Calculus practice

This is solely for your practice with calculus. I will grade more tricky derivatives in future homeworks!

Answers are on the next page.

\[f(x) = 7x^3 + 4x - 8 \]
Find \(f'(x) \) \quad Find \(f'(3) \)

\[g(x) = x^8 - 15x^2 + 42 \]
Find \(g'(x) \) \quad For what \(x \) values does \(g'(x) = 0? \)

\[h(x) = 22 \log(x) \]
Find \(h'(x) \)

\[r(x) = \frac{10}{x^2 + 3x} \]
Find \(r'(x) \) \quad Find \(r'(2) \)
Calculus answers:

f(x) = 7x^3 + 4x - 8
Find f'(x)
Find f'(3)
\[21x^2 + 4 \]
\[21 \times 9 + 4 = 189 + 4 = 193 \]

g(x) = x^8 - 15x^2 + 42
Find g'(x)
For what x values does g'(x) = 0?
\[8x^7 - 30x \]
\[80x^7 - 30x = 0 \rightarrow x = 0 \text{ or } x = \left(\frac{3}{8} \right)^{1/6} \]

h(x) = 22 \log(x)
Find h'(x)
\[\frac{22}{x} \]

r(x) = \frac{10}{x^2 + 3x}
Find r'(x)
Find r'(2)
\[-\frac{10(2x + 3)}{(2x^2 + 3x)^2} \]
\[-\frac{10(4 + 3)}{(2 \times 4 + 6)^2} = \frac{-70}{14^2} = \frac{-70}{196} \]

take derivative of (x^2 + 3x), multiply by derivative of \(\frac{10}{y} \) and insert (2x^2 + 3x) for y