CISC 3250
Systems Neuroscience

Matlab

Professor Daniel Leeds
dleeds@fordham.edu
JMH 328A

Commands
Symbols and keywords cause actions
• $b=2$ creates variable b with value 2
• $d=b+5$ creates variable d with value computed by adding 5 to value of b
• exit closes program

= operation
= assigns value on right to variable on left

• $b=5$ valid
• $5=b$ invalid

Variable names
• A variable name is any valid identifier
 – Starts with a letter, contains letters, digits, and underscores (_) only
 – Cannot begin with a digit
 – Case sensitive:
 username≠userName≠UserName
Standard arithmetic

Operators
- Addition: \(5 + 2 \) evaluates to 7
- Subtraction: \(5 - 2 \) evaluates to 3
- Multiplication: \(5 \times 2 \) evaluates to 10
- Division: \(4 \div 2 \) evaluates to 2
- Exponent: \(5^2 \) evaluates to 25

Be careful with variable names

- NumSpikes=10

Variables are case-sensitive
- numspikes=5 **error, did not capitalize N and S**
- NumSpike=5 **error, forgot letter s at end**

Logic

Conditional behavior based on variable value
if \(x > 5 \)
 \(y=2; \)
else
 \(y=5; \)
end;

Basic syntax
if condition
 actions-if-true
else
 actions-if-false
end

Comparisons
- \(d<2, \ d>2 \) **strict inequality**
- \(d\leq2, \ d\geq2 \) **semi-inequality**
- \(d==2 \) **equality**

Logic combinations
- \(d>5 \ \& \ d<8 \) **the AND operation**
- \(d<5 \ \mid \ d>8 \) **the OR operation**
Loop

Repeating similar action
for \(i = 1:4 \)
 \[\text{disp}(i); \]
end;

Basic syntax
for \(\text{var} = \text{VarValues} \)
 \(\text{actions-to-repeat} \)
end

Output
1
2
3
4

Defining a vector

Vector is a list of numbers
- \(b=[42, 35, 68, -3] \)
- \(c=[-18 \ 12 \ 14] \)

Vector denoted by [] braces
Elements separated by commas , or blank spaces

Counting in Matlab

\(a:b \) creates a vector \([a \ a+1 \ldots \ b-1 \ b] \)
- \(3:6 \) \(\rightarrow \) \([3 \ 4 \ 5 \ 6] \)

\(a:k:b \) creates a vector \([a \ a+k \ a+2k \ldots \ b] \)
- \(3:4:15 \) \(\rightarrow \) \([3 \ 7 \ 11 \ 15] \)

Accessing vector elements

\(a=[2.2 \ 1.4 \ -5 \ 3.5 \ -7.8]; \)
- \(\text{name} \) accesses full vector \(a \)
- \(\text{name(index)} \) accesses single element \(a(4) \) \(\text{returns} \ 3.5 \)
- \(\text{name(index1: index2)} \) accesses set of elements \(a(2:4) \) \(\text{returns} \ [1.4 \ -5 \ 3.5] \)
- \(\text{name(end)} \) accesses final element