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Real World applications of algorithms
! Algorithms for solving specific, complex, real world 

problems:!
! Google's success is largely due to its PageRank algorithm, 

which determines “importance" of web pages!
! Prim's algorithm allow a cable company to determine how 

to connect all homes in a town using least amount of cable!
! Dijkstra's algorithm can be used to find the shortest route 

between a city and all other cities!
! RSA encryption algorithm makes e-commerce possible by 

allowing for secure transactions over Web
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Example of algorithms
! Algorithms for set operations!

! Union: take two sets A and B as input, and generate           as 
output !

! Intersection, Difference, Cartesian product, !
! Data structures and algorithms that operate on them !

! Data structure: set, list, tree, graph are widely used in 
computer system for storing information!

! Algorithms for these data structure are critical for most 
computer system!
! merge two sets, !
! sort a list, !
! search in a tree, !
! finding shortest path in a graph,!

!  a CS course is devoted to data structure
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What is an algorithm?
! There are many ways to define an algorithm!
! An algorithm is a step-by-step procedure for carrying 

out a task or solving a problem!
! an unambiguous computational procedure that takes 

some input and generates some output!
! a sequence of well-defined instructions for completing 

a task with a finite amount of effort in a finite amount 
of time!

! a sequence of instructions that can be mechanically 
performed in order to solve a problem
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Key aspects of an algorithm
! An algorithm must be precise!

! clear and detailed enough for someone (or something) to 
execute it!

! One way to ensure: !
! use actual computer code, which is guaranteed to be 

unambiguous!
! pseudocode is often used, readable by humans!

! We will use English-like pseudocode!
! With some special notations…
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Key aspects of an algorithm
! An algorithm operates on input and generates output!

! E.g., The “looking up a name in phonebook” algorithm has 
two inputs: the phone book and the name to look up; 
generates one output: the phone number!

! E.g., Input to FindMax algorithm: a list of numbers; output is 
the maximum value in the list!

! An algorithm completes in a finite number of steps!
! This is a non-trivial requirement since certain methods may 

sometimes run forever!
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Algorithms and Computers
! Algorithms have been used for thousands of years and have 

been executed by humans (possibly with pencil and paper)!
! Algorithm for performing long division!
! Algorithm for conversion between different base numeral systems!

! Work on algorithms exploded with development of digital 
computers and are a cornerstone of Computer Science!
! Many algorithms are only feasible when implemented on computers!

! But even with today's fast computers, some problems still 
cannot be solved using existing algorithms!
! Search for better and more efficient algorithms continues!

! Interestingly enough, some problems have been shown to 
have no algorithmic solution
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Halting Problem
! Halting Problem: given a description of a computer 

program and input to the program, decide whether the 
program finishes running or continues to run forever. !

! Alan Turing proved in 1936: a general algorithm to 
solve the halting problem for all possible program-
input pairs cannot exist.  !
! a mathematical definition of a computer and program, what 

became known as a Turing machine; !
! the halting problem is undecidable over Turing machines!

! Turing (a novel about computation) by Christos H. 
Papadimitriou,  CS Professor at UC Berkeley 
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Uncomputable problem
! Alan Turing (1912-1954)!

! English mathematician, logician, cryptanalyst, and 
computer scientist!

! Turing, A. M., “On Computable Numbers, with an 
Application to the Entscheidungsproblem“, Proceedings of 
the London Mathematical Society, Series 2, 42:230-265 
and 43:544-546, 1937.
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Turing Machine
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Although simple, one can simulate a general computer using a TM



Universal Turing Machine
! A Turing machine that is able to simulate any other 

Turing machine is called a universal Turing machine!
! Read the description of the TM to be simulated from the 

tape … !
! This is similar to a general-purpose computer!

! CPU reads the program (Word, Internet Explorer,  
PowerPoint, MediaPlayer …) from the disk, and carries 
out the instructions specified in the program line by line …
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Stored-program computer
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! Also called von Neumann architecture!
! named after mathematician and early computer scientist 

John von Neumann (12/28/1903 – 2/8/1957), “the last of 
the great mathematicians”, “!

! Central processing unit (CPU): capable of performing 
arithmetic operations, read & write memory, branch 
operations, …!

! Memory: stores both instructions and data!
! Such architecture makes computer a general!
purpose machine => one can write diff programs to make!
computer do diff tasks 



Now to more easy topics
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Searching and Sorting Algorithms
! Two of the most studied classes of algorithms in CS:!

! searching and sorting algorithms!
! Search algorithms are important because quickly 

locating information is central to many tasks!
! Sorting algorithms are important because information 

can be located much more quickly if it is first sorted!
! E.g. phone book !

! Searching and sorting algorithms as introduction to 
the topic of algorithms
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Searching Algorithms
! Problem: determine if an element x is in a list L!
! We will look at two simple searching algorithms!

! Linear search!
! Binary search!

! List: elements stored in a list in a sequential way!
! There is a first element, second element, ..!
! To make life easier: we use L[i] or Li to refer to the i-th 

element in list L, we refer i as the index of element Li!

! L = (l1, l2,.., ln)!
! Elements are not necessarily ordered 
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Linear Search Algorithm
! The algorithm below will search for an element x in 

List L and will return “FOUND" if x is in the list and 
“NOT FOUND" otherwise.!

! L has n items and L[i ] refers to the i-th element in L. 
! Linear Search Algorithm 

1 repeat as i varies from 1 to n 
      2 if  L[i ] = x then return “FOUND" and stop 
3 return “ FOUND" 

! Note: 
! Repeat: means do step 2 for i=1, i=2, i=3,…i=n 
! We indent line 2 to show that it’s part of  the loop/iteration 
! Return: means exits the algorithm and returns the output
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Efficiency of Linear Search Algorithm
! If x appears once in L, on average how many 

comparisons (line 2) would the algorithm to make on 
average?!
! On average n/2 comparisons!

! If x does not appear in L, how many comparisons 
would the algorithm make?!
! n comparisons!

! Would such an algorithm be useful for finding 
someone in a large (unsorted) phone book?!
! No, it would require scanning through entire phone book!!
! Need a better way!
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Binary Search Algorithm Overview
! Binary search algorithm assumes that L is sorted!

! Ascending order or descending order!
! This algorithm need not examine each element, it 

maintains a “window" in which element x may reside!
! window is defined by indices min and max which specify 

the leftmost and rightmost boundaries in L!
! In the beginning, x can be anyway in L, i.e., min=1, max=n!
! At each iteration of the algorithm, the window is cut in half!

! Remember number guessing game ?!
! I am thinking about the number between 1 and 100, you 

guess it by asking question such as “Is the number larger 
than 30”?
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Binary Search Algorithm
! Binary Search Algorithm assuming L has been sorted in 

ascending order!
1 set min to 1 and set max to  n 
2 Repeat until min > max 
3        Set midpoint to (min + max)/2 
4        Compare x to L[midpoint], three possible results: 

      (a) if  x = L[midpoint] then return “FOUND" 
      (b) if  x > L[midpoint] then set min to (midpoint + 1) 
      (c) if  x < L[midpoint] then set max to (midpoint -1) 

5 return  “FOUND" 
! Note: the repeat loop spans lines 2-4.!
! Can you modify the algorithm to work for L sorted in 

descending order?
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Binary Search Example
! Use binary search to find element “4" in sorted list (1 3 4 5 

6 7 8 9). List values of min, max and midpoint after each 
iteration of step 4. How many values are compared to “4"?!
1 Min = 1 and max = 8 and midpoint = 1/2 (1 + 8) = 4 (round 

down). Since L[4] = 5 and since 4 < 5 we execute step 4c and 
max = midpoint - 1 = 3.!

2 Now min = 1, max = 3 and midpoint = 1/2 (1 + 3) = 2. Since L[2] 
= 3 and 4 > 3, we execute step 4b and min = midpoint + 1 = 3.!

3 Now min = 3, max = 3 and midpoint = 1/2 (3 + 3) = 3. Since L[3] 
= 4 and 4 = 4, we execute step 4a and return “FOUND.“!

! we check three values: 3, 4, and 5. !
! Since we cut the window in half each iteration, it will 

shrink very quickly (about log2 n comparisons).
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Analysis of Algorithms
! An algorithm is a set of instructions that solves a 

problem for all possible input instances!
! There may be many algorithms solving one problem 

and all of these are not equally good!
! 12 sorting algorithms described in Wikipedia!

! One criteria for evaluating an algorithm is efficiency!
! Of course, correctness is first consideration!

! Analysis of Algorithm:  determining the efficiency of 
an algorithm

21



What’s in an algorithm?
! Consider this problem: find the largest number in a 

list of numbers, given by L, i.e., (L1, L2, …, Ln) !
!

! How would you solve the problem? !
!

! How to specify your solution?
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Algorithm analysis
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How to evaluate algorithms?
! When solving tasks, what are we most concerned 

with?!
! Most of us are pretty concerned with time, and time is 

actually the main concern in evaluating the efficiency of 
algorithms!

! Space:  maximum amount of memory the algorithm 
requires at any time!

! There is a trade-off between time and space efficiency!
! We will focus on time, although for some problems, 

space can actually be the main concern.

24



How to measure time efficiency?
! We could run the algorithm on a computer and 

measure the time it takes to complete!
! But what computer do we run it on? !

! Different computers have different speeds.!
! We could pick one benchmark computer, but it would not stick 

around forever!
! Worse yet, running time is usually impacted by the specific 

input, so how do we handle that?
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Run Time Complexity 
! Standard solution:  number of operations performed 

by the algorithm w.r.t. the size of the input !
! Size of the input:  the length of the list to be sorted/

searched, the number of nodes/edges in the graph, …!
! Inputs of same size sometimes results in different 

numbers of operations!
! E.g., linear search,  1 v.s. n!
! focus on worst-case performance, i.e., assume hardest 

input possible (most unlucky case)!
! E.g.,  worst case input for linear search is when item to be 

searched is not in the list or last element in the list
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Running time of BubbleSort and MergeSort
! One way to find out number of operations:!

! implement the algorithm as a computer program (which also 
record # of operations)!

! run program on inputs of various length!
! record # of operations performed and find out worst-case, 

average-case, …!
! E.g.:  bubblesortOps(n) and mergesortOps(n) 

represent avg # of operations performed to sort list with 
n elements!

n                         2   4   8   16    32      64!
bubblesortOps(n) 4 16  64  256  1024  4096!
mergesortOps(n)  2   8  24   64   160    384
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Run Time Complexity

28

! From the data, we can determine closed formulas for 
bubblesortOps(n) and mergesortOps(n)!
! bubblesortOps(n) = n2!

! mergesortOps(n) = n log2 n



Analysis of Linear Search Algorithm
! Linear Search Algorithm!

! 1 repeat as i varies from 1 to n!
! 2     if L[i ] = x then return "FOUND" and stop!
! 3 return "FOUND"!

! How many comparison operations does it perform?!
! The algorithm checks at most n elements against x, !

! worst-case: requires n comparisions.!
! This occurs when x is not in the list or is the last element in the 

list.!
! What is the best-case complexity of the algorithm?!

! 1, which occurs when x is the first item on the list
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Average Case Complexity
! If you know that the element x to be matched is in the 

list, what is the average-case complexity of the 
algorithm?!
! The average case complexity of the algorithm should be n/

2, since on average you should have to search half of the 
list!

! At least for introductory courses on algorithms, the 
worst-case complexity is what is reported, since it is 
generally much easier to compute than the average 
case complexity.
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Analysis of Binary Search
! binary search algorithm, which assumes a sorted list, 

repeatedly cuts the list to be searched in half!
! If there is 1 element, it will require 1 comparison!
! If there are 2 elements, it may require 2 comparisons!
! If there are 4 elements, it may require 3 comparisons!
! If there are 8 elements, it may require 4 comparisons!
! In general, if there are n elements, how many comparisons will 

be required?!
! It will require log2n comparisons!

! If n is not a power of 2, you will need to round up the 
number of comparisons!
! i.e.,  it requires                  comparisons!
! Thus if there are 3 elements it may require 3 comparisons
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Linear Search vs Binary Search
! linear search: requires n comparisons worst case!
! binary search: requires log2n comparisions worst case!
! Which one is faster? Is the difference significant?!

! binary search algorithm is much faster, in that it requires many fewer 
comparisons!

! If a list has 1 million elements,!
! linear search requires 1,000,000 comparisons !
! binary search requires only about 20 comparisons!!

! But binary search requires list to be sorted first!
! sorting requires nlog2n operations,  more than n operations!
! it only makes sense to sort and then use binary search if many 

searches will be made!
! This is the case with dictionaries, phone books, etc.
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Sorting algorithm
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Sorting Algorithms
! Sorting algorithms are one of the most heavily 

studied topics in Computer Science!
! Sorting is critical to improve searching efficiency!

! There are many well known sorting algorithms in 
Computer Science, we focus on two:!
! BubbleSort: a very simple but inefficient sorting algorithm!
! MergeSort: a slightly more complex but efficient sorting 

algorithm
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BubbleSort Algorithm Overview
! BubbleSort: repeatedly scan the list, in each iteration 

“bubbles" largest element in unsorted part of the list to the 
end, e.g.,  for list 9 2 8 4 1 3!
! After 1 iteration, largest element in last position,  2 8 4 1 3 9!
! After 2 iterations, largest element in last position and second 

largest element in second to last position, 2 4 1 3 8 9 !
! 3rd:  2 1 3 4 8 9!
! 4th:  1 2 3 4 8 9!
! 5-th iteration:  1 2 3 4 8 9  (done!)!

! requires n-1 iterations !
! at (n-1)-th iteration,  only one item left, must already be in 

proper position (i.e., the smallest must be in the leftmost 
position)
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BubbleSort Algorithm
! Input: n-element list L = (l1, l2,.., ln)!
! Bublesort Algorithm!

1 Repeat as i varies from n down to 2 
2.    Repeat as j varies from 1 to i – 1 
3.            If  lj > lj+1 swap lj with lj+1 

! i controls which part of list is checked each iteration. (Only 
unsorted part is checked.)!
! In 1st iteration,  check everything, l1, l2, … ln-1!

! In 2nd iteration,  check everything except last element, l1, l2, …, ln-2!
! …!

! Inner loop (2-3): bubble up largest element in unsorted part 
of list
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BubbleSort Example
! Use BubbleSort to sort list of number (9 2 8 4 1 3) 

into increasing order. !
! How many comparisons did you do each iteration? 

Can you find a pattern?!
! This will be useful later when we analyze the 

performance of the algorithm.
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MergeSort Algorithm Overview
! MergeSort is a divide-and-conquer algorithm!

! it divides the problem into smaller problems!
! solves the smaller problems !
! then combines solutions to smaller problems, to find 

solution to original problem!
! Much more efficient than bubblesort algorithm!
! Key: combining two sorted lists into a sorted list is very 

easy!
! How would you combine (1 4 7 8) and (2 5 9 10 11)?!
! place your fingers at the start of each list, copy over the 

smaller element, then advance that one finger.!
! Above description is not mechanical enough … What if no 

where to advance the finger? When to stop?
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MergeSort Algorithm
! MergeSort Algorithm!
! function mergesort(L) 

1. if  L has one element then return(L); otherwise continue 
2. l1 = mergesort(left half  of  L) 
3. l2  = mergesort(right half  of  L) 
4. L = merge(l1, l2) 
5. return(L) 
!
! Note: l1 = mergesort(left half  of  L) means: 
!    set the result of  mergesort (left half  of  L) to list l1 

! We have intuitively solved merge(l1,l2) in last slide, can you write out 
its algorithm?

39



Description of MergeSort
! MergeSort is a recursive function!

! That means it calls itself!
! If input list contains one element, it is trivially sorted 

so mergesort is done!
! Otherwise mergesort calls itself on the left and right 

half of the list and then merges the two lists!
! Each of these two calls to itself may lead to additional calls 

to itself!
! Mergesort completely sort left half of the list before it 

starts sorting the right half 

40



Example of MergeSort
! Trace mergesort with input (9 2 8 4 1 3)
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Analysis of BubbleSort
! Analyzing BubbleSort algorithm means determining 

the number of comparisons required to sort a list!
! Recall that BubbleSort works by repeatedly bubbling 

up the largest element in the unsorted part of the list!
! We can determine the number of comparisons by 

carefully analyzing the BubbleSort example we 
worked through earlier, when we sorted (9 2 8 4 1 3)!
! But we need to generalize from this example, so our 

analysis holds for all examples
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Analysis of BubbleSort
! If we apply BubbleSort to (9 2 8 4 1 3) how many 

comparisons do we do each iteration?!
! On iteration 1 we do 5 comparisons (6 unsorted numbers)!
! On iteration 2 we do 4 comparisons (5 unsorted numbers)!
! On iteration 3 we do 3 comparisons (4 unsorted numbers)!
! On iteration 4 we do 2 comparisons (3 unsorted numbers)!
! On iteration 5 we do 1 comparison (2 unsorted numbers)!
! On iteration 6 we do 0 comparisons (1 unsorted number)!

! So how many total comparisons for a list with 6 items?!
! Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15!

! So how many comparisons for a list with n items?
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Analysis of BubbleSort
! We want to know how the number of operations grows with 

n!
! This is not obvious with the summation so we need to 

replace it with a closed formula!
! We can do this since it is known that!
!

! This was proven in the section on induction but is also based 
on the sum of n values equaling n times the average value!
! The average value of 1; 2; : : : ; n is 1/2 (n + 1)!

! In this case, we are summing up to n-1 and not n, so 
substituting n- 1 for n we get:!
! Number BubbleSort comparisons =
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Analysis of BubbleSort
! So BubbleSort requires 1/2 (n2- n) comparisons!
! Computer scientists usually focus on the highest 

order term, so we say that the number of 
comparisons in bubblesort grows as n2 or as the 
square of the length of the list!

! BubbleSort can have problems if the list is very long
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Analysis of MergeSort
! Analysis of mergesort!
! number of comparisons grows proportional to n log2n!

! n log2n grows much more slowly than n2!
! so do not use bubblesort unless for a very short list
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