Exploring computational models of visual object perception

Darren A Seibert2,3, Daniel D Leeds1, John A Pyles1,4 and Michael J Tarr1,4

1Center for the Neural Basis of Cognition, Carnegie Mellon University (CMU), Pittsburgh, PA, 2Department of Biomedical Engineering, University of Houston, Houston, TX, 3UpMC Summer Program, CMU, 4Department of Psychology, CMU

Encoding and decoding ventral activity

- Models of perception in anterior stages of the visual stream are few in number and tests of these models' consistency with neural data have been limited
- Cadieu et al have demonstrated HMAX's ability to predict responses in V4
- We explore HMAX's ability to describe fMRI activity throughout the ventral stream

Experimental design

- Participants shown images of 60 objects, 6 x each
- BOLD signals recorded with slow event-related design (2 sec TR, partial coverage)

Measuring responses—Searchlight Projection

- Constructed "searchlight"—123 voxel sphere—centered at each voxel (Kriegeskorte et al., 2006)

The HMAX model:

Selectivity layer:
- Determine extent to which image patch contains an edge

Tolerance layer:
- Determine maximal response laterally and across scales

Fitting the 1st pair of layers

- Adjust model configuration to reduce error (greedy descent)
- Compute prediction error (mean squared difference)

HMAX

Fitting the 2nd pair of layers

- Determine feature selectivity for the second pair of layers using a greedy search algorithm (Cadieu et al., 2007)

Fitting results for the first pair of layers

- Voxels significantly predicted by C1 and fit to have $n=1$ for C2

Correlation between C2 and fMRI

- Preference for larger edges

Increasing scale size

Voxels significantly predicted by C1 and fit to have $n=1$ for C2

Second pair of layers

- Best model fMRI data
- Selecting for fewer C1 units
- Using 5x as much training available to us

References

Acknowledgments

Funded by NSF IGERT, R.K. Mellon Foundation, NIH EUREXA Award #R35013MR084955-01, and the Temporal Dynamic of Learning Center at UCSF (NSF Science of Learning Center SBE-0542013)