
CISC 1100: Structures of Computer Science
Chapter 3

Logic

Arthur G. Werschulz

Fordham University Department of Computer and Information Sciences
Copyright c© Arthur G. Werschulz, 2015. All rights reserved.

Summer, 2015

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 1 / 49

Logical (or illogical?) reasoning

Is this a valid argument?

All men are mortal.
Socrates is a man.
Therefore,

Socrates is mortal.

Valid or not? Yes!

Is this a valid argument?

If we finish our homework, then we will go out for ice cream.
We are going out for ice cream.
Therefore we finished our homework.

Valid or not? No!

How to recognize the difference?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 2 / 49

Logical (or illogical?) reasoning

Is this a valid argument?

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

Valid or not?

Yes!

Is this a valid argument?

If we finish our homework, then we will go out for ice cream.
We are going out for ice cream.
Therefore we finished our homework.

Valid or not? No!

How to recognize the difference?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 2 / 49

Logical (or illogical?) reasoning

Is this a valid argument?

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

Valid or not? Yes!

Is this a valid argument?

If we finish our homework, then we will go out for ice cream.
We are going out for ice cream.
Therefore we finished our homework.

Valid or not?

No!

How to recognize the difference?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 2 / 49

Logical (or illogical?) reasoning

Is this a valid argument?

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

Valid or not? Yes!

Is this a valid argument?

If we finish our homework, then we will go out for ice cream.
We are going out for ice cream.
Therefore we finished our homework.

Valid or not? No!

How to recognize the difference?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 2 / 49

Logical (or illogical?) reasoning

Is this a valid argument?

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

Valid or not? Yes!

Is this a valid argument?

If we finish our homework, then we will go out for ice cream.
We are going out for ice cream.
Therefore we finished our homework.

Valid or not? No!

How to recognize the difference?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 2 / 49

Outline

Propositional logic

Logical operations
Propositional forms
From English to propositions
Propositional equivalence

Predicate logic

Quantifiers
Some rules for using predicates

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 3 / 49

Propositional logic

Proposition: A statement that is either true or false:

2 + 2 = 4.

2 + 2 = 5.

It rained yesterday in Manhattan.

It will rain tomorrow in Manhattan.

These are not propositions:

x + 2 = 4.

Will it rain today in Manhattan?

Colorless green ideas sleep furiously.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 4 / 49

Propositional logic

Proposition: A statement that is either true or false:

2 + 2 = 4.

2 + 2 = 5.

It rained yesterday in Manhattan.

It will rain tomorrow in Manhattan.

These are not propositions:

x + 2 = 4.

Will it rain today in Manhattan?

Colorless green ideas sleep furiously.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 4 / 49

Propositional logic

Proposition: A statement that is either true or false:

2 + 2 = 4.

2 + 2 = 5.

It rained yesterday in Manhattan.

It will rain tomorrow in Manhattan.

These are not propositions:

x + 2 = 4.

Will it rain today in Manhattan?

Colorless green ideas sleep furiously.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 4 / 49

Propositional logic

Proposition: A statement that is either true or false:

2 + 2 = 4.

2 + 2 = 5.

It rained yesterday in Manhattan.

It will rain tomorrow in Manhattan.

These are not propositions:

x + 2 = 4.

Will it rain today in Manhattan?

Colorless green ideas sleep furiously.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 4 / 49

Propositional logic

Proposition: A statement that is either true or false:

2 + 2 = 4.

2 + 2 = 5.

It rained yesterday in Manhattan.

It will rain tomorrow in Manhattan.

These are not propositions:

x + 2 = 4.

Will it rain today in Manhattan?

Colorless green ideas sleep furiously.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 4 / 49

Propositional logic

Proposition: A statement that is either true or false:

2 + 2 = 4.

2 + 2 = 5.

It rained yesterday in Manhattan.

It will rain tomorrow in Manhattan.

These are not propositions:

x + 2 = 4.

Will it rain today in Manhattan?

Colorless green ideas sleep furiously.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 4 / 49

Propositional logic

Proposition: A statement that is either true or false:

2 + 2 = 4.

2 + 2 = 5.

It rained yesterday in Manhattan.

It will rain tomorrow in Manhattan.

These are not propositions:

x + 2 = 4.

Will it rain today in Manhattan?

Colorless green ideas sleep furiously.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 4 / 49

Propositional logic (cont’d)

Truth value of a proposition (T, F)

Propositional variables: lower case letters (p, q, . . .)
(Analogous to variables in algebra.)

p=“A New York City subway fare is $2.50.”
q=“It will rain today in Manhattan.”
r=“All multiples of four are even numbers.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 5 / 49

Propositional logic (cont’d)

Truth value of a proposition (T, F)

Propositional variables: lower case letters (p, q, . . .)

(Analogous to variables in algebra.)

p=“A New York City subway fare is $2.50.”
q=“It will rain today in Manhattan.”
r=“All multiples of four are even numbers.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 5 / 49

Propositional logic (cont’d)

Truth value of a proposition (T, F)

Propositional variables: lower case letters (p, q, . . .)
(Analogous to variables in algebra.)

p=“A New York City subway fare is $2.50.”
q=“It will rain today in Manhattan.”
r=“All multiples of four are even numbers.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 5 / 49

Logical operations: negation

Negation, the not operation: reverses a truth value.

Negation is a unary operation: only depends on one variable.

Negation of p is denoted p′.
(Some books use other notations, such as p, ∼p, or ¬p.)

Can display via a truth table

p p′

T F
F T

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 6 / 49

Logical operations: conjunction, disjunction

The remaining operations we discuss are binary operations:
they depend on two variables (also called connectives).

Conjunction, the and operation: true if both operands are
true. Denote by ∧.

Disjunction, the (inclusive) or operation: true if either
operand is true (including both). Denote by ∨.

Truth tables:
p q p ∧ q

T T T
T F F
F T F
F F F

p q p ∨ q

T T T
T F T
F T T
F F F

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 7 / 49

Logical operations: conjunction, disjunction

The remaining operations we discuss are binary operations:
they depend on two variables (also called connectives).

Conjunction, the and operation: true if both operands are
true. Denote by ∧.

Disjunction, the (inclusive) or operation: true if either
operand is true (including both). Denote by ∨.

Truth tables:
p q p ∧ q

T T T
T F F
F T F
F F F

p q p ∨ q

T T T
T F T
F T T
F F F

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 7 / 49

Logical operations: conjunction, disjunction

The remaining operations we discuss are binary operations:
they depend on two variables (also called connectives).

Conjunction, the and operation: true if both operands are
true. Denote by ∧.

Disjunction, the (inclusive) or operation: true if either
operand is true (including both). Denote by ∨.

Truth tables:
p q p ∧ q

T T T
T F F
F T F
F F F

p q p ∨ q

T T T
T F T
F T T
F F F

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 7 / 49

Logical operations: conjunction, disjunction

The remaining operations we discuss are binary operations:
they depend on two variables (also called connectives).

Conjunction, the and operation: true if both operands are
true. Denote by ∧.

Disjunction, the (inclusive) or operation: true if either
operand is true (including both). Denote by ∨.

Truth tables:
p q p ∧ q

T T T
T F F
F T F
F F F

p q p ∨ q

T T T
T F T
F T T
F F F

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 7 / 49

Logical operations: exclusive or

The inclusive or ∨ is not the “or” of common language.

That role is played by exclusive or (xor), denoted ⊕.

Truth table:
p q p ⊕ q

T T F
T F T
F T T
F F F

Be careful to distinguish between or and xor!
�

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 8 / 49

Logical operations: exclusive or

The inclusive or ∨ is not the “or” of common language.

That role is played by exclusive or (xor), denoted ⊕.

Truth table:
p q p ⊕ q

T T F
T F T
F T T
F F F

Be careful to distinguish between or and xor!
�

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 8 / 49

Logical operations: conditional

Denoted p ⇒ q.

Captures the meaning of

If p, then q.
p implies q.
p only if q.
p is sufficient for q.
q is necessary for p.

Truth table:
p q p ⇒ q

T T T
T F F
F T T
F F T

First two rows are “obvious”.

Last two rows are not so obvious:
“One can derive anything from a false hypothesis.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 9 / 49

Logical operations: conditional

Denoted p ⇒ q.

Captures the meaning of

If p, then q.
p implies q.
p only if q.
p is sufficient for q.
q is necessary for p.

Truth table:
p q p ⇒ q

T T T
T F F
F T T
F F T

First two rows are “obvious”.

Last two rows are not so obvious:
“One can derive anything from a false hypothesis.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 9 / 49

Logical operations: conditional

Denoted p ⇒ q.

Captures the meaning of

If p, then q.
p implies q.
p only if q.
p is sufficient for q.
q is necessary for p.

Truth table:
p q p ⇒ q

T T T
T F F
F T T
F F T

First two rows are “obvious”.

Last two rows are not so obvious:
“One can derive anything from a false hypothesis.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 9 / 49

Logical operations: conditional

Denoted p ⇒ q.

Captures the meaning of

If p, then q.
p implies q.
p only if q.
p is sufficient for q.
q is necessary for p.

Truth table:
p q p ⇒ q

T T T
T F F
F T T
F F T

First two rows are “obvious”.

Last two rows are not so obvious:
“One can derive anything from a false hypothesis.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 9 / 49

Logical operations: conditional

Denoted p ⇒ q.

Captures the meaning of

If p, then q.
p implies q.
p only if q.
p is sufficient for q.
q is necessary for p.

Truth table:
p q p ⇒ q

T T T
T F F
F T T
F F T

First two rows are “obvious”.

Last two rows are not so obvious:

“One can derive anything from a false hypothesis.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 9 / 49

Logical operations: conditional

Denoted p ⇒ q.

Captures the meaning of

If p, then q.
p implies q.
p only if q.
p is sufficient for q.
q is necessary for p.

Truth table:
p q p ⇒ q

T T T
T F F
F T T
F F T

First two rows are “obvious”.

Last two rows are not so obvious:
“One can derive anything from a false hypothesis.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 9 / 49

Logical operations: biconditional

Denoted p ⇔ q

Captures the meaning of

p if and only if q.
p is necessary and sufficient for q.
p is logically equivalent to q.

Truth table:
p q p ⇔ q

T T T
T F F
F T F
F F T

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 10 / 49

Logical operations: biconditional

Denoted p ⇔ q

Captures the meaning of

p if and only if q.
p is necessary and sufficient for q.
p is logically equivalent to q.

Truth table:
p q p ⇔ q

T T T
T F F
F T F
F F T

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 10 / 49

Logical operations: biconditional

Denoted p ⇔ q

Captures the meaning of

p if and only if q.
p is necessary and sufficient for q.
p is logically equivalent to q.

Truth table:
p q p ⇔ q

T T T
T F F
F T F
F F T

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 10 / 49

Propositional Forms

In arithmetic and algebra, you learned how to build up complicated
arithmetic expressions, such as

1 + 2

−(1 + 2)

3× 4

−(1 + 2)/(3× 4)

−(1 + 2)/(3× 4) + (5 + 6× 7)/(8 + 9)− 10

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 11 / 49

Propositional Forms

In arithmetic and algebra, you learned how to build up complicated
arithmetic expressions, such as

1 + 2

−(1 + 2)

3× 4

−(1 + 2)/(3× 4)

−(1 + 2)/(3× 4) + (5 + 6× 7)/(8 + 9)− 10

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 11 / 49

Propositional Forms

In arithmetic and algebra, you learned how to build up complicated
arithmetic expressions, such as

1 + 2

−(1 + 2)

3× 4

−(1 + 2)/(3× 4)

−(1 + 2)/(3× 4) + (5 + 6× 7)/(8 + 9)− 10

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 11 / 49

Propositional Forms

In arithmetic and algebra, you learned how to build up complicated
arithmetic expressions, such as

1 + 2

−(1 + 2)

3× 4

−(1 + 2)/(3× 4)

−(1 + 2)/(3× 4) + (5 + 6× 7)/(8 + 9)− 10

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 11 / 49

Propositional Forms

In arithmetic and algebra, you learned how to build up complicated
arithmetic expressions, such as

1 + 2

−(1 + 2)

3× 4

−(1 + 2)/(3× 4)

−(1 + 2)/(3× 4) + (5 + 6× 7)/(8 + 9)− 10

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 11 / 49

Propositional Forms (cont’d)

Use connectives to build complicated expressions from simpler
ones, or

break down complicated expressions as being simpler
subexpressions, connected by connectives.

Example: −(1 + 2)/(3× 4) + (5 + 6× 7)/(8 + 9)− 10
consists of

−(1 + 2)/(3× 4) and (5 + 6× 7)/(8 + 9)− 10,

connected by +.

Now break down these two subexpressions.
Now break down the four sub-subexpressions.
And so forth.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 12 / 49

Propositional Forms (cont’d)

Use connectives to build complicated expressions from simpler
ones, or

break down complicated expressions as being simpler
subexpressions, connected by connectives.

Example: −(1 + 2)/(3× 4) + (5 + 6× 7)/(8 + 9)− 10
consists of

−(1 + 2)/(3× 4) and (5 + 6× 7)/(8 + 9)− 10,

connected by +.

Now break down these two subexpressions.

Now break down the four sub-subexpressions.
And so forth.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 12 / 49

Propositional Forms (cont’d)

Use connectives to build complicated expressions from simpler
ones, or

break down complicated expressions as being simpler
subexpressions, connected by connectives.

Example: −(1 + 2)/(3× 4) + (5 + 6× 7)/(8 + 9)− 10
consists of

−(1 + 2)/(3× 4) and (5 + 6× 7)/(8 + 9)− 10,

connected by +.

Now break down these two subexpressions.
Now break down the four sub-subexpressions.

And so forth.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 12 / 49

Propositional Forms (cont’d)

Use connectives to build complicated expressions from simpler
ones, or

break down complicated expressions as being simpler
subexpressions, connected by connectives.

Example: −(1 + 2)/(3× 4) + (5 + 6× 7)/(8 + 9)− 10
consists of

−(1 + 2)/(3× 4) and (5 + 6× 7)/(8 + 9)− 10,

connected by +.

Now break down these two subexpressions.
Now break down the four sub-subexpressions.
And so forth.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 12 / 49

Propositional Forms (cont’d)

Systematize the process via a parse tree.
Parse tree for −(1 + 2)/(3× 4) + (5 + 6× 7)/(8 + 9)− 10:

+

−

10/

+

98

+

×

76

5

/

×

43

−

+

21

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 13 / 49

Propositional Forms (cont’d)

Systematize the process via a parse tree.
Parse tree for −(1 + 2)/(3× 4) + (5 + 6× 7)/(8 + 9)− 10:

+

−

10/

+

98

+

×

76

5

/

×

43

−

+

21

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 13 / 49

Propositional Forms (cont’d)

We’re inherently using the following rules:

1 Parenthesized subexpressions are evaluated first.
2 Operations have a precedence hierarchy:

1 Unary operations (for example, −1) are done first.
2 Multiplicative operations (× and /) are done next.
3 Additive operations (+ and −) are done last.

3 In case of a tie (two additive operations or two multiplicative
operations), the remaining operations are done from left to
right.

These guarantee that (e.g.) 2 + 3× 4 is 14, rather than 20.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 14 / 49

Propositional Forms (cont’d)

We’re inherently using the following rules:

1 Parenthesized subexpressions are evaluated first.
2 Operations have a precedence hierarchy:

1 Unary operations (for example, −1) are done first.
2 Multiplicative operations (× and /) are done next.
3 Additive operations (+ and −) are done last.

3 In case of a tie (two additive operations or two multiplicative
operations), the remaining operations are done from left to
right.

These guarantee that (e.g.) 2 + 3× 4 is 14, rather than 20.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 14 / 49

Propositional Forms (cont’d)

Now jump from numerical algebra to propositional algebra.

We can build new (complicated) propositions out of old
(simpler) ones.

Example: [(p ∨ q)∧ ((p′)∨ r)]⇒ [(p ⇔ q)∨ (p ∧ r)] consists
of

(p ∨ q) ∧ ((p′) ∨ r) and (p ⇔ q) ∨ (p ∧ r),

connected by ⇒.

Now break down these two subexpressions.
Now break down the four sub-subexpressions.
And so forth.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 15 / 49

Propositional Forms (cont’d)

Now jump from numerical algebra to propositional algebra.

We can build new (complicated) propositions out of old
(simpler) ones.

Example: [(p ∨ q)∧ ((p′)∨ r)]⇒ [(p ⇔ q)∨ (p ∧ r)] consists
of

(p ∨ q) ∧ ((p′) ∨ r) and (p ⇔ q) ∨ (p ∧ r),

connected by ⇒.

Now break down these two subexpressions.
Now break down the four sub-subexpressions.
And so forth.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 15 / 49

Propositional Forms (cont’d)

Now jump from numerical algebra to propositional algebra.

We can build new (complicated) propositions out of old
(simpler) ones.

Example: [(p ∨ q)∧ ((p′)∨ r)]⇒ [(p ⇔ q)∨ (p ∧ r)] consists
of

(p ∨ q) ∧ ((p′) ∨ r) and (p ⇔ q) ∨ (p ∧ r),

connected by ⇒.

Now break down these two subexpressions.
Now break down the four sub-subexpressions.
And so forth.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 15 / 49

Propositional Forms (cont’d)

Now jump from numerical algebra to propositional algebra.

We can build new (complicated) propositions out of old
(simpler) ones.

Example: [(p ∨ q)∧ ((p′)∨ r)]⇒ [(p ⇔ q)∨ (p ∧ r)] consists
of

(p ∨ q) ∧ ((p′) ∨ r) and (p ⇔ q) ∨ (p ∧ r),

connected by ⇒.

Now break down these two subexpressions.

Now break down the four sub-subexpressions.
And so forth.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 15 / 49

Propositional Forms (cont’d)

Now jump from numerical algebra to propositional algebra.

We can build new (complicated) propositions out of old
(simpler) ones.

Example: [(p ∨ q)∧ ((p′)∨ r)]⇒ [(p ⇔ q)∨ (p ∧ r)] consists
of

(p ∨ q) ∧ ((p′) ∨ r) and (p ⇔ q) ∨ (p ∧ r),

connected by ⇒.

Now break down these two subexpressions.
Now break down the four sub-subexpressions.

And so forth.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 15 / 49

Propositional Forms (cont’d)

Now jump from numerical algebra to propositional algebra.

We can build new (complicated) propositions out of old
(simpler) ones.

Example: [(p ∨ q)∧ ((p′)∨ r)]⇒ [(p ⇔ q)∨ (p ∧ r)] consists
of

(p ∨ q) ∧ ((p′) ∨ r) and (p ⇔ q) ∨ (p ∧ r),

connected by ⇒.

Now break down these two subexpressions.
Now break down the four sub-subexpressions.
And so forth.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 15 / 49

Propositional Forms (cont’d)

Parse tree for [(p ∨ q) ∧ ((p′) ∨ r)]⇒ [(p ⇔ q) ∨ (p ∧ r)]:

⇒

∨

∧

rp

⇔

qp

∧

∨

rp′

∨

qp

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 16 / 49

Propositional Forms (cont’d)

Parse tree for [(p ∨ q) ∧ ((p′) ∨ r)]⇒ [(p ⇔ q) ∨ (p ∧ r)]:

⇒

∨

∧

rp

⇔

qp

∧

∨

rp′

∨

qp

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 16 / 49

Propositional Forms (cont’d)

The expression

[(p ∨ q) ∧ ((p′) ∨ r)]⇒ [(p ⇔ q) ∨ (p ∧ r)]

is completely parenthesized (and hard to read).

If we agree upon (standard) precedence rules, can get rid of
extraneous parentheses.

1 Parenthesized subexpressions are evaluated first.
2 Operations have a precedence hierarchy:

1 Unary negations (′) are done first.
2 Multiplicative operations (∧) are done next.
3 Additive operations (∨, ⊕) are done next.
4 The conditional-type operations (⇒ and ⇔) are done last.

3 In case of a tie (two operations at the same level in the
hierarchy), operations are done in a left-to-right order, except
for the conditional operator ⇒, which is done in a right-to-left
order. That is, p ⇒ q ⇒ r is interpreted as p ⇒ (q ⇒ r).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 17 / 49

Propositional Forms (cont’d)

The expression

[(p ∨ q) ∧ ((p′) ∨ r)]⇒ [(p ⇔ q) ∨ (p ∧ r)]

is completely parenthesized (and hard to read).

If we agree upon (standard) precedence rules, can get rid of
extraneous parentheses.

1 Parenthesized subexpressions are evaluated first.
2 Operations have a precedence hierarchy:

1 Unary negations (′) are done first.
2 Multiplicative operations (∧) are done next.
3 Additive operations (∨, ⊕) are done next.
4 The conditional-type operations (⇒ and ⇔) are done last.

3 In case of a tie (two operations at the same level in the
hierarchy), operations are done in a left-to-right order, except
for the conditional operator ⇒, which is done in a right-to-left
order. That is, p ⇒ q ⇒ r is interpreted as p ⇒ (q ⇒ r).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 17 / 49

Propositional Forms (cont’d)

So can replace

[(p ∨ q) ∧ ((p′) ∨ r)]⇒ [(p ⇔ q) ∨ (p ∧ r)]

by
[(p ∨ q) ∧ (p′ ∨ r)]⇒ [(p ⇔ q) ∨ p ∧ r]

or even
(p ∨ q) ∧ (p′ ∨ r)⇒ (p ⇔ q) ∨ p ∧ r .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 18 / 49

Propositional Forms (cont’d)

Precedence rules are too hard to remember!

Let’s simplify!

1 Parenthesized subexpressions come first.
2 Next comes the only unary operation (′).
3 Next comes the only multiplicative operation (∧).
4 Next comes the additive operations (∨, ⊕).
5 Use parentheses if you have any doubt.

Always use parentheses if you have multiple conditionals.
6 Evaluate ties left-to-right.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 19 / 49

Propositional Forms (cont’d)

Precedence rules are too hard to remember!

Let’s simplify!
1 Parenthesized subexpressions come first.
2 Next comes the only unary operation (′).
3 Next comes the only multiplicative operation (∧).
4 Next comes the additive operations (∨, ⊕).
5 Use parentheses if you have any doubt.

Always use parentheses if you have multiple conditionals.
6 Evaluate ties left-to-right.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 19 / 49

From English to Propositions

Can use propositional forms to capture logical arguments in
English.

Help to expose logical fallacies.

Example: Alice will have coffee or Bob will go to the beach.
Let

a = “Alice will have coffee”

b = “Bob will go to the beach”

Solution? a ∨ b.

Example: If I make peanut butter sandwiches for lunch, then
Carol will be disappointed. Let

p = “I will make peanut butter sandwiches”

c = “Carol will be disappointed”

Solution? p ⇒ c .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 20 / 49

From English to Propositions

Can use propositional forms to capture logical arguments in
English.

Help to expose logical fallacies.

Example: Alice will have coffee or Bob will go to the beach.

Let
a = “Alice will have coffee”

b = “Bob will go to the beach”

Solution? a ∨ b.

Example: If I make peanut butter sandwiches for lunch, then
Carol will be disappointed. Let

p = “I will make peanut butter sandwiches”

c = “Carol will be disappointed”

Solution? p ⇒ c .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 20 / 49

From English to Propositions

Can use propositional forms to capture logical arguments in
English.

Help to expose logical fallacies.

Example: Alice will have coffee or Bob will go to the beach.
Let

a = “Alice will have coffee”

b = “Bob will go to the beach”

Solution?

a ∨ b.

Example: If I make peanut butter sandwiches for lunch, then
Carol will be disappointed. Let

p = “I will make peanut butter sandwiches”

c = “Carol will be disappointed”

Solution? p ⇒ c .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 20 / 49

From English to Propositions

Can use propositional forms to capture logical arguments in
English.

Help to expose logical fallacies.

Example: Alice will have coffee or Bob will go to the beach.
Let

a = “Alice will have coffee”

b = “Bob will go to the beach”

Solution? a ∨ b.

Example: If I make peanut butter sandwiches for lunch, then
Carol will be disappointed. Let

p = “I will make peanut butter sandwiches”

c = “Carol will be disappointed”

Solution? p ⇒ c .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 20 / 49

From English to Propositions

Can use propositional forms to capture logical arguments in
English.

Help to expose logical fallacies.

Example: Alice will have coffee or Bob will go to the beach.
Let

a = “Alice will have coffee”

b = “Bob will go to the beach”

Solution? a ∨ b.

Example: If I make peanut butter sandwiches for lunch, then
Carol will be disappointed.

Let

p = “I will make peanut butter sandwiches”

c = “Carol will be disappointed”

Solution? p ⇒ c .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 20 / 49

From English to Propositions

Can use propositional forms to capture logical arguments in
English.

Help to expose logical fallacies.

Example: Alice will have coffee or Bob will go to the beach.
Let

a = “Alice will have coffee”

b = “Bob will go to the beach”

Solution? a ∨ b.

Example: If I make peanut butter sandwiches for lunch, then
Carol will be disappointed. Let

p = “I will make peanut butter sandwiches”

c = “Carol will be disappointed”

Solution?

p ⇒ c .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 20 / 49

From English to Propositions

Can use propositional forms to capture logical arguments in
English.

Help to expose logical fallacies.

Example: Alice will have coffee or Bob will go to the beach.
Let

a = “Alice will have coffee”

b = “Bob will go to the beach”

Solution? a ∨ b.

Example: If I make peanut butter sandwiches for lunch, then
Carol will be disappointed. Let

p = “I will make peanut butter sandwiches”

c = “Carol will be disappointed”

Solution? p ⇒ c .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 20 / 49

From English to Propositions (cont’d)

Example: If Alice will have coffee and Bob will go to the
beach, then either Carol will be disappointed or I will make
peanut butter sandwiches.
Solution?

a ∧ b ⇒ c ∨ p

Example:

Alice will have coffee and
Bob will not go to the beach

if and only if

Carol will be disappointed and
I will not make peanut butter sandwiches.

Solution? (a ∧ b′)⇔ (c ∧ p′)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 21 / 49

From English to Propositions (cont’d)

Example: If Alice will have coffee and Bob will go to the
beach, then either Carol will be disappointed or I will make
peanut butter sandwiches.
Solution? a ∧ b ⇒ c ∨ p

Example:

Alice will have coffee and
Bob will not go to the beach

if and only if

Carol will be disappointed and
I will not make peanut butter sandwiches.

Solution? (a ∧ b′)⇔ (c ∧ p′)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 21 / 49

From English to Propositions (cont’d)

Example: If Alice will have coffee and Bob will go to the
beach, then either Carol will be disappointed or I will make
peanut butter sandwiches.
Solution? a ∧ b ⇒ c ∨ p

Example:

Alice will have coffee and
Bob will not go to the beach

if and only if

Carol will be disappointed and
I will not make peanut butter sandwiches.

Solution?

(a ∧ b′)⇔ (c ∧ p′)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 21 / 49

From English to Propositions (cont’d)

Example: If Alice will have coffee and Bob will go to the
beach, then either Carol will be disappointed or I will make
peanut butter sandwiches.
Solution? a ∧ b ⇒ c ∨ p

Example:

Alice will have coffee and
Bob will not go to the beach

if and only if

Carol will be disappointed and
I will not make peanut butter sandwiches.

Solution? (a ∧ b′)⇔ (c ∧ p′)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 21 / 49

Propositional Equivalence

High school algebra: establishes many useful rules, such as

a + b = b + a,

a× (b + c) = a× b + a× c,

−(a + b) = (−a) + (−b),

Anything analogous for propositions?

How to state them? (No equal sign.)

How to prove correct rules?

How to disprove incorrect “rules”?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 22 / 49

Propositional Equivalence

High school algebra: establishes many useful rules, such as

a + b = b + a,

a× (b + c) = a× b + a× c,

−(a + b) = (−a) + (−b),

Anything analogous for propositions?

How to state them? (No equal sign.)

How to prove correct rules?

How to disprove incorrect “rules”?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 22 / 49

Propositional Equivalence (cont’d)

Logical equivalence: p ≡ q means

p is true if and only if q is true

Beware!
�

p ≡ q is not a proposition; it’s a statement about propositions.
p ≡ q is a statement in a metalanguage about propositions.
≡ is a metasymbol in this language.

Analogous to

a + b = b + a,

a× (b + c) = a× b + a× c,

−(a + b) = (−a) + (−b),

we might conjecture that

p ∨ q ≡ q ∨ p,

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r),

(p ∨ q)′ ≡ p′ ∨ q′.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 23 / 49

Propositional Equivalence (cont’d)

Logical equivalence: p ≡ q means

p is true if and only if q is true

Beware!
�

p ≡ q is not a proposition; it’s a statement about propositions.
p ≡ q is a statement in a metalanguage about propositions.
≡ is a metasymbol in this language.

Analogous to

a + b = b + a,

a× (b + c) = a× b + a× c,

−(a + b) = (−a) + (−b),

we might conjecture that

p ∨ q ≡ q ∨ p,

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r),

(p ∨ q)′ ≡ p′ ∨ q′.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 23 / 49

Propositional Equivalence (cont’d)

Logical equivalence: p ≡ q means

p is true if and only if q is true

Beware!
�

p ≡ q is not a proposition; it’s a statement about propositions.
p ≡ q is a statement in a metalanguage about propositions.
≡ is a metasymbol in this language.

Analogous to

a + b = b + a,

a× (b + c) = a× b + a× c,

−(a + b) = (−a) + (−b),

we might conjecture that

p ∨ q ≡ q ∨ p,

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r),

(p ∨ q)′ ≡ p′ ∨ q′.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 23 / 49

Propositional Equivalence (cont’d)

Logical equivalence: p ≡ q means

p is true if and only if q is true

Beware!
�

p ≡ q is not a proposition; it’s a statement about propositions.
p ≡ q is a statement in a metalanguage about propositions.
≡ is a metasymbol in this language.

Analogous to

a + b = b + a,

a× (b + c) = a× b + a× c,

−(a + b) = (−a) + (−b),

we might conjecture that

p ∨ q ≡ q ∨ p,

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r),

(p ∨ q)′ ≡ p′ ∨ q′.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 23 / 49

Propositional Equivalence (cont’d)

Want to prove (or disprove) conjectured identities such as

p ∨ q ≡ q ∨ p,

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r),

(p ∨ q)′ ≡ p′ ∨ q′.

How? Use a truth table.

Suppose that p and q are propositional formulas.
The equivalence p ≡ q is true iff the truth tables for p and q
are identical.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 24 / 49

Propositional Equivalence (cont’d)

Want to prove (or disprove) conjectured identities such as

p ∨ q ≡ q ∨ p,

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r),

(p ∨ q)′ ≡ p′ ∨ q′.

How? Use a truth table.

Suppose that p and q are propositional formulas.
The equivalence p ≡ q is true iff the truth tables for p and q
are identical.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 24 / 49

Propositional Equivalence (cont’d)

Want to prove (or disprove) conjectured identities such as

p ∨ q ≡ q ∨ p,

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r),

(p ∨ q)′ ≡ p′ ∨ q′.

How? Use a truth table.

Suppose that p and q are propositional formulas.
The equivalence p ≡ q is true iff the truth tables for p and q
are identical.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 24 / 49

Propositional Equivalence (cont’d)

Example: Is it true that p ∨ q ≡ q ∨ p?

p q p ∨ q

T T T
T F T
F T T
F F F

p q q ∨ p

T T T
T F T
F T T
F F F

They match! So p ∨ q ≡ q ∨ p.
More compact form:

p q p ∨ q q ∨ p

T T T T
T F T T
F T T T
F F F F

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 25 / 49

Propositional Equivalence (cont’d)

Example: Is it true that p ∨ q ≡ q ∨ p?

p q p ∨ q

T T T
T F T
F T T
F F F

p q q ∨ p

T T T
T F T
F T T
F F F

They match! So p ∨ q ≡ q ∨ p.
More compact form:

p q p ∨ q q ∨ p

T T T T
T F T T
F T T T
F F F F

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 25 / 49

Propositional Equivalence (cont’d)

Example: Is it true that p ∨ q ≡ q ∨ p?

p q p ∨ q

T T T
T F T
F T T
F F F

p q q ∨ p

T T T
T F T
F T T
F F F

They match! So p ∨ q ≡ q ∨ p.
More compact form:

p q p ∨ q q ∨ p

T T T T
T F T T
F T T T
F F F F

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 25 / 49

Propositional Equivalence (cont’d)

Example: Is it true that p ∨ q ≡ q ∨ p?

p q p ∨ q

T T T
T F T
F T T
F F F

p q q ∨ p

T T T
T F T
F T T
F F F

They match! So p ∨ q ≡ q ∨ p.
More compact form:

p q p ∨ q q ∨ p

T T T T
T F T T
F T T T
F F F F

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 25 / 49

Propositional Equivalence (cont’d)

Example: Is it true that p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)?

p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)

T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

So p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 26 / 49

Propositional Equivalence (cont’d)

Example: Is it true that p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)?

p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)

T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

So p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 26 / 49

Propositional Equivalence (cont’d)

Example: Is it true that p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)?

p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)

T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

So p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 26 / 49

Propositional Equivalence (cont’d)

How to organize the table?

Two variables: TT, TF, FT, FF
Three variables: TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF.
General pattern?

Rightmost variable alternates: TFTFTFTF . . .
Next alternates in pairs: TTFFTTFF . . .
Next alternates in quadruples: TTTTFFFFTTTTFFFF . . .

Size of table?

Two variables? 4 rows.
Three variables? 8 rows.
n variables? 2n rows.
Since 210 = 1024, you don’t want to do a 10-variable table.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 27 / 49

Propositional Equivalence (cont’d)

How to organize the table?

Two variables: TT, TF, FT, FF
Three variables: TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF.
General pattern?

Rightmost variable alternates: TFTFTFTF . . .
Next alternates in pairs: TTFFTTFF . . .
Next alternates in quadruples: TTTTFFFFTTTTFFFF . . .

Size of table?

Two variables? 4 rows.
Three variables? 8 rows.
n variables?

2n rows.
Since 210 = 1024, you don’t want to do a 10-variable table.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 27 / 49

Propositional Equivalence (cont’d)

How to organize the table?

Two variables: TT, TF, FT, FF
Three variables: TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF.
General pattern?

Rightmost variable alternates: TFTFTFTF . . .
Next alternates in pairs: TTFFTTFF . . .
Next alternates in quadruples: TTTTFFFFTTTTFFFF . . .

Size of table?

Two variables? 4 rows.
Three variables? 8 rows.
n variables? 2n rows.
Since 210 = 1024, you don’t want to do a 10-variable table.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 27 / 49

Propositional Equivalence (cont’d)

Example: Is it true that (p ∨ q)′ ≡ p′ ∨ q′?

p q p ∨ q (p ∨ q)′ p′ q′ p′ ∨ q′

T T T F F F F
T F T F F T T
F T T F T F T
F F F T T T T

So it is not true that (p ∨ q)′ ≡ p′ ∨ q′!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 28 / 49

Propositional Equivalence (cont’d)

Example: Is it true that (p ∨ q)′ ≡ p′ ∨ q′?

p q p ∨ q (p ∨ q)′ p′ q′ p′ ∨ q′

T T T F F F F
T F T F F T T
F T T F T F T
F F F T T T T

So it is not true that (p ∨ q)′ ≡ p′ ∨ q′!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 28 / 49

Propositional Equivalence (cont’d)

Example: Is it true that (p ∨ q)′ ≡ p′ ∨ q′?

p q p ∨ q (p ∨ q)′ p′ q′ p′ ∨ q′

T T T F F F F
T F T F F T T
F T T F T F T
F F F T T T T

So it is not true that (p ∨ q)′ ≡ p′ ∨ q′!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 28 / 49

Propositional Equivalence (cont’d)

Example: Rather than (p ∨ q)′ ≡ p′ ∨ q′, the correct formula is
(p ∨ q)′ ≡ p′ ∧ q′

p q p ∨ q (p ∨ q)′ p′ q′ p′ ∧ q′

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

The formula (p ∧ q)′ ≡ p′ ∨ q′ is also correct.
These formulas

(p ∨ q)′ ≡ p′ ∧ q′

(p ∧ q)′ ≡ p′ ∨ q′

are called deMorgan’s laws.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 29 / 49

Propositional Equivalence (cont’d)

Example: Rather than (p ∨ q)′ ≡ p′ ∨ q′, the correct formula is
(p ∨ q)′ ≡ p′ ∧ q′

p q p ∨ q (p ∨ q)′ p′ q′ p′ ∧ q′

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

The formula (p ∧ q)′ ≡ p′ ∨ q′ is also correct.
These formulas

(p ∨ q)′ ≡ p′ ∧ q′

(p ∧ q)′ ≡ p′ ∨ q′

are called deMorgan’s laws.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 29 / 49

Propositional Equivalence (cont’d)

Some well-known propositional laws (we haven’t proved them all):

Double Negation (p′)′ ≡ p
Idempotent p ∧ p ≡ p
Idempotent p ∨ p ≡ p

Commutative p ∧ q ≡ q ∧ p
Commutative p ∨ q ≡ q ∨ p

Associative (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
Associative (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
Distributive p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Distributive p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
DeMorgan (p ∧ q)′ ≡ (p′) ∨ (q′)
DeMorgan (p ∨ q)′ ≡ (p′) ∧ (q′)

Modus Ponens [(p ⇒ q) ∧ p]⇒ q
Modus Tollens [(p ⇒ q) ∧ q′]⇒ p′

Contrapositive (p ⇒ q) ≡ (q′ ⇒ p′)
Implication (p ⇒ q) ≡ (p′ ∨ q)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 30 / 49

Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from
Chapter 1, e.g., we have

(p ∧ q)′ ≡ p′ ∨ q′ and (A ∩ B)′ = A′ ∪ B ′ .

It turns out that we can use a propositional law to easily prove the
analogous set identity.

Example: Show that (A ∩ B)′ = A′ ∪ B ′.
Solution: Must show that any element of (A ∩ B)′ is an element
of A′ ∪ B ′, and vice versa. But

x ∈ (A ∩ B)′ ⇐⇒ (x ∈ A ∩ B)′ ⇐⇒ (x ∈ A ∧ x ∈ B)′

⇐⇒ (x ∈ A)′ ∨ (x ∈ B)′

⇐⇒ (x ∈ A′) ∨ (x ∈ B ′)

⇐⇒ x ∈ A′ ∪ B ′,

as required.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 31 / 49

Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from
Chapter 1, e.g., we have

(p ∧ q)′ ≡ p′ ∨ q′ and (A ∩ B)′ = A′ ∪ B ′ .

It turns out that we can use a propositional law to easily prove the
analogous set identity.
Example: Show that (A ∩ B)′ = A′ ∪ B ′.

Solution: Must show that any element of (A ∩ B)′ is an element
of A′ ∪ B ′, and vice versa. But

x ∈ (A ∩ B)′ ⇐⇒ (x ∈ A ∩ B)′ ⇐⇒ (x ∈ A ∧ x ∈ B)′

⇐⇒ (x ∈ A)′ ∨ (x ∈ B)′

⇐⇒ (x ∈ A′) ∨ (x ∈ B ′)

⇐⇒ x ∈ A′ ∪ B ′,

as required.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 31 / 49

Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from
Chapter 1, e.g., we have

(p ∧ q)′ ≡ p′ ∨ q′ and (A ∩ B)′ = A′ ∪ B ′ .

It turns out that we can use a propositional law to easily prove the
analogous set identity.
Example: Show that (A ∩ B)′ = A′ ∪ B ′.
Solution: Must show that any element of (A ∩ B)′ is an element
of A′ ∪ B ′, and vice versa. But

x ∈ (A ∩ B)′ ⇐⇒ (x ∈ A ∩ B)′

⇐⇒ (x ∈ A ∧ x ∈ B)′

⇐⇒ (x ∈ A)′ ∨ (x ∈ B)′

⇐⇒ (x ∈ A′) ∨ (x ∈ B ′)

⇐⇒ x ∈ A′ ∪ B ′,

as required.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 31 / 49

Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from
Chapter 1, e.g., we have

(p ∧ q)′ ≡ p′ ∨ q′ and (A ∩ B)′ = A′ ∪ B ′ .

It turns out that we can use a propositional law to easily prove the
analogous set identity.
Example: Show that (A ∩ B)′ = A′ ∪ B ′.
Solution: Must show that any element of (A ∩ B)′ is an element
of A′ ∪ B ′, and vice versa. But

x ∈ (A ∩ B)′ ⇐⇒ (x ∈ A ∩ B)′ ⇐⇒ (x ∈ A ∧ x ∈ B)′

⇐⇒ (x ∈ A)′ ∨ (x ∈ B)′

⇐⇒ (x ∈ A′) ∨ (x ∈ B ′)

⇐⇒ x ∈ A′ ∪ B ′,

as required.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 31 / 49

Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from
Chapter 1, e.g., we have

(p ∧ q)′ ≡ p′ ∨ q′ and (A ∩ B)′ = A′ ∪ B ′ .

It turns out that we can use a propositional law to easily prove the
analogous set identity.
Example: Show that (A ∩ B)′ = A′ ∪ B ′.
Solution: Must show that any element of (A ∩ B)′ is an element
of A′ ∪ B ′, and vice versa. But

x ∈ (A ∩ B)′ ⇐⇒ (x ∈ A ∩ B)′ ⇐⇒ (x ∈ A ∧ x ∈ B)′

⇐⇒ (x ∈ A)′ ∨ (x ∈ B)′

⇐⇒ (x ∈ A′) ∨ (x ∈ B ′)

⇐⇒ x ∈ A′ ∪ B ′,

as required.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 31 / 49

Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from
Chapter 1, e.g., we have

(p ∧ q)′ ≡ p′ ∨ q′ and (A ∩ B)′ = A′ ∪ B ′ .

It turns out that we can use a propositional law to easily prove the
analogous set identity.
Example: Show that (A ∩ B)′ = A′ ∪ B ′.
Solution: Must show that any element of (A ∩ B)′ is an element
of A′ ∪ B ′, and vice versa. But

x ∈ (A ∩ B)′ ⇐⇒ (x ∈ A ∩ B)′ ⇐⇒ (x ∈ A ∧ x ∈ B)′

⇐⇒ (x ∈ A)′ ∨ (x ∈ B)′

⇐⇒ (x ∈ A′) ∨ (x ∈ B ′)

⇐⇒ x ∈ A′ ∪ B ′,

as required.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 31 / 49

Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from
Chapter 1, e.g., we have

(p ∧ q)′ ≡ p′ ∨ q′ and (A ∩ B)′ = A′ ∪ B ′ .

It turns out that we can use a propositional law to easily prove the
analogous set identity.
Example: Show that (A ∩ B)′ = A′ ∪ B ′.
Solution: Must show that any element of (A ∩ B)′ is an element
of A′ ∪ B ′, and vice versa. But

x ∈ (A ∩ B)′ ⇐⇒ (x ∈ A ∩ B)′ ⇐⇒ (x ∈ A ∧ x ∈ B)′

⇐⇒ (x ∈ A)′ ∨ (x ∈ B)′

⇐⇒ (x ∈ A′) ∨ (x ∈ B ′)

⇐⇒ x ∈ A′ ∪ B ′,

as required.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 31 / 49

Propositional Equivalence (cont’d)

Once we’ve proved a given propositional law, we can use it to help
prove new ones.

Example: Let’s prove the exportation identity

[(p ∧ q)⇒ r] ≡ [p ⇒ (q ⇒ r)].

We have

(p ∧ q)⇒ r ≡ (p ∧ q)′ ∨ r implication

≡ (p′ ∨ q′) ∨ r DeMorgan

≡ p′ ∨ (q′ ∨ r) associative

≡ p′ ∨ (q ⇒ r) implication

≡ p ⇒ (q ⇒ r) implication

as required.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 32 / 49

Propositional Equivalence (cont’d)

Once we’ve proved a given propositional law, we can use it to help
prove new ones.

Example: Let’s prove the exportation identity

[(p ∧ q)⇒ r] ≡ [p ⇒ (q ⇒ r)].

We have

(p ∧ q)⇒ r ≡ (p ∧ q)′ ∨ r implication

≡ (p′ ∨ q′) ∨ r DeMorgan

≡ p′ ∨ (q′ ∨ r) associative

≡ p′ ∨ (q ⇒ r) implication

≡ p ⇒ (q ⇒ r) implication

as required.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 32 / 49

Propositional Equivalence (cont’d)

Once we’ve proved a given propositional law, we can use it to help
prove new ones.

Example: Let’s prove the exportation identity

[(p ∧ q)⇒ r] ≡ [p ⇒ (q ⇒ r)].

We have

(p ∧ q)⇒ r ≡ (p ∧ q)′ ∨ r implication

≡ (p′ ∨ q′) ∨ r DeMorgan

≡ p′ ∨ (q′ ∨ r) associative

≡ p′ ∨ (q ⇒ r) implication

≡ p ⇒ (q ⇒ r) implication

as required.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 32 / 49

Propositional Equivalence (cont’d)

Once we’ve proved a given propositional law, we can use it to help
prove new ones.

Example: Let’s prove the exportation identity

[(p ∧ q)⇒ r] ≡ [p ⇒ (q ⇒ r)].

We have

(p ∧ q)⇒ r ≡ (p ∧ q)′ ∨ r implication

≡ (p′ ∨ q′) ∨ r DeMorgan

≡ p′ ∨ (q′ ∨ r) associative

≡ p′ ∨ (q ⇒ r) implication

≡ p ⇒ (q ⇒ r) implication

as required.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 32 / 49

Propositional Equivalence (cont’d)

Once we’ve proved a given propositional law, we can use it to help
prove new ones.

Example: Let’s prove the exportation identity

[(p ∧ q)⇒ r] ≡ [p ⇒ (q ⇒ r)].

We have

(p ∧ q)⇒ r ≡ (p ∧ q)′ ∨ r implication

≡ (p′ ∨ q′) ∨ r DeMorgan

≡ p′ ∨ (q′ ∨ r) associative

≡ p′ ∨ (q ⇒ r) implication

≡ p ⇒ (q ⇒ r) implication

as required.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 32 / 49

Propositional Equivalence (cont’d)

Duality: If p is a proposition that only uses the operations ′,
∧, and ∨. If we replace all instances of ∧, ∨, T, and F in p by
∨, ∧, F, and T, respectively, we get a new proposition p∗,
which is called the dual of p.

Example: The duals of

p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r)

are
p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r).

Duality Principle: If two propositions (which only use the
operations ′, ∧, and ∨) are equivalent, then their duals are
equivalent. (Be lazy—save half the work!)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 33 / 49

Propositional Equivalence (cont’d)

Duality: If p is a proposition that only uses the operations ′,
∧, and ∨. If we replace all instances of ∧, ∨, T, and F in p by
∨, ∧, F, and T, respectively, we get a new proposition p∗,
which is called the dual of p.

Example: The duals of

p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r)

are
p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r).

Duality Principle: If two propositions (which only use the
operations ′, ∧, and ∨) are equivalent, then their duals are
equivalent. (Be lazy—save half the work!)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 33 / 49

Propositional Equivalence (cont’d)

Duality: If p is a proposition that only uses the operations ′,
∧, and ∨. If we replace all instances of ∧, ∨, T, and F in p by
∨, ∧, F, and T, respectively, we get a new proposition p∗,
which is called the dual of p.

Example: The duals of

p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r)

are
p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r).

Duality Principle: If two propositions (which only use the
operations ′, ∧, and ∨) are equivalent, then their duals are
equivalent. (Be lazy—save half the work!)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 33 / 49

Propositional Equivalence (cont’d)

Example: Since the duals

p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r)

are
p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r)

and we had earlier proved that

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r),

we now know that

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

“for free”.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 34 / 49

Propositional Equivalence (cont’d)

Example: Since the duals

p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r)

are
p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r)

and we had earlier proved that

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r),

we now know that

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

“for free”.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 34 / 49

Propositional Equivalence (cont’d)

Example: Since the duals

p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r)

are
p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r)

and we had earlier proved that

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r),

we now know that

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

“for free”.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 34 / 49

Propositional Equivalence (cont’d)

Example: Since the duals of

(p ∨ q)′ and p′ ∧ q′

are
(p ∧ q)′ and p′ ∨ q′

and we had earlier proved that

(p ∨ q)′ ≡ p′ ∧ q′,

we now know that
(p ∧ q)′ ≡ p′ ∨ q′

“for free”.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 35 / 49

Propositional Equivalence (cont’d)

Example: Since the duals of

(p ∨ q)′ and p′ ∧ q′

are
(p ∧ q)′ and p′ ∨ q′

and we had earlier proved that

(p ∨ q)′ ≡ p′ ∧ q′,

we now know that
(p ∧ q)′ ≡ p′ ∨ q′

“for free”.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 35 / 49

Indirect Proofs

Sometimes you can prove a statement with a direct approach.

Example: Show that the square of an odd number is also an odd
number.

Solution: Let m be an odd number; want to show that m2 is odd.

Write m = 2n + 1 for n ∈ Z.

Then

m2 = (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1.

Let k = 2n2 + 2n ∈ Z. Then m2 = 2k + 1, and so m2 is
odd.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 36 / 49

Indirect Proofs

Sometimes you can prove a statement with a direct approach.

Example: Show that the square of an odd number is also an odd
number.

Solution: Let m be an odd number; want to show that m2 is odd.

Write m = 2n + 1 for n ∈ Z.

Then

m2 = (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1.

Let k = 2n2 + 2n ∈ Z. Then m2 = 2k + 1, and so m2 is
odd.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 36 / 49

Indirect Proofs

Sometimes you can prove a statement with a direct approach.

Example: Show that the square of an odd number is also an odd
number.

Solution: Let m be an odd number; want to show that m2 is odd.

Write m = 2n + 1 for n ∈ Z.

Then

m2 = (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1.

Let k = 2n2 + 2n ∈ Z. Then m2 = 2k + 1, and so m2 is
odd.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 36 / 49

Indirect Proofs

Sometimes you can prove a statement with a direct approach.

Example: Show that the square of an odd number is also an odd
number.

Solution: Let m be an odd number; want to show that m2 is odd.

Write m = 2n + 1 for n ∈ Z.

Then

m2 = (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1.

Let k = 2n2 + 2n ∈ Z. Then m2 = 2k + 1, and so m2 is
odd.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 36 / 49

Indirect Proofs

Sometimes you can prove a statement with a direct approach.

Example: Show that the square of an odd number is also an odd
number.

Solution: Let m be an odd number; want to show that m2 is odd.

Write m = 2n + 1 for n ∈ Z.

Then

m2 = (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1.

Let k = 2n2 + 2n ∈ Z. Then m2 = 2k + 1, and so m2 is
odd.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 36 / 49

Indirect Proofs

Sometimes you can prove a statement with a direct approach.

Example: Show that the square of an odd number is also an odd
number.

Solution: Let m be an odd number; want to show that m2 is odd.

Write m = 2n + 1 for n ∈ Z.

Then

m2 = (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1.

Let k = 2n2 + 2n ∈ Z. Then m2 = 2k + 1,

and so m2 is
odd.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 36 / 49

Indirect Proofs

Sometimes you can prove a statement with a direct approach.

Example: Show that the square of an odd number is also an odd
number.

Solution: Let m be an odd number; want to show that m2 is odd.

Write m = 2n + 1 for n ∈ Z.

Then

m2 = (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1.

Let k = 2n2 + 2n ∈ Z. Then m2 = 2k + 1, and so m2 is
odd.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 36 / 49

Indirect Proofs (cont’d)

Sometimes a “frontal attack” doesn’t work. So we use an “sneak
attack”, more properly called an indirect proof.

Two such techniques:

Proof by contradiction. Show that if the statement to proved
is false, then a contradiction results.

Proving the contrapositive. Rather than directly proving an
implication p ⇒ q, prove its contrapositive q′ ⇒ p′.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 37 / 49

Indirect Proofs (cont’d)

Sometimes a “frontal attack” doesn’t work. So we use an “sneak
attack”, more properly called an indirect proof.
Two such techniques:

Proof by contradiction. Show that if the statement to proved
is false, then a contradiction results.

Proving the contrapositive. Rather than directly proving an
implication p ⇒ q, prove its contrapositive q′ ⇒ p′.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 37 / 49

Indirect Proofs (cont’d)

Sometimes a “frontal attack” doesn’t work. So we use an “sneak
attack”, more properly called an indirect proof.
Two such techniques:

Proof by contradiction. Show that if the statement to proved
is false, then a contradiction results.

Proving the contrapositive. Rather than directly proving an
implication p ⇒ q, prove its contrapositive q′ ⇒ p′.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 37 / 49

Indirect Proofs (cont’d)

Example: Show that if the square of an integer is even, then that
integer is even.

Solution: Let m ∈ Z. We want to show that

m2 is even⇒ m is even.

We can do this by establishing its contrapositive.
But the contrapositive is

m is odd⇒ m2 is odd,

which we did previously. So we’re done!!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 38 / 49

Indirect Proofs (cont’d)

Example: Show that if the square of an integer is even, then that
integer is even.

Solution: Let m ∈ Z. We want to show that

m2 is even⇒ m is even.

We can do this by establishing its contrapositive.
But the contrapositive is

m is odd⇒ m2 is odd,

which we did previously. So we’re done!!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 38 / 49

Indirect Proofs (cont’d)

Example: Show that if the square of an integer is even, then that
integer is even.

Solution: Let m ∈ Z. We want to show that

m2 is even⇒ m is even.

We can do this by establishing its contrapositive.

But the contrapositive is

m is odd⇒ m2 is odd,

which we did previously. So we’re done!!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 38 / 49

Indirect Proofs (cont’d)

Example: Show that if the square of an integer is even, then that
integer is even.

Solution: Let m ∈ Z. We want to show that

m2 is even⇒ m is even.

We can do this by establishing its contrapositive.
But the contrapositive is

m is odd⇒ m2 is odd,

which we did previously. So we’re done!!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 38 / 49

Indirect Proofs (cont’d)

Example: Show that if the square of an integer is even, then that
integer is even.

Solution: Let m ∈ Z. We want to show that

m2 is even⇒ m is even.

We can do this by establishing its contrapositive.
But the contrapositive is

m is odd⇒ m2 is odd,

which we did previously. So we’re done!!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 38 / 49

Indirect Proofs (cont’d)

Example: Show that
√

2 is an irrational number.

Solution: Let’s do a proof by contradiction. Rather than showing√
2 /∈ Q, let’s assume that

√
2 ∈ Q, and show how this leads to a

contradiction.
So write

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and where p and q

have no common factor other than 1 (i.e., the fraction p/q is
“reduced to lowest terms”). Then

√
2 =

p

q
⇒ p2

q2
= 2⇒ p2 = 2q2 ⇒ p2 is even

⇒ p is even (see previous slide)

⇒ p = 2r for some positive integer r

⇒ (2r)2 = p2 = 2q2 (Remember that p2 = 2q2!)

⇒ 4r2 = 2q2 ⇒ 2r2 = q2 ⇒ q2 is even

⇒ q is even (again using previous slide)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 39 / 49

Indirect Proofs (cont’d)

Example: Show that
√

2 is an irrational number.

Solution: Let’s do a proof by contradiction. Rather than showing√
2 /∈ Q, let’s assume that

√
2 ∈ Q, and show how this leads to a

contradiction.

So write
√

2 = p/q for p, q ∈ Z+, where q 6= 0 and where p and q
have no common factor other than 1 (i.e., the fraction p/q is
“reduced to lowest terms”). Then

√
2 =

p

q
⇒ p2

q2
= 2⇒ p2 = 2q2 ⇒ p2 is even

⇒ p is even (see previous slide)

⇒ p = 2r for some positive integer r

⇒ (2r)2 = p2 = 2q2 (Remember that p2 = 2q2!)

⇒ 4r2 = 2q2 ⇒ 2r2 = q2 ⇒ q2 is even

⇒ q is even (again using previous slide)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 39 / 49

Indirect Proofs (cont’d)

Example: Show that
√

2 is an irrational number.

Solution: Let’s do a proof by contradiction. Rather than showing√
2 /∈ Q, let’s assume that

√
2 ∈ Q, and show how this leads to a

contradiction.
So write

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and where p and q

have no common factor other than 1 (i.e., the fraction p/q is
“reduced to lowest terms”). Then

√
2 =

p

q
⇒ p2

q2
= 2⇒ p2 = 2q2 ⇒ p2 is even

⇒ p is even (see previous slide)

⇒ p = 2r for some positive integer r

⇒ (2r)2 = p2 = 2q2 (Remember that p2 = 2q2!)

⇒ 4r2 = 2q2 ⇒ 2r2 = q2 ⇒ q2 is even

⇒ q is even (again using previous slide)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 39 / 49

Indirect Proofs (cont’d)

Example: Show that
√

2 is an irrational number.

Solution: Let’s do a proof by contradiction. Rather than showing√
2 /∈ Q, let’s assume that

√
2 ∈ Q, and show how this leads to a

contradiction.
So write

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and where p and q

have no common factor other than 1 (i.e., the fraction p/q is
“reduced to lowest terms”). Then

√
2 =

p

q
⇒ p2

q2
= 2⇒ p2 = 2q2 ⇒ p2 is even

⇒ p is even (see previous slide)

⇒ p = 2r for some positive integer r

⇒ (2r)2 = p2 = 2q2 (Remember that p2 = 2q2!)

⇒ 4r2 = 2q2 ⇒ 2r2 = q2 ⇒ q2 is even

⇒ q is even (again using previous slide)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 39 / 49

Indirect Proofs (cont’d)

Example (cont’d): Show that
√

2 is an irrational number.

Solution (cont’d): We’re doing a proof by contradiction. Rather
than showing

√
2 /∈ Q, we are trying to show how the assumption√

2 ∈ Q leads to a contradiction.

We wrote
√

2 = p/q for p, q ∈ Z+, where q 6= 0 and where p
and q have no common factor other than 1 (i.e., the fraction p/q
is “reduced to lowest terms”).
Previous slide: Both p and q are even, i.e., they are both exact
integer multiples of 2.
This contradicts the assumption that p, q have no common factor
(other than 1)!
Hence we cannot write

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and

where p and q have no common factor other than 1.
Hence

√
2 /∈ Q.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 40 / 49

Indirect Proofs (cont’d)

Example (cont’d): Show that
√

2 is an irrational number.

Solution (cont’d): We’re doing a proof by contradiction. Rather
than showing

√
2 /∈ Q, we are trying to show how the assumption√

2 ∈ Q leads to a contradiction.
We wrote

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and where p

and q have no common factor other than 1 (i.e., the fraction p/q
is “reduced to lowest terms”).

Previous slide: Both p and q are even, i.e., they are both exact
integer multiples of 2.
This contradicts the assumption that p, q have no common factor
(other than 1)!
Hence we cannot write

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and

where p and q have no common factor other than 1.
Hence

√
2 /∈ Q.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 40 / 49

Indirect Proofs (cont’d)

Example (cont’d): Show that
√

2 is an irrational number.

Solution (cont’d): We’re doing a proof by contradiction. Rather
than showing

√
2 /∈ Q, we are trying to show how the assumption√

2 ∈ Q leads to a contradiction.
We wrote

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and where p

and q have no common factor other than 1 (i.e., the fraction p/q
is “reduced to lowest terms”).
Previous slide: Both p and q are even, i.e., they are both exact
integer multiples of 2.

This contradicts the assumption that p, q have no common factor
(other than 1)!
Hence we cannot write

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and

where p and q have no common factor other than 1.
Hence

√
2 /∈ Q.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 40 / 49

Indirect Proofs (cont’d)

Example (cont’d): Show that
√

2 is an irrational number.

Solution (cont’d): We’re doing a proof by contradiction. Rather
than showing

√
2 /∈ Q, we are trying to show how the assumption√

2 ∈ Q leads to a contradiction.
We wrote

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and where p

and q have no common factor other than 1 (i.e., the fraction p/q
is “reduced to lowest terms”).
Previous slide: Both p and q are even, i.e., they are both exact
integer multiples of 2.
This contradicts the assumption that p, q have no common factor
(other than 1)!

Hence we cannot write
√

2 = p/q for p, q ∈ Z+, where q 6= 0 and
where p and q have no common factor other than 1.
Hence

√
2 /∈ Q.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 40 / 49

Indirect Proofs (cont’d)

Example (cont’d): Show that
√

2 is an irrational number.

Solution (cont’d): We’re doing a proof by contradiction. Rather
than showing

√
2 /∈ Q, we are trying to show how the assumption√

2 ∈ Q leads to a contradiction.
We wrote

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and where p

and q have no common factor other than 1 (i.e., the fraction p/q
is “reduced to lowest terms”).
Previous slide: Both p and q are even, i.e., they are both exact
integer multiples of 2.
This contradicts the assumption that p, q have no common factor
(other than 1)!
Hence we cannot write

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and

where p and q have no common factor other than 1.

Hence
√

2 /∈ Q.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 40 / 49

Indirect Proofs (cont’d)

Example (cont’d): Show that
√

2 is an irrational number.

Solution (cont’d): We’re doing a proof by contradiction. Rather
than showing

√
2 /∈ Q, we are trying to show how the assumption√

2 ∈ Q leads to a contradiction.
We wrote

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and where p

and q have no common factor other than 1 (i.e., the fraction p/q
is “reduced to lowest terms”).
Previous slide: Both p and q are even, i.e., they are both exact
integer multiples of 2.
This contradicts the assumption that p, q have no common factor
(other than 1)!
Hence we cannot write

√
2 = p/q for p, q ∈ Z+, where q 6= 0 and

where p and q have no common factor other than 1.
Hence

√
2 /∈ Q.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 40 / 49

An Example From Lewis Caroll

Given the following facts:
1 All babies are illogical.
2 Nobody is despised who can manage a crocodile.
3 Illogical persons are despised.

Prove that babies cannot manage crocodiles.

Let b, c , d , and l denote the status of being a baby, being able to
manage a crocodile, being despised, and being logical. Then

1 b ⇒ l ′.
2 c ⇒ d ′.
3 l ′ ⇒ d .

We now have

b ⇒ d , using (1), (3), transitive law.

(d ′)′ ⇒ c ′, using (2), contrapositive law.

d ⇒ c ′, since (d ′)′ ≡ d (double negation law).

Hence transitive law gives b ⇒ c ′.

See text for a 10-fact example.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 41 / 49

An Example From Lewis Caroll

Given the following facts:
1 All babies are illogical.
2 Nobody is despised who can manage a crocodile.
3 Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let b, c , d , and l denote the status of being a baby, being able to
manage a crocodile, being despised, and being logical. Then

1 b ⇒ l ′.
2 c ⇒ d ′.
3 l ′ ⇒ d .

We now have

b ⇒ d , using (1), (3), transitive law.

(d ′)′ ⇒ c ′, using (2), contrapositive law.

d ⇒ c ′, since (d ′)′ ≡ d (double negation law).

Hence transitive law gives b ⇒ c ′.

See text for a 10-fact example.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 41 / 49

An Example From Lewis Caroll

Given the following facts:
1 All babies are illogical.
2 Nobody is despised who can manage a crocodile.
3 Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let b, c , d , and l denote the status of being a baby, being able to
manage a crocodile, being despised, and being logical. Then

1 b ⇒ l ′.
2 c ⇒ d ′.
3 l ′ ⇒ d .

We now have

b ⇒ d , using (1), (3), transitive law.

(d ′)′ ⇒ c ′, using (2), contrapositive law.

d ⇒ c ′, since (d ′)′ ≡ d (double negation law).

Hence transitive law gives b ⇒ c ′.

See text for a 10-fact example.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 41 / 49

An Example From Lewis Caroll

Given the following facts:
1 All babies are illogical.
2 Nobody is despised who can manage a crocodile.
3 Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let b, c , d , and l denote the status of being a baby, being able to
manage a crocodile, being despised, and being logical. Then

1 b ⇒ l ′.
2 c ⇒ d ′.
3 l ′ ⇒ d .

We now have

b ⇒ d , using (1), (3), transitive law.

(d ′)′ ⇒ c ′, using (2), contrapositive law.

d ⇒ c ′, since (d ′)′ ≡ d (double negation law).

Hence transitive law gives b ⇒ c ′.

See text for a 10-fact example.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 41 / 49

An Example From Lewis Caroll

Given the following facts:
1 All babies are illogical.
2 Nobody is despised who can manage a crocodile.
3 Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let b, c , d , and l denote the status of being a baby, being able to
manage a crocodile, being despised, and being logical. Then

1 b ⇒ l ′.
2 c ⇒ d ′.
3 l ′ ⇒ d .

We now have

b ⇒ d , using (1), (3), transitive law.

(d ′)′ ⇒ c ′, using (2), contrapositive law.

d ⇒ c ′, since (d ′)′ ≡ d (double negation law).

Hence transitive law gives b ⇒ c ′.

See text for a 10-fact example.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 41 / 49

An Example From Lewis Caroll

Given the following facts:
1 All babies are illogical.
2 Nobody is despised who can manage a crocodile.
3 Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let b, c , d , and l denote the status of being a baby, being able to
manage a crocodile, being despised, and being logical. Then

1 b ⇒ l ′.
2 c ⇒ d ′.
3 l ′ ⇒ d .

We now have

b ⇒ d , using (1), (3), transitive law.

(d ′)′ ⇒ c ′, using (2), contrapositive law.

d ⇒ c ′, since (d ′)′ ≡ d (double negation law).

Hence transitive law gives b ⇒ c ′.

See text for a 10-fact example.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 41 / 49

An Example From Lewis Caroll

Given the following facts:
1 All babies are illogical.
2 Nobody is despised who can manage a crocodile.
3 Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let b, c , d , and l denote the status of being a baby, being able to
manage a crocodile, being despised, and being logical. Then

1 b ⇒ l ′.
2 c ⇒ d ′.
3 l ′ ⇒ d .

We now have

b ⇒ d , using (1), (3), transitive law.

(d ′)′ ⇒ c ′, using (2), contrapositive law.

d ⇒ c ′, since (d ′)′ ≡ d (double negation law).

Hence transitive law gives b ⇒ c ′.

See text for a 10-fact example.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 41 / 49

An Example From Lewis Caroll

Given the following facts:
1 All babies are illogical.
2 Nobody is despised who can manage a crocodile.
3 Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let b, c , d , and l denote the status of being a baby, being able to
manage a crocodile, being despised, and being logical. Then

1 b ⇒ l ′.
2 c ⇒ d ′.
3 l ′ ⇒ d .

We now have

b ⇒ d , using (1), (3), transitive law.

(d ′)′ ⇒ c ′, using (2), contrapositive law.

d ⇒ c ′, since (d ′)′ ≡ d (double negation law).

Hence transitive law gives b ⇒ c ′.

See text for a 10-fact example.
Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 41 / 49

Predicate Logic

Want to symbolically state the classical syllogism

All men are mortal.

Socrates is a man.

Therefore,

Socrates is mortal.

Let
man(x) = “x is a man′′

mortal(x) = “x is mortal′′

We can agree that man(Socrates) is (was?) true and that

man(x)⇒ mortal(x) for any person x .

Our natural conclusion? mortal(Socrates) is true.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 42 / 49

Predicate Logic

Want to symbolically state the classical syllogism

All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.

Let
man(x) = “x is a man′′

mortal(x) = “x is mortal′′

We can agree that man(Socrates) is (was?) true and that

man(x)⇒ mortal(x) for any person x .

Our natural conclusion? mortal(Socrates) is true.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 42 / 49

Predicate Logic

Want to symbolically state the classical syllogism

All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.

Let
man(x) = “x is a man′′

mortal(x) = “x is mortal′′

We can agree that man(Socrates) is (was?) true and that

man(x)⇒ mortal(x) for any person x .

Our natural conclusion?

mortal(Socrates) is true.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 42 / 49

Predicate Logic

Want to symbolically state the classical syllogism

All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.

Let
man(x) = “x is a man′′

mortal(x) = “x is mortal′′

We can agree that man(Socrates) is (was?) true and that

man(x)⇒ mortal(x) for any person x .

Our natural conclusion? mortal(Socrates) is true.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 42 / 49

Predicate Logic (cont’d)

A predicate is a formula that contains a variable, that
becomes a proposition when we substitute a particular value
for the variable.

In other words, plug in a value and get a truth value (T or F).

Examples: man(x) or mortal(x).

Can have more than one variable, e.g.,

older(x , y) = “x is older than y ”.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 43 / 49

Predicate Logic (cont’d)

For example, suppose that four(t) means that t ∈ Z is divisible
by 4 (in other words, t is an exact multiple of 4). Then:

x four(x) truth value of four(x)
...

...
...

-4 -4 is divisible by 4 T
-3 -3 is divisible by 4 F
-2 -2 is divisible by 4 F
-1 -1 is divisible by 4 F
0 0 is divisible by 4 T
1 1 is divisible by 4 F
2 2 is divisible by 4 F
3 3 is divisible by 4 F
4 4 is divisible by 4 T
...

...
...

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 44 / 49

Quantifiers

How to transform a predicate p(x) (where x varies over a
set S) into a proposition?

Universal quantification: We ask that p(x) be true for all
x ∈ S . We let

∀ x ∈ S , p(x)

denote the proposition “For all elements x ∈ S , p(x) is true.”

Existential quantification: We ask that p(x) be true for
some x ∈ S . We let

∃ x ∈ S : p(x)

denote the proposition “There exists some x ∈ S such that
p(x) is true.”

Note the slight punctuation difference (comma vs. colon).
�

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 45 / 49

Quantifiers

How to transform a predicate p(x) (where x varies over a
set S) into a proposition?

Universal quantification: We ask that p(x) be true for all
x ∈ S . We let

∀ x ∈ S , p(x)

denote the proposition “For all elements x ∈ S , p(x) is true.”

Existential quantification: We ask that p(x) be true for
some x ∈ S . We let

∃ x ∈ S : p(x)

denote the proposition “There exists some x ∈ S such that
p(x) is true.”

Note the slight punctuation difference (comma vs. colon).
�

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 45 / 49

Quantifiers

How to transform a predicate p(x) (where x varies over a
set S) into a proposition?

Universal quantification: We ask that p(x) be true for all
x ∈ S . We let

∀ x ∈ S , p(x)

denote the proposition “For all elements x ∈ S , p(x) is true.”

Existential quantification: We ask that p(x) be true for
some x ∈ S . We let

∃ x ∈ S : p(x)

denote the proposition “There exists some x ∈ S such that
p(x) is true.”

Note the slight punctuation difference (comma vs. colon).
�

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 45 / 49

Quantifiers

How to transform a predicate p(x) (where x varies over a
set S) into a proposition?

Universal quantification: We ask that p(x) be true for all
x ∈ S . We let

∀ x ∈ S , p(x)

denote the proposition “For all elements x ∈ S , p(x) is true.”

Existential quantification: We ask that p(x) be true for
some x ∈ S . We let

∃ x ∈ S : p(x)

denote the proposition “There exists some x ∈ S such that
p(x) is true.”

Note the slight punctuation difference (comma vs. colon).
�

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 45 / 49

Quantifiers (cont’d)

Let

four(x) = “x is divisible by four.” for any x ∈ Z.

∀ x ∈ Z, four(x) is

false.
∃ x ∈ Z : four(x) is true.

Consider the predicate x > y over x , y ∈ Z.

∀x ∈ Z,∀y ∈ Z, x > y is false
∃ x ∈ Z,∃ y ∈ Z : x > y is true

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 46 / 49

Quantifiers (cont’d)

Let

four(x) = “x is divisible by four.” for any x ∈ Z.

∀ x ∈ Z, four(x) is false.
∃ x ∈ Z : four(x) is

true.

Consider the predicate x > y over x , y ∈ Z.

∀x ∈ Z,∀y ∈ Z, x > y is false
∃ x ∈ Z,∃ y ∈ Z : x > y is true

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 46 / 49

Quantifiers (cont’d)

Let

four(x) = “x is divisible by four.” for any x ∈ Z.

∀ x ∈ Z, four(x) is false.
∃ x ∈ Z : four(x) is true.

Consider the predicate x > y over x , y ∈ Z.

∀x ∈ Z,∀y ∈ Z, x > y is false
∃ x ∈ Z,∃ y ∈ Z : x > y is true

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 46 / 49

Quantifiers (cont’d)

Let

four(x) = “x is divisible by four.” for any x ∈ Z.

∀ x ∈ Z, four(x) is false.
∃ x ∈ Z : four(x) is true.

Consider the predicate x > y over x , y ∈ Z.

∀x ∈ Z,∀y ∈ Z, x > y is

false
∃ x ∈ Z,∃ y ∈ Z : x > y is true

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 46 / 49

Quantifiers (cont’d)

Let

four(x) = “x is divisible by four.” for any x ∈ Z.

∀ x ∈ Z, four(x) is false.
∃ x ∈ Z : four(x) is true.

Consider the predicate x > y over x , y ∈ Z.

∀x ∈ Z,∀y ∈ Z, x > y is false
∃ x ∈ Z,∃ y ∈ Z : x > y is

true

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 46 / 49

Quantifiers (cont’d)

Let

four(x) = “x is divisible by four.” for any x ∈ Z.

∀ x ∈ Z, four(x) is false.
∃ x ∈ Z : four(x) is true.

Consider the predicate x > y over x , y ∈ Z.

∀x ∈ Z,∀y ∈ Z, x > y is false
∃ x ∈ Z,∃ y ∈ Z : x > y is true

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 46 / 49

Some Rules for Using Predicates

Classical syllogism: Suppose that

p(x) and q(x) are predicates, with x varying over some set S .
p(x)⇒ q(x) for any x ∈ S .

Suppose further that p(a) is true for some a ∈ S .
Then q(a) is true.
We can write this symbolically as

[∀ x ∈ S , p(x)⇒ q(x) ∧ a ∈ S ∧ p(a)]⇒ q(a)].

Negation laws:

[∃ x ∈ S : p(x)]′ ≡ [∀ x ∈ S , p′(x)]

and
[∀ x ∈ S , p(x)]′ ≡ [∃ x ∈ S : p′(x)].

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 47 / 49

Some Rules for Using Predicates

Classical syllogism: Suppose that

p(x) and q(x) are predicates, with x varying over some set S .
p(x)⇒ q(x) for any x ∈ S .

Suppose further that p(a) is true for some a ∈ S .

Then q(a) is true.
We can write this symbolically as

[∀ x ∈ S , p(x)⇒ q(x) ∧ a ∈ S ∧ p(a)]⇒ q(a)].

Negation laws:

[∃ x ∈ S : p(x)]′ ≡ [∀ x ∈ S , p′(x)]

and
[∀ x ∈ S , p(x)]′ ≡ [∃ x ∈ S : p′(x)].

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 47 / 49

Some Rules for Using Predicates

Classical syllogism: Suppose that

p(x) and q(x) are predicates, with x varying over some set S .
p(x)⇒ q(x) for any x ∈ S .

Suppose further that p(a) is true for some a ∈ S .
Then q(a) is true.

We can write this symbolically as

[∀ x ∈ S , p(x)⇒ q(x) ∧ a ∈ S ∧ p(a)]⇒ q(a)].

Negation laws:

[∃ x ∈ S : p(x)]′ ≡ [∀ x ∈ S , p′(x)]

and
[∀ x ∈ S , p(x)]′ ≡ [∃ x ∈ S : p′(x)].

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 47 / 49

Some Rules for Using Predicates

Classical syllogism: Suppose that

p(x) and q(x) are predicates, with x varying over some set S .
p(x)⇒ q(x) for any x ∈ S .

Suppose further that p(a) is true for some a ∈ S .
Then q(a) is true.
We can write this symbolically as

[∀ x ∈ S , p(x)⇒ q(x) ∧ a ∈ S ∧ p(a)]⇒ q(a)].

Negation laws:

[∃ x ∈ S : p(x)]′ ≡ [∀ x ∈ S , p′(x)]

and
[∀ x ∈ S , p(x)]′ ≡ [∃ x ∈ S : p′(x)].

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 47 / 49

Some Rules for Using Predicates

Classical syllogism: Suppose that

p(x) and q(x) are predicates, with x varying over some set S .
p(x)⇒ q(x) for any x ∈ S .

Suppose further that p(a) is true for some a ∈ S .
Then q(a) is true.
We can write this symbolically as

[∀ x ∈ S , p(x)⇒ q(x) ∧ a ∈ S ∧ p(a)]⇒ q(a)].

Negation laws:

[∃ x ∈ S : p(x)]′ ≡ [∀ x ∈ S , p′(x)]

and
[∀ x ∈ S , p(x)]′ ≡ [∃ x ∈ S : p′(x)].

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 47 / 49

Predicates Having More Than One Variable

Any given variable might not be quantified.

The quantified variables might be quantified differently.

Example: Let P be a set of people, T be a set of
temperatures. Define “beach(p, t)” to mean that “person p
will go to the beach if the temperature reaches t degrees”.

Quantification choices?
No quantification. beach(p, t) is a two-variable predicate.

We can quantify in one variable.
Quantifying over p gives the following predicates in t:

∃ p ∈ P : beach(p, t)

∀ p ∈ P, beach(p, t).

Quantifying over t gives the following predicates in p:

∃ t ∈ T : beach(p, t)

∀ t ∈ T , beach(p, t).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 48 / 49

Predicates Having More Than One Variable

Any given variable might not be quantified.

The quantified variables might be quantified differently.

Example: Let P be a set of people, T be a set of
temperatures. Define “beach(p, t)” to mean that “person p
will go to the beach if the temperature reaches t degrees”.

Quantification choices?
No quantification. beach(p, t) is a two-variable predicate.
We can quantify in one variable.
Quantifying over p gives the following predicates in t:

∃ p ∈ P : beach(p, t)

∀ p ∈ P, beach(p, t).

Quantifying over t gives the following predicates in p:

∃ t ∈ T : beach(p, t)

∀ t ∈ T , beach(p, t).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 48 / 49

Predicates Having More Than One Variable

Any given variable might not be quantified.

The quantified variables might be quantified differently.

Example: Let P be a set of people, T be a set of
temperatures. Define “beach(p, t)” to mean that “person p
will go to the beach if the temperature reaches t degrees”.

Quantification choices?
No quantification. beach(p, t) is a two-variable predicate.
We can quantify in one variable.
Quantifying over p gives the following predicates in t:

∃ p ∈ P : beach(p, t)

∀ p ∈ P, beach(p, t).

Quantifying over t gives the following predicates in p:

∃ t ∈ T : beach(p, t)

∀ t ∈ T , beach(p, t).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 48 / 49

Predicates Having More Than One Variable (cont’d)

Quantification example (cont’d)

We can quantify in both variables, getting the propositions:

∃ p ∈ P : [∃ t ∈ T : beach(p, t)]

∃ p ∈ P : [∀ t ∈ T , beach(p, t)]

∀ p ∈ P, [∃ t ∈ T : beach(p, t)]

∀ p ∈ P, [∀ t ∈ T , beach(p, t)].

(Many people would omit the brackets.)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 3 49 / 49

