1. Consider the state diagram for the following DFAs. For each, answer the following questions:
(1) What state is reached by the input: \(w=00110 \) ?
(2) What is the transition function?
(3) What is the language recognized?

M1:

![State Diagram M1](image1)

- (1) \(q_2 \) (0) \(\rightarrow \) \(q_0 \) 0 \(\rightarrow \) \(q_0 \) 1 \(\rightarrow \) \(q_1 \) 1 \(\rightarrow \) \(q_2 \) 0 \(\rightarrow \) \(q_2 \)
- (2) |
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_2)</td>
</tr>
</tbody>
</table>
- (3) \{ w \mid \text{the number of 1's entered is a multiple of 3} \}
 \{0^*(10^*10^*10^*)^*\}

M2:

![State Diagram M2](image2)

M3:

![State Diagram M3](image3)
2. Define a machine to recognize the following languages in the alphabet
\(\Sigma = \{1,2,3\} \)
(5 points)

- **L4** = \{ \(w \) | the product of input symbols is even \}
 E.g., 111 -> 1x1x1 = 1 is odd-reject,
 233 -> 2x3x3 = 18 is even-accept

- **L5** = \{ \(w \) | numbers entered in non-decreasing order \}
 Examples: 112223, 122333

- **L6** = \{ \(w \) | first two symbols are identical \}
 Examples: 001213, 333212, 3310013

3. Prove the following languages are regular, using the alphabet \(\Sigma = \{a, b, c\} \):

- **L7** = \{ \(w \) | \(w \) contains an odd number of b’s \}
 Define a DFA to detect the language and/or show a regular expression captures the language.
\[(aUc)^*b(aUc)^*((aUc)^*b(aUc)^*b(aUc)^*) \]

\[L_8 = \{ w \mid w \text{ contains the sequence } bcb \} \quad (\text{Examples: } aabbbcb or ccbbcba) \]

\[L_9 = \{ w \mid w \text{ does not have three a’s in a row} \} \]
4. Consider the following NFAs. For each, answer:

(1) what state(s) will be reached by the input: 0011
(2) provide a regular expression to describe the recognized language
(3) For N11 and N12, convert NFA to DFA

N10:

(1) No state – it will be rejected!
(2) $1(0^* U 0^* (0^*01)^*)$
5. For each regular expression using $\Sigma = \{a, b\}$:
(1) Provide three example words.
(2) Convert these regular expressions to a DFA or NFA

$L_{13} = \{ab^*(ba)^*\}$

$L_{14} = \{(a \cup b)ba^*\}$

$L_{15} = \{(bb)^* \cup (aa)^*\}$
(1) Examples: bb, aa, $bbbbbb$, $aaaaaa$, ε
(2)

6. What is the minimum pumping length for each of these languages, showing these languages are regular? We use the alphabet $\Sigma = \{0, 1, 2\}$

$L_{16} = \{00(0 \cup 1)^*12\}$

$L_{17} = \{0(22)^*10\}$
$p = 5$, minimum pumpable string is 02210

$L_{18} = \{111(202)^*210\}$
If pumping length is \(p = 5 \), how would you break up string \(w \) into \(x, y, \) and \(z \) for languages \(L \) below?

\[L_{19} = \{ 20(11)^*001 \}, \quad w = 201111001 \]

\[L_{20} = \{ (121)^*001 \} \quad w = 121001 \]

7. Consider the language \(L_{21} = \{ 01(101)^*11 \} \), what is the error in each of the following “pumping lemma” arguments?

Argument 1: Let us take \(w = 0111 \), \(w \in L_{21} \). We cannot divide \(w = xyz \) such that \(y^iz \in L_{21}, i \geq 0 \). For example, if \(x = 0, y = 11, \) and \(z = 1 \), \(xy^2z = 011111 \notin L_{21} \). Therefore, \(L_{21} \) is not regular.

The pumping length is \(p = 7 \). Using any strings in \(L_{21} \) with length less than pumping length is not necessarily pumpable, and the inability to pump a too-short string does not prove anything. You can only test pumping on strings with at least as many characters as the pumping length.

Argument 2: Let us take \(w = 0110110111 \), \(w \in L_{21} \). If we divide \(w = xyz \) as follows: \(x = 0110110, y = 11, z = 1 \), we cannot repeat \(y \) such that \(xy^iz \in L_{21}, i \geq 0 \). For example, if \(xy^2z = 011011011111 \notin L_{21} \). Therefore, \(L_{21} \) is not regular.
8. Prove these languages are not regular.

$L_{24} = \{0^n1^{2n}0^{3n} \mid n > 0 \}$

Proof by contradiction with pumping lemma:
Assume L_{24} is pumpable. Now consider $w = 0^p2^p0^{3p}$, which is element of L_{24} with $|w| > p$. Thus, w must be pumpable.

Let $w = xyz$ where $x = 0^j$, $y = 0^k$, $z = 0^{(p-(j+k))}2^p0^{3p}$, and $j + k \leq p$.

Try pumping w: xy^2z begins with $j + 2k + p - (j + k) \geq 0$'s, $j + 2k + p - (j + k) = p + k$ 0's.

xy^2z begins with $p + k$ 0's followed by $2p$ 1's.

$2p \neq p + k$, so $xy^2z \not\in L_{24}$, which means L_{24} is not regular!

$L_{25} = \{1^n3^n \mid n > 0 \}$

9. For each of the following grammars, list three strings produced by the grammar

G_{26}:

$S \rightarrow AB \mid BA$
$A \rightarrow xAy \mid \varepsilon$
$B \rightarrow BzB \mid y$

Examples:
$AB \rightarrow \varepsilon y \rightarrow y$
$BA \rightarrow yxAy \rightarrow yxxAyy \rightarrow yxyyy \rightarrow yxyy$
$AB \rightarrow \varepsilon BzB \rightarrow \varepsilon BzBzy \rightarrow \varepsilon BzBzyy \rightarrow \varepsilon yzyzyy$

G_{27}:

$S \rightarrow A \mid AA$
$A \rightarrow 00 \mid 11$

G_{28}:

$A \rightarrow 11A00 \mid \varepsilon$
10. Provide the languages described by two of the grammars:

G27 (from above)

G28 (from above)

10. Provide a grammar to produce the following languages

L32 = \{0^n(11)^n | n \geq 0\}

L33 = \{01^*00^*\}

L34 = \{w | w=\text{w}^{\text{Reverse}}\}
Examples: 00100, 10101, 1111
S -> 0S0 | 1S1 | 0 | 1 | \epsilon

11. Convert the following grammars to Chomsky Normal Form

G29:
S -> xAy | BA
A -> z | AzA
B -> yB | ε

Remove the ε
S -> xAy | BA | A
A -> z | AzA
B -> yB | y

Remove the S->A unit rule
S -> xAy | BA | z | AzA
A -> z | AzA
B -> yB | y

Replace mixed terminal—variable rules with variables-only rules
S -> UxAUy | BA | z | AUzA
Ux -> x
Uy -> y
Uz -> z
A -> z | AUzA
B -> UyB | y

Replace 3* variable rules with 2-variables rules
S -> UxC | BA | z | AD
C -> AUy
D -> UzA
Ux -> x
Uy -> y
Uz -> z
A -> z | AD
B -> U,yB | y

G30:
S -> BAB | ABA
A -> y | z
B -> x | AA | ε

G31:
S -> ByBy
B -> xBx | ε