CISC 4090
Theory of Computation

Turing machines

Professor Daniel Leeds
dleeds@fordham.edu
JMH 332

Alan Turing (1912-1954)
Father of Theoretical Computer Science
Key figure in Artificial Intelligence
Codebreaker for Britain in World War I

Turing machine
Simple theoretical machine
Can do anything a real computer can do!

Detour: “Turing test”

A computer is “intelligent” if human investigator can’t tell if she’s talking to a human or a computer
Turing machine

Simple theoretical machine
Can do anything a real computer can do!

Review of machines

- Finite state automaton (Regular languages)
- Push down automaton (Context free languages)
- Turing machine (beyond CFLs)

Turing machine structure

Infinite tape
At each step
- Must move left/right on tape
- Can change state
- Can change tape content
When reaches accept or reject state, terminates and outputs "accept" or "reject"
Can loop forever

A Turing Machine for \(B = \{ w\#w \mid w \in \{0,1\}^* \} \)

Assume the string is written on the tape and you start at the beginning of the string. What can we do?
Strategy:
Find left-most 0-or-1 character in first word
If match left-most character in second word, X out both chars
Else reject
If no characters left, accept

How do we move this with single actions:
move-by-one and write?

Turing machine: the formal definition

7 tuple: \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\)

\(Q\) is set of states
\(\Sigma\) is input alphabet
\(\Gamma\) is the tape alphabet; blank \(\in \Gamma\) and \(\Sigma \subseteq \Gamma\)
\(\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\) transition function
Start, accept, and reject state: \(q_0, q_{\text{accept}}, q_{\text{reject}}\)

The transition function

\(\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\)

Given state \(q\) and symbol \(a\) at present location on tape,
change to state \(r\), change symbol on tape to \(b\), move Left or Right
Change in: (state, tape content, head location) — called “configuration”

The transition function

Example:
Start at \(q_2\). Current position underlined.
Step 0: \(q_2 \sim \cdots 0 0 1 1 \# \cdots \sim 0 1 1 \# \cdots \sim 0 0 1 \# \cdots\)
Step 1: \(q_3 \sim \cdots 0 0 0 1 \# \cdots \sim 0 0 1 \# \cdots \sim 0 0 1 \# \cdots\)
Step 2: \(q_4 \sim \cdots 0 1 0 1 \# \cdots \)
Step 3: \(q_4 \sim \cdots 0 1 0 1 \# \cdots \)
The transition function

Example:
Start at q_2. Current position underlined.
Step 0: $q_2 \sim 00 \# 1 \sim \sim 00 \# 1 \sim$
Step 1: $q_2 \sim 00 \# 1 \sim \sim 00 \# 1 \sim$
Step 2: $q_?$, Tape: ??
Step 3: $q_?$, Tape: ??

Strategy: $B = \{w\#w \mid w \in \{0,1\}^*\}$
Find left-most 0-or-1 character in first word
If match left-most character in second word, X out both chars
Else reject
If no characters left, accept

The transition function

Example:
Start at q_2. Current position underlined.
Step 0: $q_2 \sim 00 \# 1 \sim \sim 00 \# 1 \sim$
Step 1: $q_2 \sim 00 \# 1 \sim \sim 00 \# 1 \sim$
Step 2: $q_2 \sim 01 \# 1 \sim$
Step 3: reject $\sim 01 \# 1 \sim$
Strategy: \(B = \{ w#w \mid w \in \{0,1\}^* \} \)

1. Move to right word
2. Check if first available symbol in right word == \(s \)
3. If match, keep going; else reject

Typical big-picture solution

Find left-most 0-or-1 character in first word

- If match left-most character in second word, X out both chars
- Else reject

If no characters left, accept

Analysis: We will always get an answer (accept or reject), because problem gets smaller after each step
"Turing recognizable" vs. "Decidable"

$L(M)$ – "language recognized by M" is set of strings M accepts

Language is Turing recognizable if some Turing machine recognizes it
• Also called "recursively enumerable"

Machine that halts on all inputs is a decider. A decider that recognizes language L is said to decide language L

Language is Turing decidable, or just decidable, if some Turing machine decides it

Example non-halting machine

Determining if a machine halts can be hard!

Turing machine structure

Infinite tape

At each step
• Must move left/right on tape
• Can change state
• Can change tape content

When reaches accept or reject state, terminates and outputs "accept" or "reject"

Can loop forever

Turing Machine for $C = \{0^{2^n} \mid n \geq 0\}$

Recursive division by 2

Sweep left to right across tape, cross off every-other 0

If
• Exactly one 0: accept
• Odd number of 0s: reject
• Even number of 0s, return to front
Alternating 0s in action:

\[\text{TM M2 “decides” language C} \]

If you land on a location and want to cross it out, but it is a ~, you crossed out an even number of 0s – do another loop!

If you land on a location and want to skip over it, but it is a ~, you crossed out an odd number of 0s – reject!

Language D={a^i|k | k=ixj and i,j,k>0}

Multiplication on a Turing Machine!
Consider 2x3=6

“Multiply” in action:

\[\text{TM M3 “decides” language D} \]

Scan string to confirm form is a^i*b*c^j
• if so: go back to front; if not: reject
X out first a, for each b, x off that b and x off one c
• If run out of c’s but b’s left: reject
Restore crossed out b’s, repeat b—c loop for next a
• If all a’s gone, check if any c’s left
 • If c’s left: reject; if no c’s left: accept

Symbol X is an a or c that is gone for good
Symbol y is a b temporarily out of service as you go through all the other b’s
Transducers: generating language

So far our machines accept/reject input

Transduction: Computers transform from input to output
• New TM: given i a’s and j b’s on tape, print out ixj c’s

Transducer: Write c^k, $k=ixj$, given i a’s, j b’s,

Scan string to confirm form is a^ib^+
• if so: go back to front; if not: reject
X out first a, for each b, Y off that b and add c to the end
Restore crossed out b’s, repeat b—c loop for next a
• If all a’s gone, accept

“Transducer” in action:

Symbol X is an a that is removed
Symbol y is a b temporarily out of service as you go through all the other b’s

TM 4: Element distinctiveness

Given a list of strings over {0,1}, separated by #, accept if all strings are different:

Example: 01101#1011#00010
TM 4 solution

1. Place mark on top of left-most symbol. If it is blank: accept; if it is #: continue, otherwise: reject
2. Scan right to next # and place mark on it. If none encountered and reach blank: accept
3. Zig-zag to compare strings to right of each marked #
4. Move right-most marked # to the right. If no more #: move left-most # to its right and the right-most # to the right of the new first marked #. If no # available for second marked #: accept
5. Go to step 3

TM 4 solution: alternate description

1. Mark left-most un-removed word as wordA; if none available, accept
2. Move to right until reach new un-removed word (if reach blank, loop to step 1)
3. Mark new word as wordB
4. If wordA=wordB, reject; else temporarily remove wordB and continue
5. Loop to step 2

“Distinctiveness checker” in action:

```
01 – marked as wordA
01 – marked as wordB
X – removed
```

```
~ ~ 001#11#101~~
~ ~ 001#11#101~~
... 
~ ~ 001#11#101~~
... 
~ ~ 001#11#101~~
... 
~ ~ 001#11#101~~
... 
~ ~ XXX#11#101~~
```

Decidability

How do we know decidable?
• Simplify problem at each step toward goal
• Can prove formally – number of remaining symbols at each step

Showing language is Turing recognizable but not decidable is harder
Many equivalent variants of TM

- TM that can “stay put” on tape for a given transition
- TM with multiple tapes
- TM with non-deterministic transitions

Can select convenient alternative for current problem

“Stay put” TM equivalent to Traditional TM

“Stay put” transition from q_i to q_j: $a \rightarrow b$, StayPut

Transition in Traditional TM:

q_i to $q_{\text{pre-j}}$: $a \rightarrow b$, L
$q_{\text{pre-j}}$ to q_j: $z \rightarrow z$, R, $\forall z \in \Gamma$

MultiTape TM

- Each tape has own ReadWrite Head
- Initially tape 1 has input string, all other tapes blank
- Transition does read/write on all heads at once

Equivalence of SingleTape and MultiTape TM

Convert k tape TM M to single tape TM S

- Contents of M’s tapes separated by # on S’s tape
- Mark current location on each tape
- Read stage: sweep through all k tapes to check input
- Write stage: sweep through all k tapes to write output and update marker (read head) locations
- Head location out of range?
 - Add new position to relevant tape, shift all other characters to right
Equivalence of Deterministic and Nondeterministic TMs

• Try all possible non-deterministic branches – breadth first search
• DTM accepts if NTM accepts
• Can use three tapes: 1 for input, 1 for current branch, 1 to track tree position

Enumerators

Enumerator E is TM with printer attached
• TM can send strings to be output by printer
• Input tape starts blank
• Language enumerated by E is collection of strings printed
• E may print infinitely

Theorem: A language is Turing-recognizable iff some enumerator enumerates it

Proof of enumerator equivalence

If enumerator E enumerates language A, TM M recognizes it
• For every w generated by E, M runs E and checks if w in output

If TM M recognizes language, A, can construct enumerator E for A:
• s1, s2, s3, ... be list of all possible strings
• For i=1,2,...,
 • Run M for i steps on s1, s2, ..., si
 • If string accepted, print it

Common themes in TM variants

• Unlimited access to unlimited memory
• Finite work performed at each step

Note, all programming languages are equivalent
• Can write compiler for C++ in Java
An Algorithm
is a collection of simple instructions for carrying out some task.

Hilbert’s Problems
In 1900, David Hilbert proposed 23 mathematical problems

Problem #10
• Devise algorithm to determine if a polynomial has an integral root.
• Example: $6x^3yz^2 + 3xy^2 - x^3 - 10$ has root $x=5$, $y=3$, $z=0$
 General algorithm for Problem 10 does not exist!

Church-Turing Thesis
• Intuition of thesis: algorithm == corresponding Turing machine
• Algorithm described by TM also can be describe by λ-calculus (devised by Alonzo Church)

Hilbert’s 10th problem
Is language D decidable, where $D=\{p \mid p$ is polynomial with integral root$\}$

Devise procedure:
• Try all ints, starting at 0: $x=0, 1, -1, 2, -2, 3, -3, ...$
• You may never terminate – so not decidable

Exception: univariate case for root is decidable
Levels of description

For FA and PDA
 • Formal or informal description of machine operation

For TM
 • Formal or informal description of machine operation
 • OR just describe algorithm
 • Assume TM confirms input follows proper tape string format

Graph connectivity problem

Let A be all strings representing graphs that are connected (any node can be reached by any other)

$A = \{<G> | G \text{ is connected undirected graph}\}$

Describe TM M to decide language

Algorithm:
1. Select and mark first node of G
2. Repeat below until no new nodes marked:
 • For each node in G, mark if it is attached to already-marked node
3. Scan all nodes of G – if all marked, accept; else, reject