
Algorithms

X. Zhang
Fordham Univ.

1

Real World applications of algorithms
! Algorithms for solving specific, complex, real world

problems:!
! Google's success is largely due to its PageRank algorithm,

which determines “importance" of web pages!
! Prim's algorithm allow a cable company to determine how

to connect all homes in a town using least amount of cable!
! Dijkstra's algorithm can be used to find the shortest route

between a city and all other cities!
! RSA encryption algorithm makes e-commerce possible by

allowing for secure transactions over Web

2

Example of algorithms
! Algorithms for set operations!

! Union: take two sets A and B as input, and generate as
output !

! Intersection, Difference, Cartesian product, !
! Data structures and algorithms that operate on them !

! Data structure: set, list, tree, graph are widely used in
computer system for storing information!

! Algorithms for these data structure are critical for most
computer system!
! merge two sets, !
! sort a list, !
! search in a tree, !
! finding shortest path in a graph,!

! a CS course is devoted to data structure
3

BA∪

What is an algorithm?
! There are many ways to define an algorithm!
! An algorithm is a step-by-step procedure for carrying

out a task or solving a problem!
! an unambiguous computational procedure that takes

some input and generates some output!
! a sequence of well-defined instructions for completing

a task with a finite amount of effort in a finite amount
of time!

! a sequence of instructions that can be mechanically
performed in order to solve a problem

4

Key aspects of an algorithm
! An algorithm must be precise!

! clear and detailed enough for someone (or something) to
execute it!

! One way to ensure: !
! use actual computer code, which is guaranteed to be

unambiguous!
! pseudocode is often used, readable by humans!

! We will use English-like pseudocode!
! With some special notations…

5

Key aspects of an algorithm
! An algorithm operates on input and generates output!

! E.g., The “looking up a name in phonebook” algorithm has
two inputs: the phone book and the name to look up;
generates one output: the phone number!

! E.g., Input to FindMax algorithm: a list of numbers; output is
the maximum value in the list!

! An algorithm completes in a finite number of steps!
! This is a non-trivial requirement since certain methods may

sometimes run forever!

6

Algorithms and Computers
! Algorithms have been used for thousands of years and have

been executed by humans (possibly with pencil and paper)!
! Algorithm for performing long division!
! Algorithm for conversion between different base numeral systems!

! Work on algorithms exploded with development of digital
computers and are a cornerstone of Computer Science!
! Many algorithms are only feasible when implemented on computers!

! But even with today's fast computers, some problems still
cannot be solved using existing algorithms!
! Search for better and more efficient algorithms continues!

! Interestingly enough, some problems have been shown to
have no algorithmic solution

7

Halting Problem
! Halting Problem: given a description of a computer

program and input to the program, decide whether the
program finishes running or continues to run forever. !

! Alan Turing proved in 1936: a general algorithm to
solve the halting problem for all possible program-
input pairs cannot exist. !
! a mathematical definition of a computer and program, what

became known as a Turing machine; !
! the halting problem is undecidable over Turing machines!

! Turing (a novel about computation) by Christos H.
Papadimitriou, CS Professor at UC Berkeley

8

Uncomputable problem
! Alan Turing (1912-1954)!

! English mathematician, logician, cryptanalyst, and
computer scientist!

! Turing, A. M., “On Computable Numbers, with an
Application to the Entscheidungsproblem“, Proceedings of
the London Mathematical Society, Series 2, 42:230-265
and 43:544-546, 1937.

9

Turing Machine

10

Although simple, one can simulate a general computer using a TM

Universal Turing Machine
! A Turing machine that is able to simulate any other

Turing machine is called a universal Turing machine!
! Read the description of the TM to be simulated from the

tape … !
! This is similar to a general-purpose computer!

! CPU reads the program (Word, Internet Explorer,
PowerPoint, MediaPlayer …) from the disk, and carries
out the instructions specified in the program line by line …

11

Stored-program computer

12

! Also called von Neumann architecture!
! named after mathematician and early computer scientist

John von Neumann (12/28/1903 – 2/8/1957), “the last of
the great mathematicians”, “!

! Central processing unit (CPU): capable of performing
arithmetic operations, read & write memory, branch
operations, …!

! Memory: stores both instructions and data!
! Such architecture makes computer a general!
purpose machine => one can write diff programs to make!
computer do diff tasks 

Now to more easy topics

13

Searching and Sorting Algorithms
! Two of the most studied classes of algorithms in CS:!

! searching and sorting algorithms!
! Search algorithms are important because quickly

locating information is central to many tasks!
! Sorting algorithms are important because information

can be located much more quickly if it is first sorted!
! E.g. phone book !

! Searching and sorting algorithms as introduction to
the topic of algorithms

14

Searching Algorithms
! Problem: determine if an element x is in a list L!
! We will look at two simple searching algorithms!

! Linear search!
! Binary search!

! List: elements stored in a list in a sequential way!
! There is a first element, second element, ..!
! To make life easier: we use L[i] or Li to refer to the i-th

element in list L, we refer i as the index of element Li!

! L = (l1, l2,.., ln)!
! Elements are not necessarily ordered

15

Linear Search Algorithm
! The algorithm below will search for an element x in

List L and will return “FOUND" if x is in the list and
“NOT FOUND" otherwise.!

! L has n items and L[i] refers to the i-th element in L.
! Linear Search Algorithm

1 repeat as i varies from 1 to n
 2 if L[i] = x then return “FOUND" and stop
3 return “ FOUND"

! Note:
! Repeat: means do step 2 for i=1, i=2, i=3,…i=n
! We indent line 2 to show that it’s part of the loop/iteration
! Return: means exits the algorithm and returns the output

16

Efficiency of Linear Search Algorithm
! If x appears once in L, on average how many

comparisons (line 2) would the algorithm to make on
average?!
! On average n/2 comparisons!

! If x does not appear in L, how many comparisons
would the algorithm make?!
! n comparisons!

! Would such an algorithm be useful for finding
someone in a large (unsorted) phone book?!
! No, it would require scanning through entire phone book!!
! Need a better way!

17

Binary Search Algorithm Overview
! Binary search algorithm assumes that L is sorted!

! Ascending order or descending order!
! This algorithm need not examine each element, it

maintains a “window" in which element x may reside!
! window is defined by indices min and max which specify

the leftmost and rightmost boundaries in L!
! In the beginning, x can be anyway in L, i.e., min=1, max=n!
! At each iteration of the algorithm, the window is cut in half!

! Remember number guessing game ?!
! I am thinking about the number between 1 and 100, you

guess it by asking question such as “Is the number larger
than 30”?

18

Binary Search Algorithm
! Binary Search Algorithm assuming L has been sorted in

ascending order!
1 set min to 1 and set max to n
2 Repeat until min > max
3 Set midpoint to (min + max)/2
4 Compare x to L[midpoint], three possible results:

 (a) if x = L[midpoint] then return “FOUND"
 (b) if x > L[midpoint] then set min to (midpoint + 1)
 (c) if x < L[midpoint] then set max to (midpoint -1)

5 return “FOUND"
! Note: the repeat loop spans lines 2-4.!
! Can you modify the algorithm to work for L sorted in

descending order?

19

Binary Search Example
! Use binary search to find element “4" in sorted list (1 3 4 5

6 7 8 9). List values of min, max and midpoint after each
iteration of step 4. How many values are compared to “4"?!
1 Min = 1 and max = 8 and midpoint = 1/2 (1 + 8) = 4 (round

down). Since L[4] = 5 and since 4 < 5 we execute step 4c and
max = midpoint - 1 = 3.!

2 Now min = 1, max = 3 and midpoint = 1/2 (1 + 3) = 2. Since L[2]
= 3 and 4 > 3, we execute step 4b and min = midpoint + 1 = 3.!

3 Now min = 3, max = 3 and midpoint = 1/2 (3 + 3) = 3. Since L[3]
= 4 and 4 = 4, we execute step 4a and return “FOUND.“!

! we check three values: 3, 4, and 5. !
! Since we cut the window in half each iteration, it will

shrink very quickly (about log2 n comparisons).

20

Analysis of Algorithms
! An algorithm is a set of instructions that solves a

problem for all possible input instances!
! There may be many algorithms solving one problem

and all of these are not equally good!
! 12 sorting algorithms described in Wikipedia!

! One criteria for evaluating an algorithm is efficiency!
! Of course, correctness is first consideration!

! Analysis of Algorithm: determining the efficiency of
an algorithm

21

What’s in an algorithm?
! Consider this problem: find the largest number in a

list of numbers, given by L, i.e., (L1, L2, …, Ln) !
!

! How would you solve the problem? !
!

! How to specify your solution?

22

Algorithm analysis

23

How to evaluate algorithms?
! When solving tasks, what are we most concerned

with?!
! Most of us are pretty concerned with time, and time is

actually the main concern in evaluating the efficiency of
algorithms!

! Space: maximum amount of memory the algorithm
requires at any time!

! There is a trade-off between time and space efficiency!
! We will focus on time, although for some problems,

space can actually be the main concern.

24

How to measure time efficiency?
! We could run the algorithm on a computer and

measure the time it takes to complete!
! But what computer do we run it on? !

! Different computers have different speeds.!
! We could pick one benchmark computer, but it would not stick

around forever!
! Worse yet, running time is usually impacted by the specific

input, so how do we handle that?

25

Run Time Complexity
! Standard solution: number of operations performed

by the algorithm w.r.t. the size of the input !
! Size of the input: the length of the list to be sorted/

searched, the number of nodes/edges in the graph, …!
! Inputs of same size sometimes results in different

numbers of operations!
! E.g., linear search, 1 v.s. n!
! focus on worst-case performance, i.e., assume hardest

input possible (most unlucky case)!
! E.g., worst case input for linear search is when item to be

searched is not in the list or last element in the list

26

Running time of BubbleSort and MergeSort
! One way to find out number of operations:!

! implement the algorithm as a computer program (which also
record # of operations)!

! run program on inputs of various length!
! record # of operations performed and find out worst-case,

average-case, …!
! E.g.: bubblesortOps(n) and mergesortOps(n)

represent avg # of operations performed to sort list with
n elements!

n 2 4 8 16 32 64!
bubblesortOps(n) 4 16 64 256 1024 4096!
mergesortOps(n) 2 8 24 64 160 384

27

Run Time Complexity

28

! From the data, we can determine closed formulas for
bubblesortOps(n) and mergesortOps(n)!
! bubblesortOps(n) = n2!

! mergesortOps(n) = n log2 n

Analysis of Linear Search Algorithm
! Linear Search Algorithm!

! 1 repeat as i varies from 1 to n!
! 2 if L[i] = x then return "FOUND" and stop!
! 3 return "FOUND"!

! How many comparison operations does it perform?!
! The algorithm checks at most n elements against x, !

! worst-case: requires n comparisions.!
! This occurs when x is not in the list or is the last element in the

list.!
! What is the best-case complexity of the algorithm?!

! 1, which occurs when x is the first item on the list

29

Average Case Complexity
! If you know that the element x to be matched is in the

list, what is the average-case complexity of the
algorithm?!
! The average case complexity of the algorithm should be n/

2, since on average you should have to search half of the
list!

! At least for introductory courses on algorithms, the
worst-case complexity is what is reported, since it is
generally much easier to compute than the average
case complexity.

30

Analysis of Binary Search
! binary search algorithm, which assumes a sorted list,

repeatedly cuts the list to be searched in half!
! If there is 1 element, it will require 1 comparison!
! If there are 2 elements, it may require 2 comparisons!
! If there are 4 elements, it may require 3 comparisons!
! If there are 8 elements, it may require 4 comparisons!
! In general, if there are n elements, how many comparisons will

be required?!
! It will require log2n comparisons!

! If n is not a power of 2, you will need to round up the
number of comparisons!
! i.e., it requires comparisons!
! Thus if there are 3 elements it may require 3 comparisons

31

⎡ ⎤n2log

Linear Search vs Binary Search
! linear search: requires n comparisons worst case!
! binary search: requires log2n comparisions worst case!
! Which one is faster? Is the difference significant?!

! binary search algorithm is much faster, in that it requires many fewer
comparisons!

! If a list has 1 million elements,!
! linear search requires 1,000,000 comparisons !
! binary search requires only about 20 comparisons!!

! But binary search requires list to be sorted first!
! sorting requires nlog2n operations, more than n operations!
! it only makes sense to sort and then use binary search if many

searches will be made!
! This is the case with dictionaries, phone books, etc.

32

Sorting algorithm

33

Sorting Algorithms
! Sorting algorithms are one of the most heavily

studied topics in Computer Science!
! Sorting is critical to improve searching efficiency!

! There are many well known sorting algorithms in
Computer Science, we focus on two:!
! BubbleSort: a very simple but inefficient sorting algorithm!
! MergeSort: a slightly more complex but efficient sorting

algorithm

34

BubbleSort Algorithm Overview
! BubbleSort: repeatedly scan the list, in each iteration

“bubbles" largest element in unsorted part of the list to the
end, e.g., for list 9 2 8 4 1 3!
! After 1 iteration, largest element in last position, 2 8 4 1 3 9!
! After 2 iterations, largest element in last position and second

largest element in second to last position, 2 4 1 3 8 9 !
! 3rd: 2 1 3 4 8 9!
! 4th: 1 2 3 4 8 9!
! 5-th iteration: 1 2 3 4 8 9 (done!)!

! requires n-1 iterations !
! at (n-1)-th iteration, only one item left, must already be in

proper position (i.e., the smallest must be in the leftmost
position)

35

BubbleSort Algorithm
! Input: n-element list L = (l1, l2,.., ln)!
! Bublesort Algorithm!

1 Repeat as i varies from n down to 2
2. Repeat as j varies from 1 to i – 1
3. If lj > lj+1 swap lj with lj+1

! i controls which part of list is checked each iteration. (Only
unsorted part is checked.)!
! In 1st iteration, check everything, l1, l2, … ln-1!

! In 2nd iteration, check everything except last element, l1, l2, …, ln-2!
! …!

! Inner loop (2-3): bubble up largest element in unsorted part
of list

36

BubbleSort Example
! Use BubbleSort to sort list of number (9 2 8 4 1 3)

into increasing order. !
! How many comparisons did you do each iteration?

Can you find a pattern?!
! This will be useful later when we analyze the

performance of the algorithm.

37

MergeSort Algorithm Overview
! MergeSort is a divide-and-conquer algorithm!

! it divides the problem into smaller problems!
! solves the smaller problems !
! then combines solutions to smaller problems, to find

solution to original problem!
! Much more efficient than bubblesort algorithm!
! Key: combining two sorted lists into a sorted list is very

easy!
! How would you combine (1 4 7 8) and (2 5 9 10 11)?!
! place your fingers at the start of each list, copy over the

smaller element, then advance that one finger.!
! Above description is not mechanical enough … What if no

where to advance the finger? When to stop?

38

MergeSort Algorithm
! MergeSort Algorithm!
! function mergesort(L)

1. if L has one element then return(L); otherwise continue
2. l1 = mergesort(left half of L)
3. l2 = mergesort(right half of L)
4. L = merge(l1, l2)
5. return(L)
!
! Note: l1 = mergesort(left half of L) means:
! set the result of mergesort (left half of L) to list l1

! We have intuitively solved merge(l1,l2) in last slide, can you write out
its algorithm?

39

Description of MergeSort
! MergeSort is a recursive function!

! That means it calls itself!
! If input list contains one element, it is trivially sorted

so mergesort is done!
! Otherwise mergesort calls itself on the left and right

half of the list and then merges the two lists!
! Each of these two calls to itself may lead to additional calls

to itself!
! Mergesort completely sort left half of the list before it

starts sorting the right half

40

Example of MergeSort
! Trace mergesort with input (9 2 8 4 1 3)

41

Analysis of BubbleSort
! Analyzing BubbleSort algorithm means determining

the number of comparisons required to sort a list!
! Recall that BubbleSort works by repeatedly bubbling

up the largest element in the unsorted part of the list!
! We can determine the number of comparisons by

carefully analyzing the BubbleSort example we
worked through earlier, when we sorted (9 2 8 4 1 3)!
! But we need to generalize from this example, so our

analysis holds for all examples

42

Analysis of BubbleSort
! If we apply BubbleSort to (9 2 8 4 1 3) how many

comparisons do we do each iteration?!
! On iteration 1 we do 5 comparisons (6 unsorted numbers)!
! On iteration 2 we do 4 comparisons (5 unsorted numbers)!
! On iteration 3 we do 3 comparisons (4 unsorted numbers)!
! On iteration 4 we do 2 comparisons (3 unsorted numbers)!
! On iteration 5 we do 1 comparison (2 unsorted numbers)!
! On iteration 6 we do 0 comparisons (1 unsorted number)!

! So how many total comparisons for a list with 6 items?!
! Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15!

! So how many comparisons for a list with n items?

43 2
)1(

123...)2()1(
1

1

nni

nn
n

i

−
==

++++−+−

∑
−

=

Analysis of BubbleSort
! We want to know how the number of operations grows with

n!
! This is not obvious with the summation so we need to

replace it with a closed formula!
! We can do this since it is known that!
!

! This was proven in the section on induction but is also based
on the sum of n values equaling n times the average value!
! The average value of 1; 2; : : : ; n is 1/2 (n + 1)!

! In this case, we are summing up to n-1 and not n, so
substituting n- 1 for n we get:!
! Number BubbleSort comparisons =

44

Analysis of BubbleSort
! So BubbleSort requires 1/2 (n2- n) comparisons!
! Computer scientists usually focus on the highest

order term, so we say that the number of
comparisons in bubblesort grows as n2 or as the
square of the length of the list!

! BubbleSort can have problems if the list is very long

45

Analysis of MergeSort
! Analysis of mergesort!
! number of comparisons grows proportional to n log2n!

! n log2n grows much more slowly than n2!
! so do not use bubblesort unless for a very short list

46

