# CISC 1100: Structures of Computer Science 

 Chapter 3 LogicArthur G. Werschulz

Fordham University Department of Computer and Information Sciences Copyright © Arthur G. Werschulz, 2015. All rights reserved.

$$
\text { Summer, } 2015
$$

## Logical (or illogical?) reasoning

- Is this a valid argument?
- All men are mortal.
- Socrates is a man.
- Therefore,


## Logical (or illogical?) reasoning

- Is this a valid argument?
- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.

Valid or not?

## Logical (or illogical?) reasoning

- Is this a valid argument?
- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.

Valid or not? Yes!

- Is this a valid argument?
- If we finish our homework, then we will go out for ice cream.
- We are going out for ice cream.
- Therefore we finished our homework.

Valid or not?

## Logical (or illogical?) reasoning

- Is this a valid argument?
- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.

Valid or not? Yes!

- Is this a valid argument?
- If we finish our homework, then we will go out for ice cream.
- We are going out for ice cream.
- Therefore we finished our homework.

Valid or not? No!

## Logical (or illogical?) reasoning

- Is this a valid argument?
- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.

Valid or not? Yes!

- Is this a valid argument?
- If we finish our homework, then we will go out for ice cream.
- We are going out for ice cream.
- Therefore we finished our homework.

Valid or not? No!

- How to recognize the difference?


## Outline

- Propositional logic
- Logical operations
- Propositional forms
- From English to propositions
- Propositional equivalence
- Predicate logic
- Quantifiers
- Some rules for using predicates


## Propositional logic

Proposition: A statement that is either true or false:

- $2+2=4$.


## Propositional logic

Proposition: A statement that is either true or false:

- $2+2=4$.
- $2+2=5$.


## Propositional logic

Proposition: A statement that is either true or false:

- $2+2=4$.
- $2+2=5$.
- It rained yesterday in Manhattan.


## Propositional logic

Proposition: A statement that is either true or false:

- $2+2=4$.
- $2+2=5$.
- It rained yesterday in Manhattan.
- It will rain tomorrow in Manhattan.


## Propositional logic

Proposition: A statement that is either true or false:

- $2+2=4$.
- $2+2=5$.
- It rained yesterday in Manhattan.
- It will rain tomorrow in Manhattan.

These are not propositions:

- $x+2=4$.


## Propositional logic

Proposition: A statement that is either true or false:

- $2+2=4$.
- $2+2=5$.
- It rained yesterday in Manhattan.
- It will rain tomorrow in Manhattan.

These are not propositions:

- $x+2=4$.
- Will it rain today in Manhattan?


## Propositional logic

Proposition: A statement that is either true or false:

- $2+2=4$.
- $2+2=5$.
- It rained yesterday in Manhattan.
- It will rain tomorrow in Manhattan.

These are not propositions:

- $x+2=4$.
- Will it rain today in Manhattan?
- Colorless green ideas sleep furiously.


## Propositional logic (cont'd)

- Truth value of a proposition (T, F)


## Propositional logic (cont'd)

- Truth value of a proposition (T, F)
- Propositional variables: lower case letters ( $p, q, \ldots$ )


## Propositional logic (cont'd)

- Truth value of a proposition (T, F)
- Propositional variables: lower case letters ( $p, q, \ldots$ ) (Analogous to variables in algebra.)
- $p=$ "A New York City subway fare is $\$ 2.50$."
- $q=$ "It will rain today in Manhattan."
- $r=$ "All multiples of four are even numbers."


## Logical operations: negation

- Negation, the NOT operation: reverses a truth value.
- Negation is a unary operation: only depends on one variable.
- Negation of $p$ is denoted $p^{\prime}$.
(Some books use other notations, such as $\bar{p}, \sim p$, or $\neg p$.)
- Can display via a truth table

| $p$ | $p^{\prime}$ |
| :---: | :---: |
| T | F |
| F | T |

## Logical operations: conjunction, disjunction

- The remaining operations we discuss are binary operations: they depend on two variables (also called connectives).


## Logical operations: conjunction, disjunction

- The remaining operations we discuss are binary operations: they depend on two variables (also called connectives).
- Conjunction, the AND operation: true if both operands are true. Denote by $\wedge$.


## Logical operations: conjunction, disjunction

- The remaining operations we discuss are binary operations: they depend on two variables (also called connectives).
- Conjunction, the AND operation: true if both operands are true. Denote by $\wedge$.
- Disjunction, the (inclusive) OR operation: true if either operand is true (including both). Denote by $\vee$.


## Logical operations: conjunction, disjunction

- The remaining operations we discuss are binary operations: they depend on two variables (also called connectives).
- Conjunction, the AND operation: true if both operands are true. Denote by $\wedge$.
- Disjunction, the (inclusive) OR operation: true if either operand is true (including both). Denote by $\vee$.
- Truth tables:

| $p$ | $q$ | $p \wedge q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | F |


| $p$ | $q$ | $p \vee q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | T |
| F | T | T |
| F | F | F |

## Logical operations: exclusive or

- The inclusive or $\vee$ is not the "or" of common language.
- That role is played by exclusive or (XOR), denoted $\oplus$.
- Truth table:

| $p$ | $q$ | $p \oplus q$ |
| :---: | :---: | :---: |
| T | T | F |
| T | F | T |
| F | T | T |
| F | F | F |

## Logical operations: exclusive or

- The inclusive or $\vee$ is not the "or" of common language.
- That role is played by exclusive or (XOR), denoted $\oplus$.
- Truth table:

| $p$ | $q$ | $p \oplus q$ |
| :---: | :---: | :---: |
| T | T | F |
| T | F | T |
| F | T | T |
| F | F | F |

- Be careful to distinguish between OR and XOR! 2


## Logical operations: conditional

- Denoted $p \Rightarrow q$.


## Logical operations: conditional

- Denoted $p \Rightarrow q$.
- Captures the meaning of
- If $p$, then $q$.
- $p$ implies $q$.
- $p$ only if $q$.
- $p$ is sufficient for $q$.
- $q$ is necessary for $p$.


## Logical operations: conditional

- Denoted $p \Rightarrow q$.
- Captures the meaning of
- If $p$, then $q$.
- $p$ implies $q$.
- $p$ only if $q$.
- $p$ is sufficient for $q$.
- $q$ is necessary for $p$.
- Truth table:

| $p$ | $q$ | $p \Rightarrow q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |

## Logical operations: conditional

- Denoted $p \Rightarrow q$.
- Captures the meaning of
- If $p$, then $q$.
- $p$ implies $q$.
- $p$ only if $q$.
- $p$ is sufficient for $q$.
- $q$ is necessary for $p$.
- Truth table:

| $p$ | $q$ | $p \Rightarrow q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |

- First two rows are "obvious".


## Logical operations: conditional

- Denoted $p \Rightarrow q$.
- Captures the meaning of
- If $p$, then $q$.
- $p$ implies $q$.
- $p$ only if $q$.
- $p$ is sufficient for $q$.
- $q$ is necessary for $p$.
- Truth table:

$$
\begin{array}{c|c|c}
p & q & p \Rightarrow q \\
\hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~F} & \mathrm{~F} & \mathrm{~T}
\end{array}
$$

- First two rows are "obvious".
- Last two rows are not so obvious:


## Logical operations: conditional

- Denoted $p \Rightarrow q$.
- Captures the meaning of
- If $p$, then $q$.
- $p$ implies $q$.
- $p$ only if $q$.
- $p$ is sufficient for $q$.
- $q$ is necessary for $p$.
- Truth table:

$$
\begin{array}{c|c|c}
p & q & p \Rightarrow q \\
\hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~F} & \mathrm{~F} & \mathrm{~T}
\end{array}
$$

- First two rows are "obvious".
- Last two rows are not so obvious:
"One can derive anything from a false hypothesis."


## Logical operations: biconditional

- Denoted $p \Leftrightarrow q$


## Logical operations: biconditional

- Denoted $p \Leftrightarrow q$
- Captures the meaning of
- $p$ if and only if $q$.
- $p$ is necessary and sufficient for $q$.
- $p$ is logically equivalent to $q$.


## Logical operations: biconditional

- Denoted $p \Leftrightarrow q$
- Captures the meaning of
- $p$ if and only if $q$.
- $p$ is necessary and sufficient for $q$.
- $p$ is logically equivalent to $q$.
- Truth table:

| $p$ | $q$ | $p \Leftrightarrow q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | T |

## Propositional Forms

In arithmetic and algebra, you learned how to build up complicated arithmetic expressions, such as

- $1+2$


## Propositional Forms

In arithmetic and algebra, you learned how to build up complicated arithmetic expressions, such as

- $1+2$
- $-(1+2)$


## Propositional Forms

In arithmetic and algebra, you learned how to build up complicated arithmetic expressions, such as

- $1+2$
- $-(1+2)$
- $3 \times 4$


## Propositional Forms

In arithmetic and algebra, you learned how to build up complicated arithmetic expressions, such as

- $1+2$
- $-(1+2)$
- $3 \times 4$
- $-(1+2) /(3 \times 4)$


## Propositional Forms

In arithmetic and algebra, you learned how to build up complicated arithmetic expressions, such as

- $1+2$
- $-(1+2)$
- $3 \times 4$
- $-(1+2) /(3 \times 4)$
- $-(1+2) /(3 \times 4)+(5+6 \times 7) /(8+9)-10$
- Use connectives to build complicated expressions from simpler ones, or
- break down complicated expressions as being simpler subexpressions, connected by connectives.
- Use connectives to build complicated expressions from simpler ones, or
- break down complicated expressions as being simpler subexpressions, connected by connectives.
- Example: $-(1+2) /(3 \times 4)+(5+6 \times 7) /(8+9)-10$ consists of

$$
-(1+2) /(3 \times 4) \quad \text { and } \quad(5+6 \times 7) /(8+9)-10
$$

connected by + .

- Now break down these two subexpressions.


## Propositional Forms (cont'd)

- Use connectives to build complicated expressions from simpler ones, or
- break down complicated expressions as being simpler subexpressions, connected by connectives.
- Example: $-(1+2) /(3 \times 4)+(5+6 \times 7) /(8+9)-10$ consists of

$$
-(1+2) /(3 \times 4) \quad \text { and } \quad(5+6 \times 7) /(8+9)-10
$$

connected by + .

- Now break down these two subexpressions.
- Now break down the four sub-subexpressions.
- Use connectives to build complicated expressions from simpler ones, or
- break down complicated expressions as being simpler subexpressions, connected by connectives.
- Example: $-(1+2) /(3 \times 4)+(5+6 \times 7) /(8+9)-10$ consists of

$$
-(1+2) /(3 \times 4) \quad \text { and } \quad(5+6 \times 7) /(8+9)-10
$$

connected by + .

- Now break down these two subexpressions.
- Now break down the four sub-subexpressions.
- And so forth.


## Propositional Forms (cont'd)

Systematize the process via a parse tree.
Parse tree for $-(1+2) /(3 \times 4)+(5+6 \times 7) /(8+9)-10$ :

## Propositional Forms (cont'd)

Systematize the process via a parse tree.
Parse tree for $-(1+2) /(3 \times 4)+(5+6 \times 7) /(8+9)-10$ :


## Propositional Forms (cont'd)

We're inherently using the following rules:
(1) Parenthesized subexpressions are evaluated first.
(2) Operations have a precedence hierarchy:
(1) Unary operations (for example, -1 ) are done first.
(2) Multiplicative operations ( $\times$ and $/$ ) are done next.

3 Additive operations (+ and -) are done last.
(3) In case of a tie (two additive operations or two multiplicative operations), the remaining operations are done from left to right.

## Propositional Forms (cont'd)

We're inherently using the following rules:
(1) Parenthesized subexpressions are evaluated first.
(2) Operations have a precedence hierarchy:
(1) Unary operations (for example, -1 ) are done first.
(2) Multiplicative operations ( $\times$ and $/$ ) are done next.

3 Additive operations (+ and -) are done last.
(3) In case of a tie (two additive operations or two multiplicative operations), the remaining operations are done from left to right.
These guarantee that (e.g.) $2+3 \times 4$ is 14 , rather than 20 .

## Propositional Forms (cont'd)

- Now jump from numerical algebra to propositional algebra.


## Propositional Forms (cont'd)

- Now jump from numerical algebra to propositional algebra.
- We can build new (complicated) propositions out of old (simpler) ones.


## Propositional Forms (cont'd)

- Now jump from numerical algebra to propositional algebra.
- We can build new (complicated) propositions out of old (simpler) ones.
- Example: $\left[(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right)\right] \Rightarrow[(p \Leftrightarrow q) \vee(p \wedge r)]$ consists of

$$
(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right) \quad \text { and } \quad(p \Leftrightarrow q) \vee(p \wedge r)
$$

connected by $\Rightarrow$.

## Propositional Forms (cont'd)

- Now jump from numerical algebra to propositional algebra.
- We can build new (complicated) propositions out of old (simpler) ones.
- Example: $\left[(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right)\right] \Rightarrow[(p \Leftrightarrow q) \vee(p \wedge r)]$ consists of

$$
(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right) \quad \text { and } \quad(p \Leftrightarrow q) \vee(p \wedge r)
$$

connected by $\Rightarrow$.

- Now break down these two subexpressions.


## Propositional Forms (cont'd)

- Now jump from numerical algebra to propositional algebra.
- We can build new (complicated) propositions out of old (simpler) ones.
- Example: $\left[(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right)\right] \Rightarrow[(p \Leftrightarrow q) \vee(p \wedge r)]$ consists of

$$
(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right) \quad \text { and } \quad(p \Leftrightarrow q) \vee(p \wedge r)
$$

connected by $\Rightarrow$.

- Now break down these two subexpressions.
- Now break down the four sub-subexpressions.


## Propositional Forms (cont'd)

- Now jump from numerical algebra to propositional algebra.
- We can build new (complicated) propositions out of old (simpler) ones.
- Example: $\left[(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right)\right] \Rightarrow[(p \Leftrightarrow q) \vee(p \wedge r)]$ consists of

$$
(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right) \quad \text { and } \quad(p \Leftrightarrow q) \vee(p \wedge r)
$$

connected by $\Rightarrow$.

- Now break down these two subexpressions.
- Now break down the four sub-subexpressions.
- And so forth.


## Propositional Forms (cont'd)

Parse tree for $\left[(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right)\right] \Rightarrow[(p \Leftrightarrow q) \vee(p \wedge r)]$ :

## Propositional Forms (cont'd)

Parse tree for $\left[(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right)\right] \Rightarrow[(p \Leftrightarrow q) \vee(p \wedge r)]$ :


## Propositional Forms (cont'd)

- The expression

$$
\left[(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right)\right] \Rightarrow[(p \Leftrightarrow q) \vee(p \wedge r)]
$$

is completely parenthesized (and hard to read).

- If we agree upon (standard) precedence rules, can get rid of extraneous parentheses.


## Propositional Forms (cont'd)

- The expression

$$
\left[(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right)\right] \Rightarrow[(p \Leftrightarrow q) \vee(p \wedge r)]
$$

is completely parenthesized (and hard to read).

- If we agree upon (standard) precedence rules, can get rid of extraneous parentheses.
(1) Parenthesized subexpressions are evaluated first.
(2) Operations have a precedence hierarchy:
(1) Unary negations (') are done first.
(2) Multiplicative operations $(\wedge)$ are done next.
(3) Additive operations $(\vee, \oplus)$ are done next.
(4) The conditional-type operations ( $\Rightarrow$ and $\Leftrightarrow$ ) are done last.
(3) In case of a tie (two operations at the same level in the hierarchy), operations are done in a left-to-right order, except for the conditional operator $\Rightarrow$, which is done in a right-to-left order. That is, $p \Rightarrow q \Rightarrow r$ is interpreted as $p \Rightarrow(q \Rightarrow r)$.


## Propositional Forms (cont'd)

So can replace

$$
\left[(p \vee q) \wedge\left(\left(p^{\prime}\right) \vee r\right)\right] \Rightarrow[(p \Leftrightarrow q) \vee(p \wedge r)]
$$

by

$$
\left[(p \vee q) \wedge\left(p^{\prime} \vee r\right)\right] \Rightarrow[(p \Leftrightarrow q) \vee p \wedge r]
$$

or even

$$
(p \vee q) \wedge\left(p^{\prime} \vee r\right) \Rightarrow(p \Leftrightarrow q) \vee p \wedge r .
$$

## Propositional Forms (cont'd)

- Precedence rules are too hard to remember!
- Let's simplify!


## Propositional Forms (cont'd)

- Precedence rules are too hard to remember!
- Let's simplify!
(1) Parenthesized subexpressions come first.
(2) Next comes the only unary operation (').
(3) Next comes the only multiplicative operation $(\wedge)$.

4 Next comes the additive operations $(\vee, \oplus)$.
(5) Use parentheses if you have any doubt.

Always use parentheses if you have multiple conditionals.
(6) Evaluate ties left-to-right.

## From English to Propositions

- Can use propositional forms to capture logical arguments in English.
- Help to expose logical fallacies.


## From English to Propositions

- Can use propositional forms to capture logical arguments in English.
- Help to expose logical fallacies.
- Example: Alice will have coffee or Bob will go to the beach.


## From English to Propositions

- Can use propositional forms to capture logical arguments in English.
- Help to expose logical fallacies.
- Example: Alice will have coffee or Bob will go to the beach. Let

$$
\begin{aligned}
& a=\text { "Alice will have coffee" } \\
& b=\text { "Bob will go to the beach" }
\end{aligned}
$$

Solution?

## From English to Propositions

- Can use propositional forms to capture logical arguments in English.
- Help to expose logical fallacies.
- Example: Alice will have coffee or Bob will go to the beach.

Let

$$
\begin{aligned}
& a=\text { "Alice will have coffee" } \\
& b=\text { "Bob will go to the beach" }
\end{aligned}
$$

Solution? $a \vee b$.

## From English to Propositions

- Can use propositional forms to capture logical arguments in English.
- Help to expose logical fallacies.
- Example: Alice will have coffee or Bob will go to the beach.

Let

$$
\begin{aligned}
& a=\text { "Alice will have coffee" } \\
& b=\text { "Bob will go to the beach" }
\end{aligned}
$$

Solution? $a \vee b$.

- Example: If I make peanut butter sandwiches for lunch, then Carol will be disappointed.


## From English to Propositions

- Can use propositional forms to capture logical arguments in English.
- Help to expose logical fallacies.
- Example: Alice will have coffee or Bob will go to the beach. Let

$$
\begin{aligned}
& a=\text { "Alice will have coffee" } \\
& b=\text { "Bob will go to the beach" }
\end{aligned}
$$

Solution? $a \vee b$.

- Example: If I make peanut butter sandwiches for lunch, then Carol will be disappointed. Let

$$
\begin{aligned}
& p=\text { "I will make peanut butter sandwiches" } \\
& c=\text { "Carol will be disappointed" }
\end{aligned}
$$

Solution?

## From English to Propositions

- Can use propositional forms to capture logical arguments in English.
- Help to expose logical fallacies.
- Example: Alice will have coffee or Bob will go to the beach. Let

$$
\begin{aligned}
& a=\text { "Alice will have coffee" } \\
& b=\text { "Bob will go to the beach" }
\end{aligned}
$$

Solution? $a \vee b$.

- Example: If I make peanut butter sandwiches for lunch, then Carol will be disappointed. Let

$$
\begin{aligned}
& p=\text { "I will make peanut butter sandwiches" } \\
& c=\text { "Carol will be disappointed" }
\end{aligned}
$$

Solution? $p \Rightarrow c$.

## From English to Propositions (cont'd)

- Example: If Alice will have coffee and Bob will go to the beach, then either Carol will be disappointed or I will make peanut butter sandwiches. Solution?


## From English to Propositions (cont'd)

- Example: If Alice will have coffee and Bob will go to the beach, then either Carol will be disappointed or I will make peanut butter sandwiches.
Solution? $a \wedge b \Rightarrow c \vee p$


## From English to Propositions (cont'd)

- Example: If Alice will have coffee and Bob will go to the beach, then either Carol will be disappointed or I will make peanut butter sandwiches.
Solution? $a \wedge b \Rightarrow c \vee p$
- Example:

Alice will have coffee and
Bob will not go to the beach
if and only if
Carol will be disappointed and
I will not make peanut butter sandwiches.
Solution?

## From English to Propositions (cont'd)

- Example: If Alice will have coffee and Bob will go to the beach, then either Carol will be disappointed or I will make peanut butter sandwiches.
Solution? $a \wedge b \Rightarrow c \vee p$
- Example:

Alice will have coffee and
Bob will not go to the beach
if and only if
Carol will be disappointed and
I will not make peanut butter sandwiches.
Solution? $\left(a \wedge b^{\prime}\right) \Leftrightarrow\left(c \wedge p^{\prime}\right)$

## Propositional Equivalence

High school algebra: establishes many useful rules, such as

$$
\begin{gathered}
a+b=b+a \\
a \times(b+c)=a \times b+a \times c \\
-(a+b)=(-a)+(-b)
\end{gathered}
$$

Anything analogous for propositions?

## Propositional Equivalence

High school algebra: establishes many useful rules, such as

$$
\begin{gathered}
a+b=b+a \\
a \times(b+c)=a \times b+a \times c \\
-(a+b)=(-a)+(-b)
\end{gathered}
$$

Anything analogous for propositions?

- How to state them? (No equal sign.)
- How to prove correct rules?
- How to disprove incorrect "rules"?


## Propositional Equivalence (cont'd)

- Logical equivalence: $p \equiv q$ means
$p$ is true if and only if $q$ is true
- Logical equivalence: $p \equiv q$ means $p$ is true if and only if $q$ is true
- Beware!

2

- $p \equiv q$ is not a proposition; it's a statement about propositions.
- $p \equiv q$ is a statement in a metalanguage about propositions.
$-\equiv$ is a metasymbol in this language.
- Logical equivalence: $p \equiv q$ means $p$ is true if and only if $q$ is true
- Beware! 2
- $p \equiv q$ is not a proposition; it's a statement about propositions.
- $p \equiv q$ is a statement in a metalanguage about propositions.
$-\equiv$ is a metasymbol in this language.
- Analogous to

$$
\begin{gathered}
a+b=b+a \\
a \times(b+c)=a \times b+a \times c \\
-(a+b)=(-a)+(-b)
\end{gathered}
$$

we might conjecture that

## Propositional Equivalence (cont'd)

- Logical equivalence: $p \equiv q$ means $p$ is true if and only if $q$ is true
- Beware! 2
- $p \equiv q$ is not a proposition; it's a statement about propositions.
- $p \equiv q$ is a statement in a metalanguage about propositions.
$-\equiv$ is a metasymbol in this language.
- Analogous to

$$
\begin{gathered}
a+b=b+a \\
a \times(b+c)=a \times b+a \times c, \\
-(a+b)=(-a)+(-b),
\end{gathered}
$$

we might conjecture that

$$
\begin{gathered}
p \vee q \equiv q \vee p, \\
p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r), \\
(p \vee q)^{\prime} \equiv p^{\prime} \vee q^{\prime} .
\end{gathered}
$$

## Propositional Equivalence (cont’d)

- Want to prove (or disprove) conjectured identities such as

$$
\begin{gathered}
p \vee q \equiv q \vee p, \\
p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r), \\
(p \vee q)^{\prime} \equiv p^{\prime} \vee q^{\prime} .
\end{gathered}
$$

## Propositional Equivalence (cont'd)

- Want to prove (or disprove) conjectured identities such as

$$
\begin{gathered}
p \vee q \equiv q \vee p, \\
p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r), \\
(p \vee q)^{\prime} \equiv p^{\prime} \vee q^{\prime}
\end{gathered}
$$

- How? Use a truth table.


## Propositional Equivalence (cont’d)

- Want to prove (or disprove) conjectured identities such as

$$
\begin{gathered}
p \vee q \equiv q \vee p, \\
p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r), \\
(p \vee q)^{\prime} \equiv p^{\prime} \vee q^{\prime}
\end{gathered}
$$

- How? Use a truth table.
- Suppose that $p$ and $q$ are propositional formulas.

The equivalence $p \equiv q$ is true iff the truth tables for $p$ and $q$ are identical.

## Propositional Equivalence (cont'd)

Example: Is it true that $p \vee q \equiv q \vee p$ ?

## Propositional Equivalence (cont'd)

Example: Is it true that $p \vee q \equiv q \vee p$ ?

| $p$ | $q$ | $p \vee q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | T |
| F | T | T |
| F | F | F |

## Propositional Equivalence (cont'd)

Example: Is it true that $p \vee q \equiv q \vee p$ ?

| $p$ | $q$ | $p \vee q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | T |
| F | T | T |
| F | F | F |


| $p$ | $q$ | $q \vee p$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | T |
| F | T | T |
| F | F | F |

Example: Is it true that $p \vee q \equiv q \vee p$ ?

| $p$ | $q$ | $p \vee q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | T |
| F | T | T |
| F | F | F |


| $p$ | $q$ | $q \vee p$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | T |
| F | T | T |
| F | F | F |

They match! So $p \vee q \equiv q \vee p$.
More compact form:

| $p$ | $q$ | $p \vee q$ | $q \vee p$ |
| :---: | :---: | :---: | :---: |
| T | T | T | T |
| T | F | T | T |
| F | T | T | T |
| F | F | F | F |

## Propositional Equivalence (cont'd)

Example: Is it true that $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$ ?

## Propositional Equivalence (cont'd)

Example: Is it true that $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$ ?

| $p$ | $q$ | $r$ | $q \vee r$ | $p \wedge(q \vee r)$ | $p \wedge q$ | $p \wedge r$ | $(p \wedge q) \vee(p \wedge r)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | T | T | T |
| T | T | F | T | T | T | F | T |
| T | F | T | T | T | F | T | T |
| T | F | F | F | F | F | F | F |
| F | T | T | T | F | F | F | F |
| F | T | F | T | F | F | F | F |
| F | F | T | T | F | F | F | F |
| F | F | F | F | F | F | F | F |

## Propositional Equivalence (cont'd)

Example: Is it true that $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$ ?

| $p$ | $q$ | $r$ | $q \vee r$ | $p \wedge(q \vee r)$ | $p \wedge q$ | $p \wedge r$ | $(p \wedge q) \vee(p \wedge r)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | T | T | T |
| T | T | F | T | T | T | F | T |
| T | F | T | T | T | F | T | T |
| T | F | F | F | F | F | F | F |
| F | T | T | T | F | F | F | F |
| F | T | F | T | F | F | F | F |
| F | F | T | T | F | F | F | F |
| F | F | F | F | F | F | F | F |

So $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$.

- How to organize the table?
- Two variables: TT, TF, FT, FF
- Three variables: TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF.
- General pattern?
- Rightmost variable alternates: TFTFTFTF ...
- Next alternates in pairs: TTFFTTFF ...
- Next alternates in quadruples: TTTTFFFFTTTTFFFF ...


## Propositional Equivalence (cont'd)

- How to organize the table?
- Two variables: TT, TF, FT, FF
- Three variables: TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF.
- General pattern?
- Rightmost variable alternates: TFTFTFTF ...
- Next alternates in pairs: TTFFTTFF ...
- Next alternates in quadruples: TTTTFFFFTTTTFFFF ...
- Size of table?
- Two variables? 4 rows.
- Three variables? 8 rows.
- $n$ variables?


## Propositional Equivalence (cont’d)

- How to organize the table?
- Two variables: TT, TF, FT, FF
- Three variables: TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF.
- General pattern?
- Rightmost variable alternates: TFTFTFTF ...
- Next alternates in pairs: TTFFTTFF ...
- Next alternates in quadruples: TTTTFFFFTTTTFFFF ...
- Size of table?
- Two variables? 4 rows.
- Three variables? 8 rows.
- $n$ variables? $2^{n}$ rows.
- Since $2^{10}=1024$, you don't want to do a 10 -variable table.


## Propositional Equivalence (cont'd)

Example: Is it true that $(p \vee q)^{\prime} \equiv p^{\prime} \vee q^{\prime}$ ?

## Propositional Equivalence (cont'd)

Example: Is it true that $(p \vee q)^{\prime} \equiv p^{\prime} \vee q^{\prime}$ ?

| $p$ | $q$ | $p \vee q$ | $(p \vee q)^{\prime}$ | $p^{\prime}$ | $q^{\prime}$ | $p^{\prime} \vee q^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | F | F |
| T | F | T | F | F | T | T |
| F | T | T | F | T | F | T |
| F | F | F | T | T | T | T |

## Propositional Equivalence (cont'd)

Example: Is it true that $(p \vee q)^{\prime} \equiv p^{\prime} \vee q^{\prime}$ ?

| $p$ | $q$ | $p \vee q$ | $(p \vee q)^{\prime}$ | $p^{\prime}$ | $q^{\prime}$ | $p^{\prime} \vee q^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | F | F |
| T | F | T | F | F | T | T |
| F | T | T | F | T | F | T |
| F | F | F | T | T | T | T |

So it is not true that $(p \vee q)^{\prime} \equiv p^{\prime} \vee q^{\prime}$ !

## Propositional Equivalence (cont'd)

Example: Rather than $(p \vee q)^{\prime} \equiv p^{\prime} \vee q^{\prime}$, the correct formula is $(p \vee q)^{\prime} \equiv p^{\prime} \wedge q^{\prime}$

Example: Rather than $(p \vee q)^{\prime} \equiv p^{\prime} \vee q^{\prime}$, the correct formula is $(p \vee q)^{\prime} \equiv p^{\prime} \wedge q^{\prime}$

| $p$ | $q$ | $p \vee q$ | $(p \vee q)^{\prime}$ | $p^{\prime}$ | $q^{\prime}$ | $p^{\prime} \wedge q^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | F | F |
| T | F | T | F | F | T | F |
| F | T | T | F | T | F | F |
| F | F | F | T | T | T | T |

The formula $(p \wedge q)^{\prime} \equiv p^{\prime} \vee q^{\prime}$ is also correct.
These formulas

$$
\begin{aligned}
& (p \vee q)^{\prime} \equiv p^{\prime} \wedge q^{\prime} \\
& (p \wedge q)^{\prime} \equiv p^{\prime} \vee q^{\prime}
\end{aligned}
$$

are called deMorgan's laws.

Some well-known propositional laws (we haven't proved them all):

Double Negation Idempotent Idempotent
Commutative
Commutative Associative
Associative Distributive Distributive DeMorgan DeMorgan
Modus Ponens
Modus Tollens
Contrapositive Implication

$$
\begin{gathered}
\left(p^{\prime}\right)^{\prime} \equiv p \\
p \wedge p \equiv p \\
p \vee p \equiv p \\
p \wedge q \equiv q \wedge p \\
p \vee q \equiv q \vee p \\
(p \wedge q) \wedge r \equiv p \wedge(q \wedge r) \\
(p \vee q) \vee r \equiv p \vee(q \vee r) \\
p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\
p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\
(p \wedge q)^{\prime} \equiv\left(p^{\prime}\right) \vee\left(q^{\prime}\right) \\
(p \vee q)^{\prime} \equiv\left(p^{\prime}\right) \wedge\left(q^{\prime}\right) \\
{[(p \Rightarrow q) \wedge p] \Rightarrow q} \\
{\left[(p \Rightarrow q) \wedge q^{\prime}\right] \Rightarrow p^{\prime}} \\
(p \Rightarrow q) \equiv\left(q^{\prime} \Rightarrow p^{\prime}\right) \\
(p \Rightarrow q) \equiv\left(p^{\prime} \vee q\right)
\end{gathered}
$$

## Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from Chapter 1, e.g., we have

$$
(p \wedge q)^{\prime} \equiv p^{\prime} \vee q^{\prime} \quad \text { and } \quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
$$

It turns out that we can use a propositional law to easily prove the analogous set identity.

## Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from Chapter 1, e.g., we have

$$
(p \wedge q)^{\prime} \equiv p^{\prime} \vee q^{\prime} \quad \text { and } \quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
$$

It turns out that we can use a propositional law to easily prove the analogous set identity. Example: Show that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.

## Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from Chapter 1, e.g., we have

$$
(p \wedge q)^{\prime} \equiv p^{\prime} \vee q^{\prime} \quad \text { and } \quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
$$

It turns out that we can use a propositional law to easily prove the analogous set identity. Example: Show that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.
Solution: Must show that any element of $(A \cap B)^{\prime}$ is an element of $A^{\prime} \cup B^{\prime}$, and vice versa. But

$$
x \in(A \cap B)^{\prime} \Longleftrightarrow(x \in A \cap B)^{\prime}
$$

## Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from Chapter 1, e.g., we have

$$
(p \wedge q)^{\prime} \equiv p^{\prime} \vee q^{\prime} \quad \text { and } \quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
$$

It turns out that we can use a propositional law to easily prove the analogous set identity. Example: Show that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.
Solution: Must show that any element of $(A \cap B)^{\prime}$ is an element of $A^{\prime} \cup B^{\prime}$, and vice versa. But

$$
x \in(A \cap B)^{\prime} \Longleftrightarrow(x \in A \cap B)^{\prime} \Longleftrightarrow(x \in A \wedge x \in B)^{\prime}
$$

## Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from Chapter 1, e.g., we have

$$
(p \wedge q)^{\prime} \equiv p^{\prime} \vee q^{\prime} \quad \text { and } \quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
$$

It turns out that we can use a propositional law to easily prove the analogous set identity. Example: Show that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.
Solution: Must show that any element of $(A \cap B)^{\prime}$ is an element of $A^{\prime} \cup B^{\prime}$, and vice versa. But

$$
\begin{aligned}
x \in(A \cap B)^{\prime} & \Longleftrightarrow(x \in A \cap B)^{\prime} \Longleftrightarrow(x \in A \wedge x \in B)^{\prime} \\
& \Longleftrightarrow(x \in A)^{\prime} \vee(x \in B)^{\prime}
\end{aligned}
$$

## Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from Chapter 1, e.g., we have

$$
(p \wedge q)^{\prime} \equiv p^{\prime} \vee q^{\prime} \quad \text { and } \quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
$$

It turns out that we can use a propositional law to easily prove the analogous set identity. Example: Show that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.
Solution: Must show that any element of $(A \cap B)^{\prime}$ is an element of $A^{\prime} \cup B^{\prime}$, and vice versa. But

$$
\begin{aligned}
x \in(A \cap B)^{\prime} & \Longleftrightarrow(x \in A \cap B)^{\prime} \Longleftrightarrow(x \in A \wedge x \in B)^{\prime} \\
& \Longleftrightarrow(x \in A)^{\prime} \vee(x \in B)^{\prime} \\
& \Longleftrightarrow\left(x \in A^{\prime}\right) \vee\left(x \in B^{\prime}\right)
\end{aligned}
$$

## Propositional Equivalence (cont’d)

The preceding table is similar to the table of set identities from Chapter 1, e.g., we have

$$
(p \wedge q)^{\prime} \equiv p^{\prime} \vee q^{\prime} \quad \text { and } \quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
$$

It turns out that we can use a propositional law to easily prove the analogous set identity.
Example: Show that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.
Solution: Must show that any element of $(A \cap B)^{\prime}$ is an element of $A^{\prime} \cup B^{\prime}$, and vice versa. But

$$
\begin{aligned}
x \in(A \cap B)^{\prime} & \Longleftrightarrow(x \in A \cap B)^{\prime} \Longleftrightarrow(x \in A \wedge x \in B)^{\prime} \\
& \Longleftrightarrow(x \in A)^{\prime} \vee(x \in B)^{\prime} \\
& \Longleftrightarrow\left(x \in A^{\prime}\right) \vee\left(x \in B^{\prime}\right) \\
& \Longleftrightarrow x \in A^{\prime} \cup B^{\prime},
\end{aligned}
$$

as required.

## Propositional Equivalence (cont'd)

Once we've proved a given propositional law, we can use it to help prove new ones.

Example: Let's prove the exportation identity

$$
[(p \wedge q) \Rightarrow r] \equiv[p \Rightarrow(q \Rightarrow r)]
$$

We have

$$
(p \wedge q) \Rightarrow r \equiv(p \wedge q)^{\prime} \vee r \quad \text { implication }
$$

## Propositional Equivalence (cont'd)

Once we've proved a given propositional law, we can use it to help prove new ones.

Example: Let's prove the exportation identity

$$
[(p \wedge q) \Rightarrow r] \equiv[p \Rightarrow(q \Rightarrow r)]
$$

We have

$$
\begin{aligned}
(p \wedge q) \Rightarrow r & \equiv(p \wedge q)^{\prime} \vee r & & \text { implication } \\
& \equiv\left(p^{\prime} \vee q^{\prime}\right) \vee r & & \text { DeMorgan }
\end{aligned}
$$

## Propositional Equivalence (cont'd)

Once we've proved a given propositional law, we can use it to help prove new ones.

Example: Let's prove the exportation identity

$$
[(p \wedge q) \Rightarrow r] \equiv[p \Rightarrow(q \Rightarrow r)]
$$

We have

$$
\begin{aligned}
(p \wedge q) \Rightarrow r & \equiv(p \wedge q)^{\prime} \vee r & & \text { implication } \\
& \equiv\left(p^{\prime} \vee q^{\prime}\right) \vee r & & \text { DeMorgan } \\
& \equiv p^{\prime} \vee\left(q^{\prime} \vee r\right) & & \text { associative }
\end{aligned}
$$

## Propositional Equivalence (cont'd)

Once we've proved a given propositional law, we can use it to help prove new ones.

Example: Let's prove the exportation identity

$$
[(p \wedge q) \Rightarrow r] \equiv[p \Rightarrow(q \Rightarrow r)]
$$

We have

$$
\begin{aligned}
(p \wedge q) \Rightarrow r & \equiv(p \wedge q)^{\prime} \vee r & & \text { implication } \\
& \equiv\left(p^{\prime} \vee q^{\prime}\right) \vee r & & \text { DeMorgan } \\
& \equiv p^{\prime} \vee\left(q^{\prime} \vee r\right) & & \text { associative } \\
& \equiv p^{\prime} \vee(q \Rightarrow r) & & \text { implication }
\end{aligned}
$$

## Propositional Equivalence (cont'd)

Once we've proved a given propositional law, we can use it to help prove new ones.

Example: Let's prove the exportation identity

$$
[(p \wedge q) \Rightarrow r] \equiv[p \Rightarrow(q \Rightarrow r)]
$$

We have

$$
\begin{aligned}
(p \wedge q) \Rightarrow r & \equiv(p \wedge q)^{\prime} \vee r & & \text { implication } \\
& \equiv\left(p^{\prime} \vee q^{\prime}\right) \vee r & & \text { DeMorgan } \\
& \equiv p^{\prime} \vee\left(q^{\prime} \vee r\right) & & \text { associative } \\
& \equiv p^{\prime} \vee(q \Rightarrow r) & & \text { implication } \\
& \equiv p \Rightarrow(q \Rightarrow r) & & \text { implication }
\end{aligned}
$$

as required.

- Duality: If $p$ is a proposition that only uses the operations ${ }^{\prime}$, $\wedge$, and $\vee$. If we replace all instances of $\wedge, \vee, T$, and $F$ in $p$ by $\vee, \wedge, F$, and $T$, respectively, we get a new proposition $p^{*}$, which is called the dual of $p$.
- Duality: If $p$ is a proposition that only uses the operations ${ }^{\prime}$, $\wedge$, and $V$. If we replace all instances of $\wedge, \vee, T$, and $F$ in $p$ by $\vee, \wedge, \mathrm{F}$, and T , respectively, we get a new proposition $p^{*}$, which is called the dual of $p$.
- Example: The duals of

$$
p \wedge(q \vee r) \quad \text { and } \quad(p \wedge q) \vee(p \wedge r)
$$

are

$$
p \vee(q \wedge r) \quad \text { and } \quad(p \vee q) \wedge(p \vee r)
$$

- Duality: If $p$ is a proposition that only uses the operations ${ }^{\prime}$, $\wedge$, and $V$. If we replace all instances of $\wedge, \vee, T$, and $F$ in $p$ by $\vee, \wedge, \mathrm{F}$, and T , respectively, we get a new proposition $p^{*}$, which is called the dual of $p$.
- Example: The duals of

$$
p \wedge(q \vee r) \quad \text { and } \quad(p \wedge q) \vee(p \wedge r)
$$

are

$$
p \vee(q \wedge r) \quad \text { and } \quad(p \vee q) \wedge(p \vee r)
$$

- Duality Principle: If two propositions (which only use the operations ${ }^{\prime}, \wedge$, and $\vee$ ) are equivalent, then their duals are equivalent. (Be lazy-save half the work!)


## Propositional Equivalence (cont'd)

Example: Since the duals

$$
p \wedge(q \vee r) \quad \text { and } \quad(p \wedge q) \vee(p \wedge r)
$$

are

$$
p \vee(q \wedge r) \quad \text { and } \quad(p \vee q) \wedge(p \vee r)
$$

## Propositional Equivalence (cont’d)

Example: Since the duals

$$
p \wedge(q \vee r) \quad \text { and } \quad(p \wedge q) \vee(p \wedge r)
$$

are

$$
p \vee(q \wedge r) \quad \text { and } \quad(p \vee q) \wedge(p \vee r)
$$

and we had earlier proved that

$$
p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)
$$

## Propositional Equivalence (cont’d)

Example: Since the duals

$$
p \wedge(q \vee r) \quad \text { and } \quad(p \wedge q) \vee(p \wedge r)
$$

are

$$
p \vee(q \wedge r) \quad \text { and } \quad(p \vee q) \wedge(p \vee r)
$$

and we had earlier proved that

$$
p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)
$$

we now know that

$$
p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)
$$

"for free".

## Propositional Equivalence (cont'd)

Example: Since the duals of

$$
(p \vee q)^{\prime} \quad \text { and } \quad p^{\prime} \wedge q^{\prime}
$$

are

$$
(p \wedge q)^{\prime} \quad \text { and } \quad p^{\prime} \vee q^{\prime}
$$

and we had earlier proved that

$$
(p \vee q)^{\prime} \equiv p^{\prime} \wedge q^{\prime}
$$

Example: Since the duals of

$$
(p \vee q)^{\prime} \quad \text { and } \quad p^{\prime} \wedge q^{\prime}
$$

are

$$
(p \wedge q)^{\prime} \quad \text { and } \quad p^{\prime} \vee q^{\prime}
$$

and we had earlier proved that

$$
(p \vee q)^{\prime} \equiv p^{\prime} \wedge q^{\prime}
$$

we now know that

$$
(p \wedge q)^{\prime} \equiv p^{\prime} \vee q^{\prime}
$$

"for free".

## Indirect Proofs

Sometimes you can prove a statement with a direct approach.

## Indirect Proofs

Sometimes you can prove a statement with a direct approach.
Example: Show that the square of an odd number is also an odd number.

## Indirect Proofs

Sometimes you can prove a statement with a direct approach.
Example: Show that the square of an odd number is also an odd number.

Solution: Let $m$ be an odd number; want to show that $m^{2}$ is odd.

## Indirect Proofs

Sometimes you can prove a statement with a direct approach.
Example: Show that the square of an odd number is also an odd number.

Solution: Let $m$ be an odd number; want to show that $m^{2}$ is odd.

- Write $m=2 n+1$ for $n \in \mathbb{Z}$.


## Indirect Proofs

Sometimes you can prove a statement with a direct approach.
Example: Show that the square of an odd number is also an odd number.

Solution: Let $m$ be an odd number; want to show that $m^{2}$ is odd.

- Write $m=2 n+1$ for $n \in \mathbb{Z}$.
- Then

$$
m^{2}=(2 n+1)^{2}=4 n^{2}+4 n+1=2\left(2 n^{2}+2 n\right)+1
$$

## Indirect Proofs

Sometimes you can prove a statement with a direct approach.
Example: Show that the square of an odd number is also an odd number.

Solution: Let $m$ be an odd number; want to show that $m^{2}$ is odd.

- Write $m=2 n+1$ for $n \in \mathbb{Z}$.
- Then

$$
m^{2}=(2 n+1)^{2}=4 n^{2}+4 n+1=2\left(2 n^{2}+2 n\right)+1
$$

Let $k=2 n^{2}+2 n \in \mathbb{Z}$. Then $m^{2}=2 k+1$,

## Indirect Proofs

Sometimes you can prove a statement with a direct approach.
Example: Show that the square of an odd number is also an odd number.

Solution: Let $m$ be an odd number; want to show that $m^{2}$ is odd.

- Write $m=2 n+1$ for $n \in \mathbb{Z}$.
- Then

$$
m^{2}=(2 n+1)^{2}=4 n^{2}+4 n+1=2\left(2 n^{2}+2 n\right)+1
$$

Let $k=2 n^{2}+2 n \in \mathbb{Z}$. Then $m^{2}=2 k+1$, and so $m^{2}$ is odd.

## Indirect Proofs (cont'd)

Sometimes a "frontal attack" doesn't work. So we use an "sneak attack", more properly called an indirect proof.

## Indirect Proofs (cont'd)

Sometimes a "frontal attack" doesn't work. So we use an "sneak attack", more properly called an indirect proof. Two such techniques:

- Proof by contradiction. Show that if the statement to proved is false, then a contradiction results.


## Indirect Proofs (cont'd)

Sometimes a "frontal attack" doesn't work. So we use an "sneak attack", more properly called an indirect proof. Two such techniques:

- Proof by contradiction. Show that if the statement to proved is false, then a contradiction results.
- Proving the contrapositive. Rather than directly proving an implication $p \Rightarrow q$, prove its contrapositive $q^{\prime} \Rightarrow p^{\prime}$.


## Indirect Proofs (cont'd)

## Example: Show that if the square of an integer is even, then that

 integer is even.
## Indirect Proofs (cont'd)

Example: Show that if the square of an integer is even, then that integer is even.

Solution: Let $m \in \mathbb{Z}$. We want to show that

$$
m^{2} \text { is even } \Rightarrow m \text { is even. }
$$

## Indirect Proofs (cont'd)

Example: Show that if the square of an integer is even, then that integer is even.

Solution: Let $m \in \mathbb{Z}$. We want to show that

$$
m^{2} \text { is even } \Rightarrow m \text { is even. }
$$

We can do this by establishing its contrapositive.

## Indirect Proofs (cont'd)

Example: Show that if the square of an integer is even, then that integer is even.

Solution: Let $m \in \mathbb{Z}$. We want to show that

$$
m^{2} \text { is even } \Rightarrow m \text { is even. }
$$

We can do this by establishing its contrapositive.
But the contrapositive is

$$
m \text { is odd } \Rightarrow m^{2} \text { is odd, }
$$

## Indirect Proofs (cont'd)

Example: Show that if the square of an integer is even, then that integer is even.

Solution: Let $m \in \mathbb{Z}$. We want to show that

$$
m^{2} \text { is even } \Rightarrow m \text { is even. }
$$

We can do this by establishing its contrapositive.
But the contrapositive is

$$
m \text { is odd } \Rightarrow m^{2} \text { is odd, }
$$

which we did previously. So we're done!!

## Indirect Proofs (cont'd)

## Example: Show that $\sqrt{2}$ is an irrational number.

## Indirect Proofs (cont'd)

Example: Show that $\sqrt{2}$ is an irrational number.
Solution: Let's do a proof by contradiction. Rather than showing $\sqrt{2} \notin \mathbb{Q}$, let's assume that $\sqrt{2} \in \mathbb{Q}$, and show how this leads to a contradiction.

## Indirect Proofs (cont'd)

Example: Show that $\sqrt{2}$ is an irrational number.
Solution: Let's do a proof by contradiction. Rather than showing $\sqrt{2} \notin \mathbb{Q}$, let's assume that $\sqrt{2} \in \mathbb{Q}$, and show how this leads to a contradiction.
So write $\sqrt{2}=p / q$ for $p, q \in \mathbb{Z}^{+}$, where $q \neq 0$ and where $p$ and $q$ have no common factor other than 1 (i.e., the fraction $p / q$ is "reduced to lowest terms"). Then

## Indirect Proofs (cont'd)

Example: Show that $\sqrt{2}$ is an irrational number.
Solution: Let's do a proof by contradiction. Rather than showing $\sqrt{2} \notin \mathbb{Q}$, let's assume that $\sqrt{2} \in \mathbb{Q}$, and show how this leads to a contradiction.
So write $\sqrt{2}=p / q$ for $p, q \in \mathbb{Z}^{+}$, where $q \neq 0$ and where $p$ and $q$ have no common factor other than 1 (i.e., the fraction $p / q$ is "reduced to lowest terms"). Then

$$
\begin{aligned}
\sqrt{2}=\frac{p}{q} & \Rightarrow \frac{p^{2}}{q^{2}}=2 \Rightarrow p^{2}=2 q^{2} \Rightarrow p^{2} \text { is even } \\
& \Rightarrow p \text { is even (see previous slide) } \\
& \Rightarrow p=2 r \text { for some positive integer } r \\
& \left.\Rightarrow(2 r)^{2}=p^{2}=2 q^{2} \quad \text { (Remember that } p^{2}=2 q^{2}!\right) \\
& \Rightarrow 4 r^{2}=2 q^{2} \Rightarrow 2 r^{2}=q^{2} \Rightarrow q^{2} \text { is even } \\
& \Rightarrow q \text { is even (again using previous slide) }
\end{aligned}
$$

## Indirect Proofs (cont'd)

Example (cont'd): Show that $\sqrt{2}$ is an irrational number.
Solution (cont'd): We're doing a proof by contradiction. Rather than showing $\sqrt{2} \notin \mathbb{Q}$, we are trying to show how the assumption $\sqrt{2} \in \mathbb{Q}$ leads to a contradiction.

## Indirect Proofs (cont'd)

Example (cont'd): Show that $\sqrt{2}$ is an irrational number.
Solution (cont'd): We're doing a proof by contradiction. Rather than showing $\sqrt{2} \notin \mathbb{Q}$, we are trying to show how the assumption $\sqrt{2} \in \mathbb{Q}$ leads to a contradiction.
We wrote $\sqrt{2}=p / q$ for $p, q \in \mathbb{Z}^{+}$, where $q \neq 0$ and where $p$ and $q$ have no common factor other than 1 (i.e., the fraction $p / q$ is "reduced to lowest terms").

## Indirect Proofs (cont'd)

Example (cont'd): Show that $\sqrt{2}$ is an irrational number.
Solution (cont'd): We're doing a proof by contradiction. Rather than showing $\sqrt{2} \notin \mathbb{Q}$, we are trying to show how the assumption $\sqrt{2} \in \mathbb{Q}$ leads to a contradiction.
We wrote $\sqrt{2}=p / q$ for $p, q \in \mathbb{Z}^{+}$, where $q \neq 0$ and where $p$ and $q$ have no common factor other than 1 (i.e., the fraction $p / q$ is "reduced to lowest terms").
Previous slide: Both $p$ and $q$ are even, i.e., they are both exact integer multiples of 2 .

## Indirect Proofs (cont'd)

Example (cont'd): Show that $\sqrt{2}$ is an irrational number.
Solution (cont'd): We're doing a proof by contradiction. Rather than showing $\sqrt{2} \notin \mathbb{Q}$, we are trying to show how the assumption $\sqrt{2} \in \mathbb{Q}$ leads to a contradiction.
We wrote $\sqrt{2}=p / q$ for $p, q \in \mathbb{Z}^{+}$, where $q \neq 0$ and where $p$ and $q$ have no common factor other than 1 (i.e., the fraction $p / q$ is "reduced to lowest terms").
Previous slide: Both $p$ and $q$ are even, i.e., they are both exact integer multiples of 2 .
This contradicts the assumption that $p, q$ have no common factor (other than 1)!

## Indirect Proofs (cont'd)

Example (cont'd): Show that $\sqrt{2}$ is an irrational number.
Solution (cont'd): We're doing a proof by contradiction. Rather than showing $\sqrt{2} \notin \mathbb{Q}$, we are trying to show how the assumption $\sqrt{2} \in \mathbb{Q}$ leads to a contradiction.
We wrote $\sqrt{2}=p / q$ for $p, q \in \mathbb{Z}^{+}$, where $q \neq 0$ and where $p$ and $q$ have no common factor other than 1 (i.e., the fraction $p / q$ is "reduced to lowest terms").
Previous slide: Both $p$ and $q$ are even, i.e., they are both exact integer multiples of 2 .
This contradicts the assumption that $p, q$ have no common factor (other than 1)!
Hence we cannot write $\sqrt{2}=p / q$ for $p, q \in \mathbb{Z}^{+}$, where $q \neq 0$ and where $p$ and $q$ have no common factor other than 1 .

## Indirect Proofs (cont'd)

Example (cont'd): Show that $\sqrt{2}$ is an irrational number.
Solution (cont'd): We're doing a proof by contradiction. Rather than showing $\sqrt{2} \notin \mathbb{Q}$, we are trying to show how the assumption $\sqrt{2} \in \mathbb{Q}$ leads to a contradiction.
We wrote $\sqrt{2}=p / q$ for $p, q \in \mathbb{Z}^{+}$, where $q \neq 0$ and where $p$ and $q$ have no common factor other than 1 (i.e., the fraction $p / q$ is "reduced to lowest terms").
Previous slide: Both $p$ and $q$ are even, i.e., they are both exact integer multiples of 2 .
This contradicts the assumption that $p, q$ have no common factor (other than 1)!
Hence we cannot write $\sqrt{2}=p / q$ for $p, q \in \mathbb{Z}^{+}$, where $q \neq 0$ and where $p$ and $q$ have no common factor other than 1 . Hence $\sqrt{2} \notin \mathbb{Q}$.

## An Example From Lewis Caroll

Given the following facts:
(1) All babies are illogical.
(2) Nobody is despised who can manage a crocodile.
(3) Illogical persons are despised.

Prove that babies cannot manage crocodiles.

## An Example From Lewis Caroll

Given the following facts:
(1) All babies are illogical.
(2) Nobody is despised who can manage a crocodile.
(3) Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let $b, c, d$, and I denote the status of being a baby, being able to manage a crocodile, being despised, and being logical. Then

## An Example From Lewis Caroll

Given the following facts:
(1) All babies are illogical.
(2) Nobody is despised who can manage a crocodile.
(3) Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let $b, c, d$, and I denote the status of being a baby, being able to manage a crocodile, being despised, and being logical. Then
(1) $b \Rightarrow I^{\prime}$.
(2) $c \Rightarrow d^{\prime}$.
(3) $I^{\prime} \Rightarrow d$.

## An Example From Lewis Caroll

Given the following facts:
(1) All babies are illogical.
(2) Nobody is despised who can manage a crocodile.
(3) Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let $b, c, d$, and I denote the status of being a baby, being able to manage a crocodile, being despised, and being logical. Then
(1) $b \Rightarrow I^{\prime}$.
(2) $c \Rightarrow d^{\prime}$.
(3) $I^{\prime} \Rightarrow d$.

We now have

- $b \Rightarrow d$, using (1), (3), transitive law.


## An Example From Lewis Caroll

Given the following facts:
(1) All babies are illogical.
(2) Nobody is despised who can manage a crocodile.
(3) Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let $b, c, d$, and I denote the status of being a baby, being able to manage a crocodile, being despised, and being logical. Then
(1) $b \Rightarrow I^{\prime}$.
(2) $c \Rightarrow d^{\prime}$.
(3) $I^{\prime} \Rightarrow d$.

We now have

- $b \Rightarrow d$, using (1), (3), transitive law.
- $\left(d^{\prime}\right)^{\prime} \Rightarrow c^{\prime}$, using (2), contrapositive law.


## An Example From Lewis Caroll

Given the following facts:
(1) All babies are illogical.
(2) Nobody is despised who can manage a crocodile.
(3) Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let $b, c, d$, and I denote the status of being a baby, being able to manage a crocodile, being despised, and being logical. Then
(1) $b \Rightarrow I^{\prime}$.
(2) $c \Rightarrow d^{\prime}$.
(3) $I^{\prime} \Rightarrow d$.

We now have

- $b \Rightarrow d$, using (1), (3), transitive law.
- $\left(d^{\prime}\right)^{\prime} \Rightarrow c^{\prime}$, using (2), contrapositive law.
- $d \Rightarrow c^{\prime}$, since $\left(d^{\prime}\right)^{\prime} \equiv d$ (double negation law).


## An Example From Lewis Caroll

Given the following facts:
(1) All babies are illogical.
(2) Nobody is despised who can manage a crocodile.
(3) Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let $b, c, d$, and I denote the status of being a baby, being able to manage a crocodile, being despised, and being logical. Then
(1) $b \Rightarrow I^{\prime}$.
(2) $c \Rightarrow d^{\prime}$.
(3) $I^{\prime} \Rightarrow d$.

We now have

- $b \Rightarrow d$, using (1), (3), transitive law.
- $\left(d^{\prime}\right)^{\prime} \Rightarrow c^{\prime}$, using (2), contrapositive law.
- $d \Rightarrow c^{\prime}$, since $\left(d^{\prime}\right)^{\prime} \equiv d$ (double negation law).
- Hence transitive law gives $b \Rightarrow c^{\prime}$.


## An Example From Lewis Caroll

Given the following facts:
(1) All babies are illogical.
(2) Nobody is despised who can manage a crocodile.
(3) Illogical persons are despised.

Prove that babies cannot manage crocodiles.
Let $b, c, d$, and I denote the status of being a baby, being able to manage a crocodile, being despised, and being logical. Then
(1) $b \Rightarrow I^{\prime}$.
(2) $c \Rightarrow d^{\prime}$.
(3) $I^{\prime} \Rightarrow d$.

We now have

- $b \Rightarrow d$, using (1), (3), transitive law.
- $\left(d^{\prime}\right)^{\prime} \Rightarrow c^{\prime}$, using (2), contrapositive law.
- $d \Rightarrow c^{\prime}$, since $\left(d^{\prime}\right)^{\prime} \equiv d$ (double negation law).
- Hence transitive law gives $b \Rightarrow c^{\prime}$.

See text for a 10 -fact example.

## Predicate Logic

Want to symbolically state the classical syllogism

- All men are mortal.
- Socrates is a man.
- Therefore,


## Predicate Logic

Want to symbolically state the classical syllogism

- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.


## Predicate Logic

Want to symbolically state the classical syllogism

- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.

Let

$$
\begin{gathered}
\operatorname{man}(x)=" x \text { is a man" } \\
\operatorname{mortal}(x)=\text { " } x \text { is mortal" }
\end{gathered}
$$

We can agree that man(Socrates) is (was?) true and that

$$
\operatorname{man}(x) \Rightarrow \operatorname{mortal}(x) \text { for any person } x
$$

Our natural conclusion?

## Predicate Logic

Want to symbolically state the classical syllogism

- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.

Let

$$
\begin{gathered}
\operatorname{man}(x)=" x \text { is a man" } \\
\operatorname{mortal}(x)=\text { " } x \text { is mortal" }
\end{gathered}
$$

We can agree that man(Socrates) is (was?) true and that

$$
\operatorname{man}(x) \Rightarrow \operatorname{mortal}(x) \text { for any person } x
$$

Our natural conclusion? mortal(Socrates) is true.

## Predicate Logic (cont'd)

- A predicate is a formula that contains a variable, that becomes a proposition when we substitute a particular value for the variable.
- In other words, plug in a value and get a truth value (T or F ).
- Examples: man $(x)$ or mortal $(x)$.
- Can have more than one variable, e.g.,

$$
\text { older }(x, y)=\text { " } x \text { is older than } y " .
$$

## Predicate Logic (cont'd)

For example, suppose that four $(t)$ means that $t \in \mathbb{Z}$ is divisible by 4 (in other words, $t$ is an exact multiple of 4 ). Then:

| $x$ | four $(x)$ | truth value of four $(x)$ |
| :---: | :---: | :---: |
| $\vdots$ | $\vdots$ | $\vdots$ |
| -4 | -4 is divisible by 4 | T |
| -3 | -3 is divisible by 4 | F |
| -2 | -2 is divisible by 4 | F |
| -1 | -1 is divisible by 4 | F |
| 0 | 0 is divisible by 4 | T |
| 1 | 1 is divisible by 4 | F |
| 2 | 2 is divisible by 4 | F |
| 3 | 3 is divisible by 4 | F |
| 4 | 4 is divisible by 4 | T |
| $\vdots$ | $\vdots$ | $\vdots$ |

## Quantifiers

- How to transform a predicate $p(x)$ (where $x$ varies over a set $S$ ) into a proposition?


## Quantifiers

- How to transform a predicate $p(x)$ (where $x$ varies over a set $S$ ) into a proposition?
- Universal quantification: We ask that $p(x)$ be true for all $x \in S$. We let

$$
\forall x \in S, p(x)
$$

denote the proposition "For all elements $x \in S, p(x)$ is true."

## Quantifiers

- How to transform a predicate $p(x)$ (where $x$ varies over a set $S$ ) into a proposition?
- Universal quantification: We ask that $p(x)$ be true for all $x \in S$. We let

$$
\forall x \in S, p(x)
$$

denote the proposition "For all elements $x \in S, p(x)$ is true."

- Existential quantification: We ask that $p(x)$ be true for some $x \in S$. We let

$$
\exists x \in S: p(x)
$$

denote the proposition "There exists some $x \in S$ such that $p(x)$ is true."

## Quantifiers

- How to transform a predicate $p(x)$ (where $x$ varies over a set $S$ ) into a proposition?
- Universal quantification: We ask that $p(x)$ be true for all $x \in S$. We let

$$
\forall x \in S, p(x)
$$

denote the proposition "For all elements $x \in S, p(x)$ is true."

- Existential quantification: We ask that $p(x)$ be true for some $x \in S$. We let

$$
\exists x \in S: p(x)
$$

denote the proposition "There exists some $x \in S$ such that $p(x)$ is true."

- Note the slight punctuation difference (comma vs. colon).


## Quantifiers (cont'd)

- Let
four $(x)=$ " $x$ is divisible by four." for any $x \in \mathbb{Z}$.
- $\forall x \in \mathbb{Z}$, four $(x)$ is


## Quantifiers (cont'd)

- Let
four $(x)=$ " $x$ is divisible by four." for any $x \in \mathbb{Z}$.
- $\forall x \in \mathbb{Z}$, four $(x)$ is false.
- $\exists x \in \mathbb{Z}$ : four $(x)$ is


## Quantifiers (cont'd)

- Let
four $(x)=$ " $x$ is divisible by four." for any $x \in \mathbb{Z}$.
- $\forall x \in \mathbb{Z}$, four $(x)$ is false.
- $\exists x \in \mathbb{Z}$ : four $(x)$ is true.


## Quantifiers (cont'd)

- Let
four $(x)=$ " $x$ is divisible by four." for any $x \in \mathbb{Z}$.
- $\forall x \in \mathbb{Z}$, four $(x)$ is false.
- $\exists x \in \mathbb{Z}$ : four $(x)$ is true.
- Consider the predicate $x>y$ over $x, y \in \mathbb{Z}$.
- $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x>y$ is


## Quantifiers (cont'd)

- Let
four $(x)=$ " $x$ is divisible by four." for any $x \in \mathbb{Z}$.
- $\forall x \in \mathbb{Z}$, four $(x)$ is false.
- $\exists x \in \mathbb{Z}$ : four $(x)$ is true.
- Consider the predicate $x>y$ over $x, y \in \mathbb{Z}$.
- $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x>y$ is false
- $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}: x>y$ is


## Quantifiers (cont'd)

- Let
four $(x)=$ " $x$ is divisible by four." for any $x \in \mathbb{Z}$.
- $\forall x \in \mathbb{Z}$, four $(x)$ is false.
- $\exists x \in \mathbb{Z}$ : four $(x)$ is true.
- Consider the predicate $x>y$ over $x, y \in \mathbb{Z}$.
- $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x>y$ is false
- $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}: x>y$ is true


## Some Rules for Using Predicates

- Classical syllogism: Suppose that
- $p(x)$ and $q(x)$ are predicates, with $x$ varying over some set $S$.
- $p(x) \Rightarrow q(x)$ for any $x \in S$.


## Some Rules for Using Predicates

- Classical syllogism: Suppose that
- $p(x)$ and $q(x)$ are predicates, with $x$ varying over some set $S$.
- $p(x) \Rightarrow q(x)$ for any $x \in S$.

Suppose further that $p(a)$ is true for some $a \in S$.

## Some Rules for Using Predicates

- Classical syllogism: Suppose that
- $p(x)$ and $q(x)$ are predicates, with $x$ varying over some set $S$.
- $p(x) \Rightarrow q(x)$ for any $x \in S$.

Suppose further that $p(a)$ is true for some $a \in S$. Then $q(a)$ is true.

## Some Rules for Using Predicates

- Classical syllogism: Suppose that
- $p(x)$ and $q(x)$ are predicates, with $x$ varying over some set $S$.
- $p(x) \Rightarrow q(x)$ for any $x \in S$.

Suppose further that $p(a)$ is true for some $a \in S$.
Then $q(a)$ is true.
We can write this symbolically as

$$
[\forall x \in S, p(x) \Rightarrow q(x) \wedge a \in S \wedge p(a)] \Rightarrow q(a)] .
$$

## Some Rules for Using Predicates

- Classical syllogism: Suppose that
- $p(x)$ and $q(x)$ are predicates, with $x$ varying over some set $S$.
- $p(x) \Rightarrow q(x)$ for any $x \in S$.

Suppose further that $p(a)$ is true for some $a \in S$.
Then $q(a)$ is true.
We can write this symbolically as

$$
[\forall x \in S, p(x) \Rightarrow q(x) \wedge a \in S \wedge p(a)] \Rightarrow q(a)] .
$$

- Negation laws:

$$
[\exists x \in S: p(x)]^{\prime} \equiv\left[\forall x \in S, p^{\prime}(x)\right]
$$

and

$$
[\forall x \in S, p(x)]^{\prime} \equiv\left[\exists x \in S: p^{\prime}(x)\right] .
$$

## Predicates Having More Than One Variable

- Any given variable might not be quantified.
- The quantified variables might be quantified differently.
- Example: Let $P$ be a set of people, $T$ be a set of temperatures. Define "beach $(p, t)$ " to mean that "person $p$ will go to the beach if the temperature reaches $t$ degrees". Quantification choices?
- No quantification. beach $(p, t)$ is a two-variable predicate.


## Predicates Having More Than One Variable

- Any given variable might not be quantified.
- The quantified variables might be quantified differently.
- Example: Let $P$ be a set of people, $T$ be a set of temperatures. Define "beach $(p, t)$ " to mean that "person $p$ will go to the beach if the temperature reaches $t$ degrees". Quantification choices?
- No quantification. beach $(p, t)$ is a two-variable predicate.
- We can quantify in one variable. Quantifying over $p$ gives the following predicates in $t$ :

$$
\begin{aligned}
& \exists p \in P: \operatorname{beach}(p, t) \\
& \forall p \in P, \operatorname{beach}(p, t)
\end{aligned}
$$

## Predicates Having More Than One Variable

- Any given variable might not be quantified.
- The quantified variables might be quantified differently.
- Example: Let $P$ be a set of people, $T$ be a set of temperatures. Define "beach $(p, t)$ " to mean that "person $p$ will go to the beach if the temperature reaches $t$ degrees". Quantification choices?
- No quantification. beach $(p, t)$ is a two-variable predicate.
- We can quantify in one variable. Quantifying over $p$ gives the following predicates in $t$ :

$$
\begin{aligned}
& \exists p \in P: \operatorname{beach}(p, t) \\
& \forall p \in P, \operatorname{beach}(p, t) .
\end{aligned}
$$

Quantifying over $t$ gives the following predicates in $p$ :

$$
\begin{aligned}
& \exists t \in T: \operatorname{beach}(p, t) \\
& \forall t \in T, \operatorname{beach}(p, t) .
\end{aligned}
$$

## Predicates Having More Than One Variable (cont'd)

- Quantification example (cont'd)
- We can quantify in both variables, getting the propositions:

$$
\begin{aligned}
& \exists p \in P:[\exists t \in T: \operatorname{beach}(p, t)] \\
& \exists p \in P:[\forall t \in T, \operatorname{beach}(p, t)] \\
& \forall p \in P,[\exists t \in T: \operatorname{beach}(p, t)] \\
& \forall p \in P,[\forall t \in T, \operatorname{beach}(p, t)] .
\end{aligned}
$$

(Many people would omit the brackets.)

