertainties would remain.

Given that we have such a predictor function, we could use
it to obtain the best action (choice of arm) given a context as
well as where to explore. We may also use it to identify the
patterns (combinations) of context and arm features that
lead to relatively high click rates.

This pure learning approach, ignoring the controllable as-
pects of the problem, is very similar to the work of Joachims
who explored learning better ranking functions using click
data in the context of web search [4].

4. THE MULTI-ARMED BANDIT PROBLEM
As it is clear from previous discussion the overall problem

involves exploration and exploitation at some level. Explo-
ration means: to explore different arms (e.g., ad types) to
better estimate click rates and more effectively find winner
arms, and exploitation means: to choose to pull those arms
that are currently known to yield good rates, and exploit
their good rate of returns. One could treat each context
individually, without taking into account information about
other contexts. With this simplification the problem be-
comes a standard multi-armed bandit problem [2]. There
is significant literature on the problem: there are a number
of ways of formulating the problem, and a number of algo-
rithms and heuristics exist, with a substantial understanding
of many theoretical and empirical properties of these tech-
nqiues [6, 1, 9, 3, 2].

Consider learning for a single user, i.e., the user (user
id) is our context. Also, assume the arms are ad topics.
When a user visits a page, the systems task is to pick a
certain ad topic, and from that ad topic pick a certain ad
to show.2 The objective is to maximize click rate over some
period of time. We could then initialize the arm priors (say
in a Bayesian formulation of the n-armed bandit problem),
and figure out which arms work best for that person. A
major problem we face with this approach is the problem of
sparsity: there may be many ad topics available (thousands
and beyond), whereas the number of interactions we may
get from a single user, in a time period of interest, may
be very small in comparison. The average baseline click
rate (when showing an arbitrary ad) is very low (e.g., below
one percent). In standard n-armed bandit problems, the
scale, i.e., the number of arms is much more limited and/or
the number of interactions or desired horizon needs to be
significantly larger for descent optimization opportunity 3.

2In general, we assume most individual ads appear and dis-
appear too quickly to obtain sufficient statistics.
3A subtle difference with the typical n-armed bandit prob-
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When there is no information differentiating the arms,
there is no way around the sparsity problem. However, often
we have much information that has the potential to better
focus the experimentation and lead to better returns (click
rates). Such information may be obtained from similar users
and/or demographics information on that user. Addition-
ally, the arms are not independent. Some ads are closer to
one another than others along some dimensions (eg college
football ads are closer to college basketball ads than to po-
litical ads with respect to the topic aspect). Therefore the
arms are not independent and the information obtained for
one arm can affect what we know about the other arms. In a
Bayesian setting, such information influences the priors over
the click rates. Still, as the population of users interact with
the system we obtain more information about user behavior
and potential user and arm similarities that can further help
the choice of displayed arms. In the next section, we further
develop the idea of using similar contexts and arms to affect
decisions more dynamically.

5. THE RECOMMENDER PROBLEM
Consider a matrix where the rows are users (user ids) and

the columns are ad topics. Whenever a user visits a page an
ad topic is picked (via some mechanism) and shown to the
user, and the outcome is recorded (whether or not there was
a click). We expect that with a sufficiently large population
of users and collection of ad topics, many users would be-
have similarly, and cluster into a smaller number of groups.
Similar behavior, in our case, means similar patterns of like-
lihoods of clicking on certain topics. Such clustering also
imposes clusters on the ads (columns). Thus click through
rates that are known for some users can be used to infer
similar click through rates for other similar users. The simi-
larity among users may be defined in terms of click through
rates themselves and/or inferred/predicted at least partly
based on other user attributes such as their demographics
and recent and past behavior. In the same vein, similarity
among the items (columns) may be a function of the meta
attributes of topics (e.g., similarity in terms of subject) in
addition to the click through rates the topics obtain from
the users’ activity.

Therefore, when we want to select ads to display to a
single user, treating the problem as merely a single narmed
bandit task misses much opportunity for faster optimization.
This problem is very similar to recommendation problems
[8], and involves many similar issues: users (in general, ex-
plicit contexts) with similar tastes, missing values, and our
choice of the columns/items to show when a user (re)visits.
Some difference from typical recommender problems are:

1. In recommendation problems, one does not recommend
the same item again after it has been viewed or bought,
but here, items/arms (e.g., , a certain ad topic) can
be repeatedly shown so better estimates of click rates
or expected revenue for it is obtained.4 The miss-

lem is the perspective of optimization: often the problem
is cast from the user’s point of view. Thus the user is pre-
sumably motivated to interact and experiment actively and
intelligently to recognize and exploit the better arms. In
the case of contextual problems, the system (the company)
is primarily doing the optimization, though the users should
benefit as well.
4However, in our problem there may also be a notion of

ing quantity is the rate (more generally a distribution)
rather than grade of likability.

2. In many recommender problems, users have some con-
trol of what they see and rate, here the control is com-
pletely under the systems from the outset.5

3. Often in a recommendation problem there is no ex-
plicit notion of reward. Here, time lost is revenue
lost, and exploration/exploitation and reward maxi-
mization take a markedly more relevant role.

Several recommender solutions methods, in particular col-
laborative filtering approaches, as well as techniques such as
dimensionality reduction and clustering, nearest neighbors
and other machine learning methods, apply to the contex-
tual problem as well. Perhaps the most important distin-
guishing factor is the very direct connection of superior al-
gorithms, e.g., better clusterings or similarity metrics, to
higher returns. In case of clustering, this could be con-
trasted with standard applications of clusterings in which
the true objective may be ill defined or subjective. In con-
textual problems, the ultimate objective is the expected re-
turns, and the performance of any context and arm cluster-
ing would be measured against that ideal of how effectively
it increases expected returns. See for example the work of
Kleinberg et. al. [5], which studies algorithms for clustering
for similar economic end goals. The challenge here is how to
do exploration and exploitation with the understanding that
information obtained about a single user can help the whole
community of users, and information about the community
can help better serve a single user. Similar questions apply
to the arms.

6. THE GENERAL PROBLEM
When the set of possible contexts and arms are enumer-

able, techniques developed for the problems of previous sec-
tion are directly applicable, and sampling methods may ad-
dress scalability. This “manageable” scenario occurs when,
for example, contexts are restricted to user ids and arms
are restricted to ad topics (see Section 5). This assumption
may turn out to be too restrictive in practice. To allow for
the full power of prediction, each context or arm can have
a number of attributes “active” (e.g., a page may belong to
multiple topics), where the space of possible attributes can
range in 100s and beyond. Thus, both a context and an
arm may be viewed as points in their own large dimensional
spaces.

In such scenarios, the set of possible contexts and/or arms
is not enumerable and cannot be represented explicitly. And
yet, all the aspects of the problem, the prediction problem,
the exploration vs exploitation problem, and the recom-
mender problem remain. Ignoring any aspect may lead to
significant loss of opportunity for optimization. Obviously,
techniques in learning and optimization in large dimensional
spaces, such as dimensionality reduction and learning sim-
ilarity metrics, is relevant. However, we are not aware of
prior research that addresses exploration and exploitation
in such large dimensional spaces, taking community (collab-
orative filtering effects) into account.

decay in interest. This in part depends on how we define
the context.
5Still it is possible to imagine scenarios where we allow the
users to pick the type of ads they want to see.

88



7. SUMMARY
We described the contextual recommender problem, mo-

tivated by contextual advertising, and identified several re-
lated subproblems:

• A prediction problem involving a large number of fea-
tures, possibly with missing values. The objective is to
obtain a predictor that outputs a distribution prefer-
ably instead of a single numeric quantity.

• A generalization of the multi-armed bandit problem
to a set of contexts, in order to address sparsity is-
sues. This problem may also be considered a special
recommender problem and, in particular, collaborative
filtering techniques are relevant.

• Further extension to the case where the space of con-
text or arms is not enumerable: A context or an arm
is modeled as a point in a large dimensional feature
space.

There may remain other challenges, for example nonstation-
arity: A user’s needs and interests change over time. Con-
textual recommender problems are general. For instance,
instead of ads, other items can be offered, for example nav-
igational links [7]. Personalized web search may also be
viewed as a special case in which knowledge of the query
significantly reduces ambiguity and the need for extensive
exploration [4]. Studying these problems in theory as well
as developing experience and an understanding of effective
practical algorithms should be of great value.
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ABSTRACT 
Association rule mining (ARM) identifies frequent itemsets from 
databases and generates association rules by considering each 
item in equal value. However, items are actually different in many 
aspects in a number of real applications, such as retail marketing, 
network log, etc. The difference between items makes a strong 
impact on the decision making in these applications. Therefore, 
traditional ARM cannot meet the demands arising from these 
applications. By considering the different values of individual 
items as utilities, utility mining focuses on identifying the 
itemsets with high utilities. As “downward closure property” 
doesn’t apply to utility mining, the generation of candidate 
itemsets is the most costly in terms of time and memory space. In 
this paper, we present a Two-Phase algorithm to efficiently prune 
down the number of candidates and can precisely obtain the 
complete set of high utility itemsets. In the first phase, we propose 
a model that applies the “transaction-weighted downward closure 
property” on the search space to expedite the identification of 
candidates. In the second phase, one extra database scan is 
performed to identify the high utility itemsets. We also parallelize 
our algorithm on shared memory multi-process architecture using 
Common Count Partitioned Database (CCPD) strategy. We verify 
our algorithm by applying it to both synthetic and real databases. 
It performs very efficiently in terms of speed and memory cost, 
and shows good scalability on multiple processors,  even on large 
databases that are difficult for existing algorithms to handle.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 
mining.  

General Terms 
Algorithms, Design 

Keywords 
utility mining, association rules mining, downward closure 
property, transaction-weighted utilization 

1. INTRODUCTION 
Association rules mining (ARM) [1] is one of the most widely 
used techniques in data mining and knowledge discovery and has 
tremendous applications in business, science and other domains. 
For example, in the business, its applications include retail shelf 
management, inventory predictions, supply chain management, 
bundling products marketing. The main objective of ARM is to 
identify frequently occurring patterns of itemsets. It first finds all 
the itemsets whose co-occurrence frequency are beyond a 
minimum support threshold, and then generates rules from the 
frequent itemsets based on a minimum confidence threshold. 
Traditional ARM model treat all the items in the database equally 
by only considering if an item is present in a transaction or not. 

The frequent itemsets identified by ARM does not reflect the 
impact of any other factor except frequency of the presence or 
absence of an item. Frequent itemsets may only contribute a small 
portion of the overall profit, whereas non-frequent itemsets may 
contribute a large portion of the profit. In reality, a retail business 
may be interested in identifying its most valuable customers 
(customers who contribute a major fraction of the profits to the 
company). These are the customers, who may buy full priced 
items, high margin items, or gourmet items, which may be absent 
from a large number of transactions because most customers do 
not buy these items. In a traditional frequency oriented ARM, 
these transactions representing highly profitable customers may 
be left out.  For instance, {milk, bread} may be a frequent itemset 
with support 40%, contributing 4% of the total profit, and the 
corresponding consumers is Group A, whereas {birthday cake, 
birthday card} may be a non-frequent itemset with support 8% 
(assume support threshold is 10%), contributing 8% of the total 
profit, and the corresponding consumers is Group B. The 
marketing professionals must be more interested in promoting the 
sale of {birthday cake, birthday card} by designing promotion 
campaigns or coupons tailored for Group B (valuable customers), 
although this itemset is missed by ARM. Another example is web 
log data. A sequence of webpages visited by a user can be defined 
as a transaction. Since the number of visits to a webpage and the 
time spent on a particular webpage is different between different 
users, the total time spent on a page by a user can be viewed as 
utility. The website designers can catch the interests or behavior 
patterns of the customers by looking at the utilities of the page 
combinations and then consider re-organizing the link structure of 
their website to cater to the preference of users. Frequency is not 
sufficient to answer questions, such as whether an itemset is 
highly profitable, or whether an itemset has a strong impact. 
Utility mining is likely to be useful in a wide range of practical 
applications. 
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Recently, to address the limitation of AMR, a utility mining 
model was defined [2]. Intuitively, utility is a measure of how 
“useful” (i. e. “profitable”) an itemset is. The utility of an item or 
itemset is based on local transaction utility and external utility. 
The local transaction utility of an item is defined according to the 
information stored in a transaction, like the quantity of the item 
sold in the transaction. The external utility of an item is based on 
information from resources besides transactions, like a profit 
table. The external utility can be a measure for describing user 
preferences. The definition of utility of an itemset X, u(X), is the 
sum of the utilities of X in all the transactions containing X. The 
goal of utility mining is to identify high utility itemsets which 
drive a large portion of the total utility. Traditional ARM  model 
assumes that the utility of each item is always 1 and the sales 
quantity is either 0 or 1, thus it is only a special case of utility 
mining, where the utility or the sales quantity of each item could 
be any number. If u(X) is greater than a utility threshold, X is a 
high utility itemset, otherwise, it is a low utility itemset. Table 1 
is an example of a transaction database where the total utility is 
400. The number in each transaction in Table 1(a) is the sales 
volume of each item, and the external utility of each item is listed 
in Table 1(b). u({B, D}) = (6×10+1×6) + (10×10+1×6) = 172. {B, 
D} is a high utility itemset if the utility threshold is set at 120. 

Table 1. A transaction database and its utility table 
(a) Transaction table. Each row is a transaction. The columns 
represent the number of items in a particular transaction. 
TID is the transaction identification number 

       ITEM 

TID 
A B C D E 

T1 0 0 18 0 1 

T2 0 6 0 1 1 

T3 2 0 1 0 1 

T4 1 0 0 1 1 

T5 0 0 4 0 2 

T6 1 1 0 0 0 

T7 0 10 0 1 1 

T8 3 0 25 3 1 

T9 1 1 0 0 0 

T10 0 6 2 0 2 

 

(b) The utility table. The right column displays the profit of 
each item per unit in dollars 

ITEM PROFIT ($)(per unit) 

A 3 

B 10 

C 1 

D 6 

E 5 

 
To the best of our knowledge, there is no efficient strategy to find 
all the high utility itemsets. A naïve attempt may be to eliminate 
the items that contribute a small portion of the total utility. 

However, a high utility itemset may consist of some low utility 
items. Another attempt is to adopt the level-wise searching 
schema that exists in fast AMR algorithms, such as Apriori [1]. 
The base of these traditional ARM algorithms is the “downward 
closure property” (anti-monotone property):  any subset of a 
frequent itemset must also be frequent. That is, only the frequent 
k-itemsets are exploited to generate potential frequent (k+1)-
itemsets. This approach is efficient since a great number of item 
combinations are pruned at each level. However, this property 
doesn’t apply to the utility mining model. For example, u(D) = 36 
< 120, D is a low utility item, but its superset {B, D} is a high 
utility itemset. Without this property, the number of candidates 
generated at each level quickly approaches all the combinations 
of all the items. For 105 items, more than 109 2-itemsets 
candidates may be generated. Moreover, to discover a long 
pattern, the number of candidates is exorbitantly large. The cost 
of either computation time or memory is intolerable, regardless of 
what implementation is applied. The challenge of utility mining is 
in restricting the size of the candidate set and simplifying the 
computation for calculating the utility. 

Nowadays, in any real application, the size of the data set easily 
goes to hundreds of Mbytes or Gbytes. In order to tackle this 
challenge, we propose a Two-Phase algorithm to efficiently mine 
high utility itemsets. In Phase I, we define transaction-weighted 
utilization and propose a model ─ transaction-weighted 
utilization mining. Transaction-weighted utilization of an itemset 
X is estimated by the sum of the transaction utilities of all the 
transactions containing X. This model maintains a Transaction-
weighted Downward Closure Property: any subset of a high 
transaction-weighted utilization itemset must also be high in 
transaction-weighted utilization. (Please note we use a new term 
transaction-weighted utilization to distinguish it from utility. The 
focus of this paper is not proposing this new term, but to utilize 
the property of transaction-weighted utilization to help solve the 
difficulties in utility mining.) Thus, only the combinations of high 
transaction-weighted utilization itemsets are added into the 
candidate set at each level. Therefore, the size of the candidate set 
is substantially reduced during the level-wise search. The memory 
cost as well as the computation cost is also efficiently reduced. 
Phase I may overestimate some low utility itemsets as high 
transaction-weighted utilization itemsets since we use the 
transaction-weighted utilization mining model, but it never 
underestimates any itemsets. In phase II, only one extra database 
scan is performed to filter out the overestimated itemsets. The 
savings provided by Phase I may compensate for the cost incurred 
by the extra scan during Phase II. As shared memory parallel 
machines are becoming the dominant type of supercomputers in 
industry, we parallelize our algorithm on shared memory multi-
process architecture using Common Count Partitioned Database 
(CCPD) scheme. We verify our algorithm by applying it to both 
synthetic and real databases. It not only performs very efficiently 
in terms of speed and memory cost compared to the best existing 
utility mining algorithm [2] (to our best knowledge), but also 
shows good scalability on multiple processors. Our algorithm 
easily handles very large databases that existing algorithms 
cannot handle. 

The rest of this paper is organized as follows. Section 2 overviews 
the related work. Section 3 formally describes the utility mining 
model. In Section 4, we propose the Two-Phase algorithm. 
Section 5 presents our parallelization scheme. The experimental 

91



results are presented in section 6 and we summarize our work in 
section 7. 

2. RELATED WORK 
In the past ten years, a number of traditional ARM algorithms and 
optimizations have been proposed. The common assumption of 
them is that each item in a database is equal in weight and the 
sales quantity is 0 or 1.  All of these algorithms exploit the 
“downward closure property” as proposed in Apriori [1] (all 
subsets of a frequent itemset must be frequent), such as DHP [3], 
DIC [4], ECLAT [5], FP-growth [6]. 

Quantitative association rules mining is introduced in [7], which 
associates an antecedent with an impact on a target numeric 
variable. A behavior of a subset is interesting if the statistical 
distribution of the targeted quantitative variable stands out from 
the rest. A data-driven algorithm, called “Window”, is developed. 
OPUS [8] is an efficient algorithm to discover quantitative 
associations rules in dense data sets. The focus of these two 
algorithms (identifying rules where the antecedent strongly 
impacts the targeting numeric attribute) is different from ours 
(identifying those valuable item combinations and the implied 
valuable customers). The discovery from our work can guide the 
layout of goods in stores, or promotion campaigns to valuable 
customers. 

Researches that assign different weights to items have been 
proposed. MINWAL [9] mines the weighted association rules in 
binary transaction databases based on the k-support bound 
property. An efficient association rules generation method, WAR 
[10], focuses on the generation of rules from the available 
frequent itemsets instead of searching for weighted frequent 
itemsets. WARM [11] proposes a weighted ARM model where 
itemset weight is defined as the average weight value of the items 
comprising this itemset. [12] proposes a scheme that uniformly 
weights all the transactions without considering the differences 
among the items. These weighted ARM models are special cases 
of utility mining. 

One of the problems in the field of knowledge discovery is of 
studying good measures of interestingness of discovered patterns. 
Some interestingness measures have been proposed [19]. 
Actionability and unexpectedness are two important subjective 
measures. According to these measures, a pattern is interesting if 
the user can take some action by knowing this pattern or it is 
surprising to the user. Concepts are defined in probabilistic terms. 

A concept, itemset share, is proposed in [13]. It can be regarded 
as a utility because it reflects the impact of the sales quantities of 
items on the cost or profit of an itemset. Itemset share is defined 
as a fraction of some numerical value, such as total quantity of 
items sold or total profit. Several heuristics have been proposed 
and their effectiveness is well evaluated. 

A utility mining algorithm is proposed in [14], where the concept 
of “useful” is defined as an itemset that supports a specific 
objective that people want to achieve.  It focuses on mining the 
top-K high utility closed patterns that directly support a given 
business objective. Since the “downward closure property” no 
longer holds, it develops a new pruning strategy based on a 
weaker but anti-monotonic condition. Although this work is 
contributed to utility mining, the definition of utility and the goal 
of this algorithm in his work are different from those in our work. 

An alternative formal definition of utility mining and theoretical 
model was proposed in [2], where the utility is defined as the 
combination of utility information in each transaction and 
additional resources. Since this model cannot rely on “downward 
closure property” to restrict the number of itemsets to be 
examined, a heuristics is used to predict whether an itemset 
should be added to the candidate set. However, the prediction 
usually overestimates, especially at the beginning stages, where 
the number of candidates approaches the number of all the 
combinations of items. The examination of all the combinations is 
impractical, either in computation cost or in memory space cost, 
whenever the number of items is large or the utility threshold is 
low. Although this algorithm is not efficient or scalable, it is by 
far the best to solve this specific problem. Our work is based on 
this definition and achieves a significant breakthrough of this 
problem in terms of computational cost, memory cost and 
accuracy. 

3.  UTILITY MINING 
The goal of utility mining is to discover all the itemsets whose 
utility values are beyond a user specified threshold in a 
transaction database. We start with the definition of a set of terms 
that leads to the formal definition of utility mining problem. The 
same terms are given in [2].  

• I  =  {i1, i2, …, im} is a set of items.  

• D = {T1, T2, …, Tn} be a transaction database where each 
transaction Ti ∈ D is a subset of I. 

• o(ip, Tq), local transaction utility value, represents the 
quantity of item ip in transaction Tq. For example, o(A, T8) = 
3, in Table 1(a). 

• s(ip), external utility, is the value associated with item ip in 
the Utility Table. This value reflects the importance of an 
item, which is independent of transactions. For example, in 
Table 1(b), the external utility of item A, s(A), is 3. 

• u(ip, Tq), utility, the quantitative measure of utility for item ip 
in transaction Tq, is defined as  For example, 
u(A, T

).(),( pqp isTio ×

8) = 3 × 3, in Table 1.                                   

• u(X, Tq), utility of an itemset X in transaction Tq, is defined 
as ∑

∈Xi

qp

p

Tiu ),( , where X = {i1, i2, …, ik} is a k-itemset, X ⊆ 

Tq and 1≤ k≤ m. 

• u(X), utility of an itemset X, is defined as ∑
⊆∧∈ qq TXDT

qTXu ),( . 

    (3.1) 
Utility mining is to find all the high utility itemsets. An itemset X 
is a high utility itemset if u(X) ≥ ε, where X ⊆ I and ε is the 
minimum utility threshold, otherwise, it is a low utility itemset. 
For example, in Table 1, u(A, T8) = 3×3 = 9, u({A, D, E}, T8) = 
u(A, T8) + u(D, T8) + u(E, T8) = 3×3 + 3×6 + 1×5 = 32, and u({A, 
D, E}) = u({A, D, E}, T4) + u({A, D, E}, T8) = 14 + 32 = 46. If ε 
= 120, {A, D, E} is a low utility itemset. 

3.1 Computational Model and Complexity 
We now examine the computational model proposed in [2]. We 
refer this algorithm as MEU (Mining using Expected Utility) for 
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Figure 1. Itemsets lattice related to the example in Table 1. ε = 120. Itemsets in circles are the high utility 
itemsets. Numbers in each box are utility / number of occurrences. Gray-shaded boxes denote the search space. 

the rest of this paper. MEU prunes the search space by predicting 
the high utility k-itemset, Ik, with the expected utility value, 
denoted as u’(Ik). u’(Ik) is calculated from the utility values of all 
its (k-1) subsets. If u’(Ik) is greater than ε, Ik is added to the 
candidate set for k-itemsets, otherwise, Ik is pruned. u’(Ik) is 
calculated as 
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Ii 
k-1 is a (k-1)-itemset such that Ii 

k-1 =Ik – {i}, i.e. Ii 
k-1 includes all 

the items except item i. sup(I) is the support of itemset I, which is 
the percentage of all the transactions that contain itemset I. The 
minimum support among all the (k-1) subsets of Ik is given as 
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For each Ik, there are k (k-1)-subsets. In (3.2) and (3.3), m is the 
number of high utility itemsets among the (k-1) subsets where Ii 

k-1 
(1 ≤ i ≤ m) are high utility itemsets, and Ii

k-1 (m+1 ≤ i ≤ k) are low 
utility itemsets. This prediction is based on the support boundary 
property [2] which states that the support of an itemset always 
decreases as its size increases. Thus, if the support of an itemset is 
zero, its superset will not appear in the database at all. This 
approach uses the high utility itemsets at level (k-1) to calculate 
the expected utility value for level k and the utility threshold ε to 
substitute the low utility itemsets. 

Let us use Table 1 as an example. Figure 1 shows the search 
space of the database, given ε = 120. Since u({D, E}) = 56 < ε, 
supmin({B, D, E}) = min{sup({B, D}), sup({B, E})} = min{0.2, 
0.3} = 0.2. The expected utility value of {B, D, E} is: 

ε

ε

>=

×++×=

×
−
−

++×
−

=

226

120
2
1)

3.0
240

2.0
172(

2
2.0

13
23)

E})sup({B,
)E}B,({

)D}B,sup({
)D}B,({(

13
2.0)D}C,B,({' uuu

 

Hence, {B, C, D} is a candidate for 3-itemset. Observed from 
Figure 1, four out of 31 potential candidates are high utility 
itemsets, which are marked in circles. Using MEU, 26 itemsets (in 

gray-shaded boxes) have been added into the candidate sets by 
prediction. 

This model somehow reduces the number of candidates; however, 
it has drawbacks in the following aspects: 

1) Pruning the candidates – When m is small, the term 
1−

−
k

mk  

is close to 1 or even greater than 1. In this situation,  

is most likely greater than ε. When k = 2, is always 
greater than ε, no matter m is 0, 1, or 2. Similarly, when k = 
3, ≥ ε if m is 0, 1, or 2. Therefore, this estimation does 
not prune the candidates effectively at the beginning stages. 
As shown in Figure 1, all the 2-itemsets and 3-itemsets are 
included in the candidate sets. If there are 10
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5 different items 
in the database, the number of 2-itemsets is approximately 
5×109. Such requirements can easily overwhelm the 
available memory space and computation power of most of 
the machines. 

2) Accuracy – This model may miss some high utility itemsets 
when the variation of the itemset supports is large. For 
example, if ε = 40 in our example, the expected utility of 
itemset {C, D, E} is 
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Therefore, {C, D, E} is predicted to be a low utility itemset and 
then pruned from the candidate set for 3-itemsets. However, {C, 
D, E} is indeed a high utility itemset because u({C, D, E}) = 48 > 
ε. 

4. TWO-PHASE ALGORITHM 
To address the drawbacks in MEU, we propose a novel Two-
Phase algorithm that can highly effectively prune candidate 
itemsets and simplify the calculation of utility. It substantially 
reduces the search space and the memory cost and requires less 
computation. In Phase I, we define a transaction-weighted 
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utilization mining model that holds a “Transaction-weighted 
Downward Closure Property”. (The purpose of introducing this 
new concept is not to define a new problem, but to utilize its 
property to prune the search space.) High transaction-weighted 
utilization itemsets are identified in this phase. The size of 
candidate set is reduced by only considering the supersets of high 
transaction-weighted utilization itemsets. In Phase II, one 
database scan is performed to filter out the high transaction-
weighted utilization itemsets that are indeed low utility itemsets. 
This algorithm guarantees that the complete set of high utility 
itemsets will be identified. 

4.1 Phase I 
Definition 1. (Transaction Utility) The transaction utility of 
transaction Tq, denoted as tu(Tq), is the sum of the utilities of all 
items in Tq: , where is the same as 

in Section 3. Table 2 gives the transaction utility for each 
transaction in Table 1. 

∑
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Table 2. Transaction utility of the transaction database 

TID Transaction Utility TID Transaction Utility 

T1 23 T6 13 

T2 71 T7 111 

T3 12 T8 57 

T4 14 T9 13 

T5 14 T10 72 

 
Definition 2. (Transaction-weighted Utilization) The 
transaction-weighted utilization of an itemset X, denoted as 
twu(X), is the sum of the transaction utilities of all the transactions 
containing X: 

∑
∈⊆

=
DTX

q

q
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For the example in Table 1, twu(A) = tu(T3) + tu(T4) + tu(T6) + 
tu(T8) + tu(T9) = 12 + 14 + 13 + 57 + 13 = 109 and twu({A, D}) = 
tu(T4) + tu(T8) = 14 + 57 = 71. 

Definition 3. (High Transaction-weighted Utilization Itemset) 
For a given itemset X, X is a high transaction-weighted utilization 
itemset if twu(X) ≥ ε’, where ε’ is the user specified threshold. 

Theorem 1. (Transaction-weighted Downward Closure 
Property) Let Ik be a k-itemset and Ik-1 be a (k-1)-itemset such 
that Ik-1 ⊂ Ik. If Ik is a high transaction-weighted utilization 
itemset, Ik-1 is a high transaction-weighted utilization itemset. 

Proof: Let be the collection of the transactions containing IkIT k 

and be the collection of transactions containing I1−kIT k-1. Since Ik-

1 ⊂ Ik, is a superset of . According to Definition 2, 1−kIT kIT
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The Transaction-weighted Downward Closure Property indicates 
that any superset of a low transaction-weighted utilization itemset 
is low in transaction-weighted utilization. That is, only the 
combinations of high transaction-weighted utilization (k-1)-
itemsets could be added into the candidate set Ck at each level. 

Theorem 2. Let HTWU be the collection of all high transaction-
weighted utilization itemsets in a transaction database D, and HU 
be the collection of high utility itemsets in D. If ε’= ε, then HU ⊆ 
HTWU. 

Proof: ∀X ∈ HU, if X is a high utility itemset, then 
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Thus, X is a high transaction-weighted utilization itemset and X 
∈HTWU.                                                                                       

According to Theorem 2, we can utilize the Transaction-weighted 
Downward Closure Property in our transaction-weighted 
utilization mining in Phase I by assuming ε’ = ε and prune those 
overestimated itemsets in Phase II.  

Figure 2 shows the search space of Phase I. Twelve out of 31 
itemsets (in gray-shaded boxes) are generated as candidates 
(including the single items), and 9 out of 31 itemsets (in circles) 
are the high transaction-weighted utilization itemsets. The level-
wise search stops at the third level, one level less than MEU in 
Figure 1. (For larger databases, the savings should be more 
evident.) By holding the Transaction-weighted Downward 
Closure Property, the search space in our algorithm is small. 
Transaction-weighted utilization mining model outperforms MEU 
in several aspects: 

1) Less candidates ─ When ε’ is large, the search space can be 
significantly reduced at the second level and higher levels. 
As shown in Figure 2, four out of 10 itemsets are pruned 
because they all contain item A (A is not a high transaction-
weighted utilization item). However, in MEU, the prediction 
hardly prunes any itemset at the beginning stages. In Figure 
1, all the 10 2-itemsets are added into the candidate set C2 
because their expected utility values are all greater than ε. 

2) Accuracy ─ Based on Theorem 2, if we let ε’=ε, the 
complete set of high utility itemsets is a subset of the high 
transaction-weighted utilization itemsets discovered by our 
transaction-weighted utilization mining model. However, the 
prediction in MEU may miss some high utility itemsets when 
the variation of itemset supports is large. 

3) Arithmetic complexity ─ One of the kernel operations in 
the Two-Phase algorithm is the calculation for each itemset’s 
transaction-weighted utilization as in equation 4.1. 
Compared to the calculation for each itemset’s expected 
utility value (equation 3.2) in MEU, equation 4.1 only incurs 
add operations rather than a number of multiplications. Thus, 
since the kernel calculation may occur a huge number of 
times, the overall computation is much less complex. 
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Figure 2. Itemsets lattice related to the example in Table 1. ε’ = 120. Itemsets in circles (solid and dashed) are 
the high transaction-weighted utilization itemsets in transaction-weighted utilization mining model. Gray-
shaded boxes denote the search space. Itemsets in solid circles are high utility itemsets found by MEU. 
Numbers in each box are transaction-weighted utilization / number of occurrence. 

4.2 Phase II 
In Phase II, one database scan is required to select the high utility 
itemsets from high transaction-weighted utilization itemsets 
identified in Phase I. The number of the high transaction-
weighted utilization itemsets is small when ε’ is high. Hence, the 
time saved in Phase I may compensate for the cost incurred by the 
extra scan during Phase II. The total computational cost of Phase 
II is the cost of equation (3.1) × the total number of high 
transaction-weighted utilization itemsets.  

In Figure 2, the high utility itemsets ({B}, {B, D}, {B, E} and {B, 
D, E}) (in solid black circles) are covered by the high transaction-
weighted utilization itemsets (in solid and dashed black circles). 
Nine itemsets in circles are maintained after Phase I, and one 
database scan is performed in Phase II to prune 5 of the 9 itemsets 
since they are not high utility itemsets. 

5. PARALLEL IMPLEMENTATION 
Since the size of the databases in commercial activities is usually 
in Gbytes, the computation time or the memory consumption may 
be intolerable on a single processor. Therefore, high performance 
parallel computing is highly desired. Due to the fact that shared 
memory parallel machines are becoming the dominant type of 
supercomputers in industry because of its simplicity, we design 
our utility mining parallel implementation on shared-memory 
architecture. 

In shared-memory multi-process architecture (SMPs), each 
processor has its direct and equal access to all the system’s 
memory as well as its own local caches. To achieve a good 
scalability on SMPs, each processor must maximize access to 
local cache and avoid or reduce false sharing. That is, we need to 
minimize the Ping-Pong effect, where multiple processors might 
be trying to modify different variables that coincidently reside on 
the same cache line. 

The nature of our Two-Phase utility mining algorithm is a level-
wised search method, which is the same as Apriori [1]. [16, 17] 
has proved that Common Count Partitioned Database (CCPD) is 
the best strategy to parallel it. In CCPD, data is evenly partitioned 
on each processor, and each processor traverses its local database 

partition for incrementing the transaction-weighted utilization of 
each itemset. All the processors share a single common hash tree, 
which stores the candidate itemsets at each level of search as well 
as their transaction-weight utilization. To build the hash tree in 
parallel, CCPD associated a lock with each leaf node. When a 
processor wants to insert a candidate into the tree, it starts at root, 
and successively hashes on the items until it reaches a leaf. It then 
acquires the lock and inserts the candidate. With this locking 
mechanism, each processor can insert itemsets in different parts of 
the hash tree in parallel. For transaction-weight utilization 
calculation, each processor computes the value from its local 
database partition. 

6. EXPERIMENTAL EVALUATION AND 
PERFORMANCE STUDY  
We evaluate the performance of our Two-Phase algorithm by 
varying the size of the search space. We also analyze the 
scalability and result accuracy. All the experiments were 
performed on a 700-MHz Xeon 8-way shared memory parallel 
machine with a 4 Gbytes memory, running the Red Hat Linux 
Advanced Server 2.1 operating system. The program is 
implemented in C. In parallel implementation, we use OpenMP 
pragmas [18]. OpenMP is a specification for a set of compiler 
directives, library routines, and environment variables that can be 
used to specify shared memory parallelism. Due to its simplicity, 
OpenMP is quickly becoming one of the most widely used 
programming styles for SMPs. In SMPs, processors communicate 
through shared variables in the single memory space. 
Synchronization is used to coordinate processes. In order to give a 
fair comparison, we also implement MEU so that both of the 
implementations can run on the same machine. We use synthetic 
data and real world data for our evaluation purpose. The details of 
these databases are described in the following subsections. 

6.1 Synthetic Data from IBM Quest Data 
Generator 
We use two sets of synthetic databases from IBM Quest data 
generator [15]. One is a dense database, T10.I6.DX000K, where 
the average transaction size is 10; the other is a sparse database, 
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Figure 3. Utility value distribution in utility table. 
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Figure 4. Execution time with varying minimum 
utility threshold.T20.I6.DX000K, where the average transaction size is 20. The 

average size of the maximal potentially frequent itemsets is 6 in 
both sets of databases. In both sets of databases, we vary the 
number of transactions from 1000K to 8000K, and the number of 
items from 1K to 8K. However, the IBM Quest data generator 
only generates the quantity of 0 or 1 for each item in a 
transaction. In order to fit them into the scenario of utility mining, 
we randomly generate the quantity of each item in each 
transaction, ranging from 1 to 5. Utility tables are also 
synthetically created by assigning a utility value to each item 
randomly, ranging from 0.01 to 10.00. Observed from real world 
databases that most items are in the low profit range, we generate 
the utility values using a log normal distribution. Figure 3 shows 
the histogram of the utility values of 1000 items. 

Table 3. The number of candidate itemsets generated by 
Phase I of Two-Phase algorithm vs. MEU in the first two 
database scans 

T10.I6.D1000K T20.I6.D1000K              Databases 

Threshold Phase I MEU Phase I MEU 

1st scan 226128 499500 315615 499500 
0.5% 

2nd scan 17 - 18653 - 

1st scan 153181 499500 253116 499500 
0.75% 

2nd scan 0 - 1531 - 

1st scan 98790 499500 203841 499500 
1% 

2nd scan 0 - 183 - 

1st scan 68265 499500 159330 499500 
1.25% 

2nd scan 0 - 33 - 

1st scan 44850 499500 135460 499500 
1.5% 

2nd scan 0 - 8 - 

1st scan 27730 499500 104653 499500 
1.75% 

2nd scan 0 - 4 - 

1st scan 16836 499500 84666 499500 
2% 

2nd scan 0 - 1 - 

6.1.1 Number of Candidates 
Table 3 presents the number of candidate itemsets generated by 
Phase I of our Two-Phase algorithm vs. MEU. We only provide 
the numbers in the first two database scans. The number of items 
is set at 1000, and the minimum utility threshold varies from 0.5% 

to 2%. The number of candidate itemsets generated by Phase I at 
the first database scan decreases dramatically as the threshold 
goes up. However, the number of candidates generated by MEU 
is always 499500, which is all the combinations of 1000 items. 
Phase I generates much fewer candidates compared to MEU. For 
example, 16836 by Phase I vs. 499500 by MEU at a utility 
threshold 2% in database T10.I6.D1000K. After the second 
database scan, the number of candidates generated by our 
algorithm decreases substantially, mostly decreasing more than 
99%. We don’t provide the exact numbers for MEU because it 
actually takes an inordinate amount of time (longer than 10 hours) 
to complete the second scan. In the case of T20.I6.D1000K, more 
candidates are generated, because each transaction is longer than 
that in T10.I6.D1000K. Observed from Table 3, the Transaction-
weighted Downward Closure Property in transaction-weighted 
utilization mining model can help prune candidates very 
effectively. 

6.1.2 Scalability 
Figure 4 shows the execution time (including both Phase I and 
Phase II) of the Two-Phase algorithm using T20.I6.D1000K and 
T10.I6.D1000K. Since the number of candidate itemsets 
decreases as the minimum utility threshold increases, the 
execution time decreases, correspondingly. When threshold is 
0.5%, the execution time of T20.I6.D1000K is somewhat longer, 
because it takes 3 more scans over the database in this case 
compared to other cases with higher threshold values. 

Figure 5 presents the scalability of the Two-Phase algorithm by 
increasing the number of transactions in the database. The number 
of transactions varies from 1000K to 8000K. The minimum utility 
threshold is set at 1% to 0.5% in Figure 5(a) and Figure 5(b), 
respectively. The execution times for either database increase 
approximately linearly as the data size increases.  The execution 
times for T20.I6.DX000K are longer than that of 
T10.I6.DX000K, because more computation is required for longer 
transactions. In addition, the size of database T20.I6.DX000K is 
larger and therefore takes a longer time to scan. 

Figure 6 presents the performance when varying the numbers of 
items. The number of items varies from 1K to 8K. The minimum 
utility threshold is set at 1% and 0.5% in Figure 6(a) and Figure 
6(b), respectively. When the threshold is 1% as in Figure 6(a), the 
time decreases as the number of items increases. However, in 
Figure 6(b), the time for database T10.I6.D1000K with 2K items 
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(a) minimum utility threshold = 1% (b) minimum utility threshold = 0.5% 

Figure 5. Execution time for databases with different sizes.
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Figure 6. Execution time for databases with different number of items. 

is longer than that with 1K items. This is because the total number 
of candidates is 403651 in the former case, greater than 226145 in 
the latter case. Similarly, the time for database T20.I6.D1000K 
with 4K items is longer than that with 2K items, since the total 
numbers of candidates for the two cases are 1274406 and 779413, 
respectively. Thus, we can see that the execution time is 
proportional to the number of candidates generated during the 
entire process. 

6.1.3 Relationship Between Effectiveness vs. Average 
Transaction Size 
As discussed in Section 4 that high transaction-weighted 
utilization itemsets identified by Phase I (referred as HTWUI in 
Table 4) cover high utility itemsets (refered as HUI), we would 
like to investigate the relationship between them. As shown in 
Table 4, each number of HUI is smaller than the number of 
HTWUI, correspondingly. Another observation is that the number 
of HUI is closer to that of HTWUI in database T10.I6.D1000K 
than in T20.I6.D1000K. This is because in Phase I, the 
transaction-weighted utilization of any itemset X is defined as the 
sum of the transaction utilities of all the transactions containing X 
(equation 4.1). This overestimation gets worse when transactions 
are longer, because more unrelated items tend to be included in 

longer transactions. Despite the overestimation, the efficiency of 
Phase I is still evident. Hence, our proposed algorithm performs 
more efficiently, especially in dense databases. 

Table 4. Comparison of the number of candidate itemsets 
(CI), high transaction-weighted utilization itemsets (HTWUI), 
and high utility itemsets (HUI) 

T10.I6.D1000K T20.I6.D1000K 
Threshold 

CI HTWUI HUI CI HTWUI HUI 

0.5% 226145 711 25 334268 3311 25 

0.75% 153181 557 9 254647 1269 9 

1% 98790 445 6 204024 799 6 

1.25% 68265 370 2 159363 615 2 

1.5% 44850 300 0 135468 542 0 

1.75% 27730 236 0 104657 465 0 

2% 16836 184 0 84667 416 0 

 

6.2 Real-World Market Data 
We also evaluated the Two-Phase algorithm using a real world 
data from a major grocery chain store in California. It contains 
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products from various categories, such as food, health care, gifts, 
and others. There are 1,112,949 transactions and 46,086 items in 
the database. Each transaction consists of the products and the 
sales volume of each product purchased by a customer at a time 
point. The size of this database is 73MByte. The average 
transaction length is 7.2. The utility table describes the profit of 
each product. 

Table 6. Accuracy comparison between Two-Phase 
algorithm and MEU (with support constraint) on the 
real-world market data 

Threshold # High utility 
(Two-Phase) 

# High utility (MEU 
with support constraint) 

MEU 

Miss rate 

1% 2 1 50% 

0.75% 3 2 33.3% 

0.5% 5 3 40% 

0.25% 17 17 0% 

0.1% 80 66 17.5% 

In order to evaluate if the utility mining results is useful to the 
grocery store, we compare the high utility itemsets with the 
frequent itemsets mined by traditional ARM. We do observe a 
number of interesting items/itemsets. For example, a kind of 
bagged fresh vegetable is a frequent item (the support is over 
3%), however, its contribution the total profit is less than 0.25%. 
A combination of two kinds of canned vegetable is also a good 
example, which occurs in more than 1% of the transactions, but 
contributes less than 0.25% of the overall profit. Therefore, utility 
mining can help the marketing professionals in this grocery store 
make better decisions, such as highlight their highly profitable 
items/itemsets and reduce the inventory cost for frequent but less 
profitable items/itemsets.  

We evaluate the scalability of our algorithm by varying the 
threshold. As shown in Table 5, it is fast and scales well. MEU 
doesn’t work with this dataset unless out-of-core technique is 
designed and implemented, because the number of 2-itemset 
candidates is so large (approximate 2 billion) that it overwhelms 
the memory space available to us. Actually, very few machines 
can afford such a huge memory cost. 

Table 5. Experiment summary of the real-world market data 

 
Result accuracy is a very important feature of utility mining, 
because the mining results can be used to guide the marketing 
decisions. Therefore, the accuracy comparison between our Two-
Phase algorithm and MEU is given in Table 6. The miss rate is 
defined as (the number of high utility itemsets – the number of 
high utility itemsets discovered) ÷ the number of high utility 
itemsets. To control the execution time of MEU, we set the 
minimum support and the utility threshold to the same value, i.e. 
1%, 0.75%, 0.5%, 0.25% and 0.1%. With this support constraint, 
MEU works with this data set. However, it may lose some high 
utility itemsets whose support values are below the support 
threshold. For example, when the utility threshold is set at 0.1%, 
the Two-Phase algorithm discovers 80 high utility itemsets 
whereas MEU (support is set at 0.1%) only gets 66 and misses 14 
high utility 2-itemsets. Our algorithm guarantees that all the high 
utility itemsets will be discovered. 

6.3 Parallel Performance 
We vary the number of processors from 1 to 8 to study the 
scalability of our parallel implementation on the real grocery store 
dataset. Figure 7(a) presents the measured total execution time. 
The corresponding speedups are presented in Figure 7(b). As the 
minimum utility threshold decreasing, the search space is 
increasing dramatically. We observed that it scales better when 
the searching space increasing. The best case is 4.5 times speedup 
on 8 processors in the case of minimum threshold = 0.25%. The 
performance limitation stems from the significant amount of 
atomic access to the shared hash tree structure. Overall speaking, 
the parallel scalability in our experiment is good. 

7. CONCLUSIONS 
This paper proposed a Two-Phase algorithm that can discover 
high utility itemsets highly efficiently. Utility mining problem is 
at the heart of several domains, including retailing business, web 
log techniques, etc. In Phase I of our algorithm, we defined a term 
transaction-weighted utilization, and proposed the transaction-
weighted utilization mining model that holds Transaction-
weighted Downward Closure Property. That is, if a k-itemset is a 
low transaction-weighted utilization itemset, none of its supersets 
can be a high transaction-weighted utilization itemset. The 
transaction-weighted utilization mining not only effectively 
restricts the search space, but also covers all the high utility 
itemsets. Although Phase I may overestimate some itemsets due 
to the different definitions, only one extra database scan is needed 
in Phase II to filter out the overestimated itemsets. Our algorithm 
requires fewer database scans, less memory space and less 
computational cost. The accuracy, effectiveness and scalability of 
the proposed algorithm are demonstrated using both real and 
synthetic data on shared memory parallel machines. Another 
important feature is that Two-Phase algorithm can easily handle 
very large databases for which other existing algorithms are 
infeasible.  

Minimum 
utility 

threshold 

Running 
time 

(seconds) 

# 
Candidates 

# High 
transaction-

weighted 
utilization  
(Phase I) 

# High 
utility 

(Phase II) 

1% 25.76 11936 9 2 

0.75% 33.3 23229 26 3 

0.5% 53.09 69425 80 5 

0.25% 170.49 627506 457 17 

0.1% 1074.94 7332326 3292 80 
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