Algorithms

X. Zhang
Fordham Univ.

Real World applications of algorithms

- Algorithms for solving specific, complex, real world problems:
- Google's success is largely due to its PageRank algorithm, which determines "importance" of web pages
- Prim's algorithm allow a cable company to determine how to connect all homes in a town using least amount of cable
- Dijkstra's algorithm can be used to find the shortest route between a city and all other cities
- RSA encryption algorithm makes e-commerce possible by allowing for secure transactions over Web

Example of algorithms

- Algorithms for set operations
- Union: take two sets A and B as input, and generdte e^{B} output
- Intersection, Difference, Cartesian product,
- Data structures and algorithms that operate on them
- Data structure: set, list, tree, graph are widely used in computer system for storing information
- Algorithms for these data structure are critical for most computer system
b merge two sets,
- sort a list,
> search in a tree,
- finding shortest path in a graph,
- a CS course is devoted to data structure

What is an algorithm?

- There are many ways to define an algorithm
- An algorithm is a step-by-step procedure for carrying out a task or solving a problem
- an unambiguous computational procedure that takes some input and generates some output
- a sequence of well-defined instructions for completing a task with a finite amount of effort in a finite amount of time
- a sequence of instructions that can be mechanically performed in order to solve a problem

Key aspects of an algorithm

- An algorithm must be precise
» clear and detailed enough for someone (or something) to execute it
- One way to ensure:
- use actual computer code, which is guaranteed to be unambiguous
- pseudocode is often used, readable by humans
- We will use English-like pseudocode
- With some special notations...

Key aspects of an algorithm

- An algorithm operates on input and generates output
- E.g., The "looking up a name in phonebook" algorithm has two inputs: the phone book and the name to look up; generates one output: the phone number
- E.g., Input to FindMax algorithm: a list of numbers; output is the maximum value in the list
- An algorithm completes in a finite number of steps
- This is a non-trivial requirement since certain methods may sometimes run forever!

Algorithms and Computers

- Algorithms have been used for thousands of years and have been executed by humans (possibly with pencil and paper) - Algorithm for performing long division
- Algorithm for conversion between different base numeral systems
- Work on algorithms exploded with development of digital computers and are a cornerstone of Computer Science
- Many algorithms are only feasible when implemented on computers
- But even with today's fast computers, some problems still cannot be solved using existing algorithms
- Search for better and more efficient algorithms continues
- Interestingly enough, some problems have been shown to have no algorithmic solution

Halting Problem

- Halting Problem: given a description of a computer program and input to the program, decide whether the program finishes running or continues to run forever.
- Alan Turing proved in 1936: a general algorithm to solve the halting problem for all possible programinput pairs cannot exist.
- a mathematical definition of a computer and program, what became known as a Turing machine;
- the halting problem is undecidable over Turing machines
- Turing (a novel about computation) by Christos H . Papadimitriou, CS Professor at UC Berkeley

Uncomputable problem

- Alan Turing (1912-1954)
- English mathematician, logician, cryptanalyst, and computer scientist
- Turing, A. M., "On Computable Numbers, with an Application to the Entscheidungsproblem", Proceedings of the London Mathematical Society, Series 2, 42:230-265 and 43:544-546, 1937.

Turing Machine

Although simple, one can simulate a general computer using a TM

Universal Turing Machine

- A Turing machine that is able to simulate any other Turing machine is called a universal Turing machine
- Read the description of the TM to be simulated from the tape ...
- This is similar to a general-purpose computer
- CPU reads the program (Word, Internet Explorer, PowerPoint, MediaPlayer ...) from the disk, and carries out the instructions specified in the program line by line ...

Stored-program computer

- Also called von Neumann architecture
* named after mathematician and early computer scientist John von Neumann (12/28/1903-2/8/1957), "the last of the great mathematicians", "
- Central processing unit (CPU): capable of performing arithmetic operations, read \& write memory, branch operations, ...
- Memory: stores both instructions and data
- Such architecture makes computer a general purpose machine => one can write diff programs to make computer do diff tasks

Now to more easy topics

Searching and Sorting Algorithms

- Two of the most studied classes of algorithms in CS:
> searching and sorting algorithms
- Search algorithms are important because quickly locating information is central to many tasks
- Sorting algorithms are important because information can be located much more quickly if it is first sorted
- E.g. phone book
- Searching and sorting algorithms as introduction to the topic of algorithms

Searching Algorithms

- Problem: determine if an element x is in a list L
- We will look at two simple searching algorithms
- Linear search
b Binary search
- List: elements stored in a list in a sequential way
- There is a first element, second element, ..
- To make life easier: we use $L[i]$ or L_{i} to refer to the i-th element in list L, we refer i as the index of element L_{i}
- $L=\left(I_{1}, I_{2}, ., I_{n}\right)$
- Elements are not necessarily ordered

Linear Search Algorithm

- The algorithm below will search for an element x in List L and will return "FOUND" if x is in the list and "NOT FOUND" otherwise.
- L has n items and $\mathrm{L}[\mathrm{i}]$ refers to the i -th element in L .
- Linear Search Algorithm

1 repeat as i varies from 1 to n
2 if $\mathrm{L}[\mathrm{i}]=\mathrm{x}$ then return "FOUND" and stop
3 return "FOUND"

- Note:
* Repeat: means do step 2 for $\mathrm{i}=1, \mathrm{i}=2, \mathrm{i}=3, \ldots \mathrm{i}=\mathrm{n}$
*We indent line 2 to show that it's part of the loop/iteration
- Return: means exits the algorithm and returns the output

Efficiency of Linear Search Algorithm

- If x appears once in L, on average how many comparisons (line 2) would the algorithm to make on average?
- On average $\mathrm{n} / 2$ comparisons
- If x does not appear in L, how many comparisons would the algorithm make?
" n comparisons
- Would such an algorithm be useful for finding someone in a large (unsorted) phone book?
* No, it would require scanning through entire phone book!
, Need a better way!

Binary Search Algorithm Overview

- Binary search algorithm assumes that L is sorted
, Ascending order or descending order
- This algorithm need not examine each element, it maintains a "window" in which element x may reside
b window is defined by indices min and max which specify the leftmost and rightmost boundaries in L
* In the beginning, x can be anyway in L, i.e., min=1, max=n
- At each iteration of the algorithm, the window is cut in half
> Remember number guessing game ?
- I am thinking about the number between 1 and 100, you guess it by asking question such as "Is the number larger than 30"?

Binary Search Algorithm

- Binary Search Algorithm assuming L has been sorted in ascending order

```
l set min to l and set max to n
```

2 Repeat until min $>\max$
3 Set midpoint to $(\min +\max) / 2$
4 Compare x to L[midpoint], three possible results:
(a) if $x=L[$ midpoint $]$ then return "FOUND"
(b) if $\mathrm{x}>\mathrm{L}$ [midpoint] then set min to (midpoint +1)
(c) if $\mathrm{x}<\mathrm{L}$ [midpoint] then set max to (midpoint -1)

5 return "FOUND"

- Note: the repeat loop spans lines 2-4.
- Can you modify the algorithm to work for L sorted in descending order?

Binary Search Example

- Use binary search to find element "4" in sorted list (1 345 6789). List values of min, max and midpoint after each iteration of step 4 . How many values are compared to " 4 "?
$1 \mathrm{Min}=1$ and $\max =8$ and midpoint $=1 / 2(1+8)=4$ (round down). Since L[4] =5 and since $4<5$ we execute step 4 c and $\max =$ midpoint $-1=3$.
2 Now $\min =1, \max =3$ and midpoint $=1 / 2(1+3)=2$. Since L[2] $=3$ and $4>3$, we execute step 4 b and min = midpoint $+1=3$.
3 Now $\min =3, \max =3$ and midpoint $=1 / 2(3+3)=3$. Since L[3] $=4$ and $4=4$, we execute step 4 a and return "FOUND."
- we check three values: 3,4 , and 5 .
- Since we cut the window in half each iteration, it will shrink very quickly (about $\log _{2} \mathrm{n}$ comparisons).

Analysis of Algorithms

- An algorithm is a set of instructions that solves a problem for all possible input instances
- There may be many algorithms solving one problem and all of these are not equally good
- 12 sorting algorithms described in Wikipedia
- One criteria for evaluating an algorithm is efficiency
- Of course, correctness is first consideration
- Analysis of Algorithm: determining the efficiency of an algorithm

What's in an algorithm?

- Consider this problem: find the largest number in a list of numbers, given by L, i.e., $\left(L_{1}, L_{2}, \ldots, L_{n}\right)$
- How would you solve the problem?
- How to specify your solution?

Algorithm analysis

How to evaluate algorithms?

- When solving tasks, what are we most concerned with?
- Most of us are pretty concerned with time, and time is actually the main concern in evaluating the efficiency of algorithms
- Space: maximum amount of memory the algorithm requires at any time
- There is a trade-off between time and space efficiency
- We will focus on time, although for some problems, space can actually be the main concern.

How to measure time efficiency?

- We could run the algorithm on a computer and measure the time it takes to complete
- But what computer do we run it on?
- Different computers have different speeds.
- We could pick one benchmark computer, but it would not stick around forever
- Worse yet, running time is usually impacted by the specific input, so how do we handle that?

Run Time Complexity

- Standard solution: number of operations performed by the algorithm w.r.t. the size of the input
- Size of the input: the length of the list to be sorted/ searched, the number of nodes/edges in the graph, ...
- Inputs of same size sometimes results in different numbers of operations
' E.g., linear search, 1 v.s. n
> focus on worst-case performance, i.e., assume hardest input possible (most unlucky case)
- E.g., worst case input for linear search is when item to be searched is not in the list or last element in the list

Running time of BubbleSort and MergeSort

- One way to find out number of operations:
- implement the algorithm as a computer program (which also record \# of operations)
- run program on inputs of various length
- record \# of operations performed and find out worst-case, average-case, ...
- E.g.: bubblesortOps(n) and mergesortOps(n) represent avg \# of operations performed to sort list with n elements
$\begin{array}{lllllll}\mathrm{n} & 2 & 4 & 8 & 16 & 32 & 64\end{array}$
bubblesortOps(n) 4166425610244096
mergesortOps(n) 282464160384

Run Time Complexity

- From the data, we can determine closed formulas for bubblesortOps(n) and mergesortOps(n)
- bubblesortOps(n) = n^{2}
* mergesortOps(n) $=n \log 2 n$

Analysis of Linear Search Algorithm

- Linear Search Algorithm
> 1 repeat as i varies from 1 to n
* 2 if L[i] = x then return "FOUND" and stop
- 3 return "FOUND"
- How many comparison operations does it perform?
- The algorithm checks at most n elements against x ,
" worst-case: requires n comparisions.
- This occurs when x is not in the list or is the last element in the list.
- What is the best-case complexity of the algorithm?
v 1, which occurs when x is the first item on the list

Average Case Complexity

- If you know that the element x to be matched is in the list, what is the average-case complexity of the algorithm?
- The average case complexity of the algorithm should be n / 2 , since on average you should have to search half of the list
- At least for introductory courses on algorithms, the worst-case complexity is what is reported, since it is generally much easier to compute than the average case complexity.

Analysis of Binary Search

- binary search algorithm, which assumes a sorted list, repeatedly cuts the list to be searched in half
- If there is 1 element, it will require 1 comparison
b If there are 2 elements, it may require 2 comparisons
- If there are 4 elements, it may require 3 comparisons
b If there are 8 elements, it may require 4 comparisons
- In general, if there are n elements, how many comparisons will be required?
- It will require log2n comparisons
- If n is not a power of 2 , you will need to round up the number of comparisons
- i.e., it requires $\left\lceil\log _{2} n\right\rceil$ comparisons
* Thus if there are 3 elements it may require 3 comparisons

Linear Search vs Binary Search

- linear search: requires n comparisons worst case
b binary search: requires log2n comparisions worst case
- Which one is faster? Is the difference significant?
b binary search algorithm is much faster, in that it requires many fewer comparisons
- If a list has 1 million elements,
- linear search requires 1,000,000 comparisons
- binary search requires only about 20 comparisons!
- But binary search requires list to be sorted first
- sorting requires nlog2n operations, more than n operations
* it only makes sense to sort and then use binary search if many searches will be made
* This is the case with dictionaries, phone books, etc.

Sorting algorithm

Sorting Algorithms

- Sorting algorithms are one of the most heavily studied topics in Computer Science
* Sorting is critical to improve searching efficiency
- There are many well known sorting algorithms in Computer Science, we focus on two:
, BubbleSort: a very simple but inefficient sorting algorithm
* MergeSort: a slightly more complex but efficient sorting algorithm

BubbleSort Algorithm Overview

- BubbleSort: repeatedly scan the list, in each iteration "bubbles" largest element in unsorted part of the list to the end, e.g., for list 928413
* After 1 iteration, largest element in last position, 284139
- After 2 iterations, largest element in last position and second largest element in second to last position, 241389
- 3rd: 213489
- $4^{\text {th }}: 123489$
b-th iteration: 123489 (done!)
- requires $\mathrm{n}-1$ iterations
> at ($\mathrm{n}-1$)-th iteration, only one item left, must already be in proper position (i.e., the smallest must be in the leftmost position)

BubbleSort Algorithm

- Input: n-element list $L=\left(I_{1}, I_{2}, . ., I_{n}\right)$
- Bublesort Algorithm

1 Repeat as i varies from n down to 2
2. Repeat as j varies from 1 to $\mathrm{i}-1$
3. If $l_{j}>l_{j+1}$ swap l_{j} with l_{j+1}

- i controls which part of list is checked each iteration. (Only unsorted part is checked.)
- In 1 st iteration, check everything, $I_{1}, I_{2}, \ldots I_{n-1}$
- In 2nd iteration, check everything except last element, $I_{1}, I_{2}, \ldots, I_{n-2}$
- Inner loop (2-3): bubble up largest element in unsorted part of list

BubbleSort Example

- Use BubbleSort to sort list of number (9 2841 3) into increasing order.
- How many comparisons did you do each iteration? Can you find a pattern?
- This will be useful later when we analyze the performance of the algorithm.

MergeSort Algorithm Overview

- MergeSort is a divide-and-conquer algorithm
- it divides the problem into smaller problems
b solves the smaller problems
t then combines solutions to smaller problems, to find solution to original problem
- Much more efficient than bubblesort algorithm
- Key: combining two sorted lists into a sorted list is very easy
- How would you combine (1478) and (2 5910 11)?
* place your fingers at the start of each list, copy over the smaller element, then advance that one finger.
- Above description is not mechanical enough ... What if no where to advance the finger? When to stop?

MergeSort Algorithm

- MergeSort Algorithm
- function mergesort(L)

1. if L has one element then return (L); otherwise continue
2. $1_{1}=$ mergesort(left half of L)
3. $1_{2}=$ mergesort(right half of L)
4. $\mathrm{L}=\operatorname{merge}\left(1_{1}, l_{2}\right)$
5. return (L)

- Note: $l_{1}=$ mergesort(left half of L$)$ means:
- set the result of mergesort (left half of L) to list l_{1}
* We have intuitively solved merge $\left(l_{1}, l_{2}\right)$ in last slide, can you write out its algorithm?

Description of MergeSort

- MergeSort is a recursive function
- That means it calls itself
- If input list contains one element, it is trivially sorted so mergesort is done
- Otherwise mergesort calls itself on the left and right half of the list and then merges the two lists
- Each of these two calls to itself may lead to additional calls to itself
- Mergesort completely sort left half of the list before it starts sorting the right half

Example of MergeSort

- Trace mergesort with input (9 2841 3)

Analysis of BubbleSort

- Analyzing BubbleSort algorithm means determining the number of comparisons required to sort a list
- Recall that BubbleSort works by repeatedly bubbling up the largest element in the unsorted part of the list
- We can determine the number of comparisons by carefully analyzing the BubbleSort example we worked through earlier, when we sorted (9 28413)
, But we need to generalize from this example, so our analysis holds for all examples

Analysis of BubbleSort

- If we apply BubbleSort to (9 2841 3) how many comparisons do we do each iteration?
- On iteration 1 we do 5 comparisons (6 unsorted numbers)
- On iteration 2 we do 4 comparisons (5 unsorted numbers)
- On iteration 3 we do 3 comparisons (4 unsorted numbers)
- On iteration 4 we do 2 comparisons (3 unsorted numbers)
- On iteration 5 we do 1 comparison (2 unsorted numbers)
- On iteration 6 we do 0 comparisons (1 unsorted number)
- So how many total comparisons for a list with 6 items?
- Number of comparisons $=5+4+3+2+1=15$
- So how many comparisons for a list with n items?

$$
\begin{aligned}
& (n-1)+(n-2)+\ldots+3+2+1 \\
& =\sum_{i=1}^{n-1} i=\frac{(n-1) n}{2}
\end{aligned}
$$

Analysis of BubbleSort

- We want to know how the number of operations grows with n
- This is not obvious with the summation so we need to replace it with a closed formula
- We can do this since it is known that
- This was proven in the section on induction but is also based on the sum of n values equaling n times the average value
- The average value of $1 ; 2 ;::: ; n$ is $1 / 2(n+1)$
- In this case, we are summing up to $\mathrm{n}-1$ and not n , so substituting $\mathrm{n}-1$ for n we get:
- Number BubbleSort comparisons =

Analysis of BubbleSort

- So BubbleSort requires 1/2 ($n^{2}-n$) comparisons
- Computer scientists usually focus on the highest order term, so we say that the number of comparisons in bubblesort grows as n^{2} or as the square of the length of the list
- BubbleSort can have problems if the list is very long

Analysis of MergeSort

- Analysis of mergesort
- number of comparisons grows proportional to $n \log 2 n$
- n log2n grows much more slowly than n^{2}
- so do not use bubblesort unless for a very short list

