Real-time fMRI search for the visual components of object perception

Cortical perception of complex visual properties
- The visual features encoded by mid- and high-level cortical visual regions are not obvious.
- Very limited number of stimuli can be shown in neuroimaging study, compared to diversity of potentially cortically-relevant features
- We used realtime fMRI to explore cortical responses to specific features within restricted visual feature spaces for complex real-world or novel objects

Methods
- Participants shown photos of real-world or synthesized Fribble objects (Williams, 2000), drawn from 1 of 4 classes
- BOLD signals recorded with fast event-related design (2 sec TR, partial coverage) for 20 subjects

Search for preferred visual properties
- For each subject, select 4 brain regions associated with 4 stimulus classes
- Search in class-specific feature space for stimulus most activating brain region

Example voxel regions studied
- Example stimuli used in search for feature (center red circle) producing greatest activity

Real-time stimulus selection
- Stimuli selected based on BOLD response to past stimuli shown with simplex simulated annealing (Cardoso 1996)

Visual feature space
Feature spaces defined to capture visual similarities between stimuli, defined by SIFT (Lowe 2005) and defined by geometric morphs

Behavior of search for preferred stimuli
- Testing for desired performance
 - **Convergence**: focus on stimuli producing maximal response
 - **Consistency**: find similar features of interest regardless of where in space we start the search

Selectivity in visual feature space
- Invariance across subset of dimensions
- Multiple selectivities within brain region

Objects highlighted by search
- Stimuli sorted by S3 cortical response magnitude
- Surface and shape properties elicit marked cortical responses

Discussion
- Multiple feature-selective centers in the 125-voxel ROI within human ventral pathway
- ROI may be selective to variable sets of features (e.g., variable number of axes in feature space)
- Realtime searches converge on preferred stimuli with limited stimulus displays
- There is room for improvement in search performance

References

Acknowledgments

NSF IGERT, R.K. Mellon Foundation, Pennsylvania Department of Health’s Commonwealth Universal Research Enhancement Program, NIH EUREKA Award #1R01MH084195SA01, and the Temporal Dynamic of Learning Center at UCSD (NSF Science of Learning Center #SMA-1043755)