CISC 1100: Structures of Computer Science

Chapter 4 Relations

Arthur G. Werschulz

Fordham University Department of Computer and Information Sciences
Copyright © Arthur G. Werschulz, 2015. All rights reserved.

Summer, 2015

Why relations?

- Sets: rigorous way to talk about collections of objects

Why relations?

- Sets: rigorous way to talk about collections of objects
- Logic: rigorous way to talk about conditions and decisions

Why relations?

- Sets: rigorous way to talk about collections of objects
- Logic: rigorous way to talk about conditions and decisions
- Relations: rigorous way to talk about how objects can relate to each other

Why relations?

- Sets: rigorous way to talk about collections of objects
- Logic: rigorous way to talk about conditions and decisions
- Relations: rigorous way to talk about how objects can relate to each other
- Example:
- A banking data base might have records consisting of the following attributes: customer name, address, SSN, account number, balance.

Why relations?

- Sets: rigorous way to talk about collections of objects
- Logic: rigorous way to talk about conditions and decisions
- Relations: rigorous way to talk about how objects can relate to each other
- Example:
- A banking data base might have records consisting of the following attributes: customer name, address, SSN, account number, balance.
- Problematic redundancy (joint accounts, customer with multiple accounts).

Why relations?

- Sets: rigorous way to talk about collections of objects
- Logic: rigorous way to talk about conditions and decisions
- Relations: rigorous way to talk about how objects can relate to each other
- Example:
- A banking data base might have records consisting of the following attributes: customer name, address, SSN, account number, balance.
- Problematic redundancy (joint accounts, customer with multiple accounts).
- Break into parts to reduce redundancy:

Why relations?

- Sets: rigorous way to talk about collections of objects
- Logic: rigorous way to talk about conditions and decisions
- Relations: rigorous way to talk about how objects can relate to each other
- Example:
- A banking data base might have records consisting of the following attributes: customer name, address, SSN, account number, balance.
- Problematic redundancy (joint accounts, customer with multiple accounts).
- Break into parts to reduce redundancy:
- Customer list: name, address, SSN, ...
- Account list: account number, balance
- Depositor list: account number, SSN of owner

Outline

- Ways to describe relations between objects
- Describing a relation using English
- Properties of relations

Ways to describe relations between objects

A relation is a connection between objects in one set and objects in another (or possibly the same) set. How to describe?

Ways to describe relations between objects

A relation is a connection between objects in one set and objects in another (or possibly the same) set. How to describe?

- Use English. Example?
- First set: set of names of people in this class.
- Second set: the natural numbers
- Relation? Associate each person with her age.
- We might give this relation a name, such as age.
- Note that the order of the sets matters.

Ways to describe relations between objects

A relation is a connection between objects in one set and objects in another (or possibly the same) set. How to describe?

- Use English. Example?
- First set: set of names of people in this class.
- Second set: the natural numbers
- Relation? Associate each person with her age.
- We might give this relation a name, such as age.
- Note that the order of the sets matters.
- Use a picture.
- Represent domain and codomain by two sets of dots.
- Draw an arrow from dot in first set to dot in the second set if the (entity represented by the) first dot is related to the (entity represented by the) second dot.

Ways to describe relations between objects

A relation is a connection between objects in one set and objects in another (or possibly the same) set. How to describe?

- Use English. Example?
- First set: set of names of people in this class.
- Second set: the natural numbers
- Relation? Associate each person with her age.
- We might give this relation a name, such as age.
- Note that the order of the sets matters.
- Use a picture.
- Represent domain and codomain by two sets of dots.
- Draw an arrow from dot in first set to dot in the second set if the (entity represented by the) first dot is related to the (entity represented by the) second dot.
- Use Cartesian product of the domain and codomain, along with set builder notation to represent the relation. Sometimes we use set-based notation (e.g., " $(x, y) \in r$ "), sometimes prefix notation (e.g., " $r(x, y)$ ") and sometimes infix notation (e.g., " $x<y$ ").

Describing a relation

Must specify:

- the domain of the relation (in language terms, the "subject" of the relation),
- the codomain of the relation (in language terms, the "object" of the relation), and
- the connection or rule that links the elements in the domain to elements in the codomain.

Describing a relation

Must specify:

- the domain of the relation (in language terms, the "subject" of the relation),
- the codomain of the relation (in language terms, the "object" of the relation), and
- the connection or rule that links the elements in the domain to elements in the codomain.
Some terminology:
- When the domain and codomain are different, we have a relation between the two sets (or from the domain to the codomain).

Describing a relation

Must specify:

- the domain of the relation (in language terms, the "subject" of the relation),
- the codomain of the relation (in language terms, the "object" of the relation), and
- the connection or rule that links the elements in the domain to elements in the codomain.
Some terminology:
- When the domain and codomain are different, we have a relation between the two sets (or from the domain to the codomain).
- When the domain and codomain are the same, we have a relation on the given set.

Describing a relation (cont'd)

- Example: What elements are in the following relation?

Domain: $\quad\{$ Molly, Sandra, Mark\}
Codomain: \{Molly, Sandra, Mark\}
Rule: $\quad(x, y)$ is in the relation iff x is sister of y.

Describing a relation (cont'd)

- Example: What elements are in the following relation?

Domain: $\quad\{$ Molly, Sandra, Mark\}
Codomain: \{Molly, Sandra, Mark\}
Rule: $\quad(x, y)$ is in the relation iff x is sister of y.

- Here, the domain and codomain are the same. We have a relation on the set $\{$ Molly, Sandra, Mark $\}$.

Describing a relation (cont'd)

- Example: What elements are in the following relation?

Domain: $\quad\{$ Molly, Sandra, Mark\}
Codomain: \{Molly, Sandra, Mark\}
Rule: $\quad(x, y)$ is in the relation iff x is sister of y.

- Here, the domain and codomain are the same. We have a relation on the set $\{$ Molly, Sandra, Mark $\}$.
- Need to know family info to determine the relation!

Describing a relation (cont'd)

- Example: What elements are in the following relation?

Domain: $\quad\{$ Molly, Sandra, Mark\}
Codomain: \{Molly, Sandra, Mark\}
Rule: $\quad(x, y)$ is in the relation iff x is sister of y.

- Here, the domain and codomain are the same. We have a relation on the set $\{$ Molly, Sandra, Mark\}.
- Need to know family info to determine the relation!
- (Molly, Mark) might be in the relation,

Describing a relation (cont'd)

- Example: What elements are in the following relation?

Domain: \quad \{Molly, Sandra, Mark\}
Codomain: \{Molly, Sandra, Mark\}
Rule: $\quad(x, y)$ is in the relation iff x is sister of y.

- Here, the domain and codomain are the same. We have a relation on the set $\{$ Molly, Sandra, Mark $\}$.
- Need to know family info to determine the relation!
- (Molly, Mark) might be in the relation, but (Mark, Molly) can not be in the relation!
- Suppose that Molly, Sandra, and Mark are all siblings. Then the relation consists of

Describing a relation (cont'd)

- Example: What elements are in the following relation?

Domain: \quad \{Molly, Sandra, Mark\}
Codomain: \{Molly, Sandra, Mark\}
Rule: $\quad(x, y)$ is in the relation iff x is sister of y.

- Here, the domain and codomain are the same. We have a relation on the set $\{$ Molly, Sandra, Mark\}.
- Need to know family info to determine the relation!
- (Molly, Mark) might be in the relation, but (Mark, Molly) can not be in the relation!
- Suppose that Molly, Sandra, and Mark are all siblings. Then the relation consists of
$\{($ Molly, Sandra), (Molly, Mark), (Sandra, Molly), (Sandra, Mark) $\}$

Describing a relation (cont'd)

What elements are in the following relation?
Domain: the set of names of people in your family Codomain: \{red, black, brown, blonde, flaxen, pink, green \} Rule: (x, y) is in the relation if and only if x 's hair is y.

Describing a relation (cont'd)

What elements are in the following relation?
Domain: the set of names of people in your family
Codomain: \{red, black, brown, blonde, flaxen, pink, green\} Rule: (x, y) is in the relation if and only if x 's hair is y.

- The domain and the codomain are different. We have a relation from \{names of people in your family\} to \{red, black, brown, blonde, flaxen, pink, green \}.
- Again, need family information.

Describing a relation (cont'd)

What elements are in the following relation?
Domain: the set of names of people in your family
Codomain: \{red, black, brown, blonde, flaxen, pink, green \} Rule: (x, y) is in the relation if and only if x 's hair is y.

- The domain and the codomain are different. We have a relation from \{names of people in your family\} to \{red, black, brown, blonde, flaxen, pink, green \}.
- Again, need family information.
- Might have two people with same hair color.

Describing a relation (cont'd)

What elements are in the following relation?
Domain: the set of names of people in your family
Codomain: \{red, black, brown, blonde, flaxen, pink, green\}
Rule: (x, y) is in the relation if and only if x 's hair is y.

- The domain and the codomain are different. We have a relation from \{names of people in your family\} to \{red, black, brown, blonde, flaxen, pink, green \}.
- Again, need family information.
- Might have two people with same hair color.
- Might have some "unclaimed" hair color (e.g., green). This color would not appear in the relation.

Describing a relation (cont'd)

What elements are in the following relation?
Domain: the set of names of people in your family
Codomain: \{red, black, brown, blonde, flaxen, pink, green\} Rule: $\quad(x, y)$ is in the relation if and only if x 's hair is y.

- The domain and the codomain are different. We have a relation from \{names of people in your family\} to \{red, black, brown, blonde, flaxen, pink, green \}.
- Again, need family information.
- Might have two people with same hair color.
- Might have some "unclaimed" hair color (e.g., green). This color would not appear in the relation.
- Might have a family member without any of given hair colors. This person would not appear in the relation.

Describing a relation (cont'd)

What elements are in the following relation?
Domain: the set \mathbb{N} of natural numbers
Codomain: \mathbb{N}
Rule:
$r_{\text {even }}=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x+y$ is even $\}$.

Describing a relation (cont'd)

What elements are in the following relation?
Domain: the set \mathbb{N} of natural numbers
Codomain:
Rule:
\mathbb{N}
$r_{\text {even }}=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x+y$ is even $\}$.

- This is a relation on \mathbb{N}.
- $r_{\text {even }}$ is an infinite list of ordered pairs from \mathbb{N}.
- Can't easily list $r_{\text {even }}$.
- Can characterize $r_{\text {even }}$.
- two even numbers added will give an even number,
- as will two odd numbers added,
- but not an even and an odd number added.

Describing a relation (cont'd)

What elements are in the following relation?
Domain: the set \mathbb{N} of natural numbers
Codomain:
\mathbb{N}
Rule: $\quad r_{\text {even }}=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x+y$ is even $\}$.

- This is a relation on \mathbb{N}.
- $r_{\text {even }}$ is an infinite list of ordered pairs from \mathbb{N}.
- Can't easily list $r_{\text {even }}$.
- Can characterize $r_{\text {even }}$.
- two even numbers added will give an even number,
- as will two odd numbers added,
- but not an even and an odd number added.

So $r_{\text {even }}$ consists of pairs from \mathbb{N}, in which the elements of each pair are either both even or both odd.

Describing a relation (cont'd)

Sometimes we use a graphical representation of a relation on a set. Example: Consider the relation

$$
\{(a, a),(a, b),(a, c),(b, b),(b, d),(e, b),(e, c),(e, d)\}
$$

Describing a relation (cont'd)

Sometimes we use a graphical representation of a relation on a set. Example: Consider the relation

$$
\{(a, a),(a, b),(a, c),(b, b),(b, d),(e, b),(e, c),(e, d)\}
$$

Pictorial representation:

Describing a relation (cont'd)

Sometimes we use a tabular representation of a relation. Example: Consider the relation

$$
\{(a, a),(a, b),(a, c),(b, b),(b, d),(e, b),(e, c),(e, d)\}
$$

Describing a relation (cont'd)

Sometimes we use a tabular representation of a relation. Example: Consider the relation

$$
\{(a, a),(a, b),(a, c),(b, b),(b, d),(e, b),(e, c),(e, d)\}
$$

Tabular representation:

a	a	a	b	b	e	e	e
a	b	c	b	d	b	c	d

Properties of relations

- A relation on a set is one in which the domain and codomain are the same.
- A relation on a set may be any of the following:
- reflexive
- irreflexive
- symmetric
- antisymmetric
- transitive

Reflexivity

A relation r on a set S is said to be reflexive if

$$
(x, x) \in r \quad \text { for any } x \in S
$$

- Example: The relation

Domain: $\quad \mathbb{N}$
Codomain: \mathbb{N}
Rule: $\quad r_{\text {even }}=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x+y$ is even $\}$.
is reflexive.

Reflexivity

A relation r on a set S is said to be reflexive if

$$
(x, x) \in r \quad \text { for any } x \in S
$$

- Example: The relation

Domain: $\quad \mathbb{N}$

Codomain: \mathbb{N}
Rule: $\quad r_{\text {even }}=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x+y$ is even $\}$.
is reflexive.
We need to show that $(x, x) \in r_{\text {even }}$ for all $x \in \mathbb{N}$,

Reflexivity

A relation r on a set S is said to be reflexive if

$$
(x, x) \in r \quad \text { for any } x \in S
$$

- Example: The relation

Domain: $\quad \mathbb{N}$

Codomain: \mathbb{N}
Rule: $\quad r_{\text {even }}=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x+y$ is even $\}$.
is reflexive.
We need to show that $(x, x) \in r_{\text {even }}$ for all $x \in \mathbb{N}$, i.e., that $x+x$ is even for all $x \in \mathbb{N}$.

Reflexivity

A relation r on a set S is said to be reflexive if

$$
(x, x) \in r \quad \text { for any } x \in S
$$

- Example: The relation

Domain: \mathbb{N}

Codomain: \mathbb{N}
Rule: $\quad r_{\text {even }}=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x+y$ is even $\}$.
is reflexive.
We need to show that $(x, x) \in r_{\text {even }}$ for all $x \in \mathbb{N}$, i.e., that $x+x$ is even for all $x \in \mathbb{N}$. But $x+x=2 x$ is always even, for any $x \in \mathbb{N}$.

Reflexivity

A relation r on a set S is said to be reflexive if

$$
(x, x) \in r \quad \text { for any } x \in S
$$

- Example: The relation

Domain: \mathbb{N}

Codomain: \mathbb{N}
Rule: $\quad r_{\text {even }}=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x+y$ is even $\}$.
is reflexive.
We need to show that $(x, x) \in r_{\text {even }}$ for all $x \in \mathbb{N}$, i.e., that $x+x$ is even for all $x \in \mathbb{N}$. But $x+x=2 x$ is always even, for any $x \in \mathbb{N}$.

- Example: The relation

Domain: \mathbb{N}
Codomain: \mathbb{N}
Rule: $\quad r_{\text {odd }}=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x+y$ is odd $\}$.
is not reflexive, since $(1,1) \notin r_{\text {odd }}$.

Reflexivity and irreflexivity

- A relation r on S is said to be irreflexive if

$$
(x, x) \notin r \quad \text { for any } x \in S
$$

- The relation $r_{\text {odd }}$ is irreflexive, since $x+x$ is never odd.

2Warning: "Irreflexive" does not mean "not reflexive". There are relations that are neither reflexive nor irreflexive.

Reflexivity and irreflexivity

- A relation r on S is said to be irreflexive if

$$
(x, x) \notin r \quad \text { for any } x \in S
$$

- The relation $r_{\text {odd }}$ is irreflexive, since $x+x$ is never odd.

2Warning: "Irreflexive" does not mean "not reflexive". There are relations that are neither reflexive nor irreflexive. Example: Let $S=\{1,2\}$. The relation

$$
r=\{(1,1)\}
$$

is neither reflexive nor irreflexive.

Reflexivity and irreflexivity

- The graph of a reflexive relation has a "loop" at every node.

Reflexivity and irreflexivity

- The graph of a reflexive relation has a "loop" at every node.

- The graph of an irreflexive relation has no loops at any node.

Reflexivity and irreflexivity

- The graph of a reflexive relation has a "loop" at every node.

- The graph of an irreflexive relation has no loops at any node.

- If a relation is neither reflexive nor irreflexive, then there will be loops at some (but not all) of its nodes.

Symmetry

A relation r on a set S is said to be symmetric if

$$
(x, y) \in r \Rightarrow(y, x) \in r \quad \text { for any } x, y \in S
$$

- The relation $r_{\text {even }}$ is symmetric, since

$$
(x, y) \in r_{\text {even }}
$$

Symmetry

A relation r on a set S is said to be symmetric if

$$
(x, y) \in r \Rightarrow(y, x) \in r \quad \text { for any } x, y \in S
$$

- The relation $r_{\text {even }}$ is symmetric, since

$$
(x, y) \in r_{\text {even }} \equiv x+y \text { is even }
$$

Symmetry

A relation r on a set S is said to be symmetric if

$$
(x, y) \in r \Rightarrow(y, x) \in r \quad \text { for any } x, y \in S
$$

- The relation $r_{\text {even }}$ is symmetric, since

$$
(x, y) \in r_{\text {even }} \equiv x+y \text { is even } \equiv y+x \text { is even }
$$

Symmetry

A relation r on a set S is said to be symmetric if

$$
(x, y) \in r \Rightarrow(y, x) \in r \quad \text { for any } x, y \in S
$$

- The relation $r_{\text {even }}$ is symmetric, since

$$
\begin{aligned}
(x, y) \in r_{\text {even }} & \equiv x+y \text { is even } \equiv y+x \text { is even } \\
& \equiv(y, x) \in r_{\text {even }}
\end{aligned}
$$

Symmetry

A relation r on a set S is said to be symmetric if

$$
(x, y) \in r \Rightarrow(y, x) \in r \quad \text { for any } x, y \in S
$$

- The relation $r_{\text {even }}$ is symmetric, since

$$
\begin{aligned}
(x, y) \in r_{\text {even }} & \equiv x+y \text { is even } \equiv y+x \text { is even } \\
& \equiv(y, x) \in r_{\text {even }}
\end{aligned}
$$

- The relation $r_{\text {odd }}$ is symmetric, since

$$
(x, y) \in r_{\text {odd }}
$$

Symmetry

A relation r on a set S is said to be symmetric if

$$
(x, y) \in r \Rightarrow(y, x) \in r \quad \text { for any } x, y \in S
$$

- The relation $r_{\text {even }}$ is symmetric, since

$$
\begin{aligned}
(x, y) \in r_{\text {even }} & \equiv x+y \text { is even } \equiv y+x \text { is even } \\
& \equiv(y, x) \in r_{\text {even }}
\end{aligned}
$$

- The relation $r_{\text {odd }}$ is symmetric, since

$$
(x, y) \in r_{\text {odd }} \equiv x+y \text { is odd }
$$

Symmetry

A relation r on a set S is said to be symmetric if

$$
(x, y) \in r \Rightarrow(y, x) \in r \quad \text { for any } x, y \in S
$$

- The relation $r_{\text {even }}$ is symmetric, since

$$
\begin{aligned}
(x, y) \in r_{\text {even }} & \equiv x+y \text { is even } \equiv y+x \text { is even } \\
& \equiv(y, x) \in r_{\text {even }}
\end{aligned}
$$

- The relation $r_{\text {odd }}$ is symmetric, since

$$
(x, y) \in r_{\text {odd }} \equiv x+y \text { is odd } \equiv y+x \text { is odd }
$$

Symmetry

A relation r on a set S is said to be symmetric if

$$
(x, y) \in r \Rightarrow(y, x) \in r \quad \text { for any } x, y \in S
$$

- The relation $r_{\text {even }}$ is symmetric, since

$$
\begin{aligned}
(x, y) \in r_{\text {even }} & \equiv x+y \text { is even } \equiv y+x \text { is even } \\
& \equiv(y, x) \in r_{\text {even }}
\end{aligned}
$$

- The relation $r_{\text {odd }}$ is symmetric, since

$$
\begin{aligned}
(x, y) \in r_{\text {odd }} & \equiv x+y \text { is odd } \equiv y+x \text { is odd } \\
& \equiv(y, x) \in r_{\text {odd }}
\end{aligned}
$$

Symmetry and antisymmetry

- A relation r on S is antisymmetric if

$$
x, y \in S, x \neq y,(x, y) \in r \Rightarrow(y, x) \notin r .
$$

Symmetry and antisymmetry

- A relation r on S is antisymmetric if

$$
x, y \in S, x \neq y,(x, y) \in r \Rightarrow(y, x) \notin r
$$

- Example: The relation $<$ on \mathbb{N} is antisymmetric, since

$$
x, y \in \mathbb{N}, x \neq y, x<y \Rightarrow y \nless x .
$$

Symmetry and antisymmetry

- A relation r on S is antisymmetric if

$$
x, y \in S, x \neq y,(x, y) \in r \Rightarrow(y, x) \notin r
$$

- Example: The relation $<$ on \mathbb{N} is antisymmetric, since

$$
x, y \in \mathbb{N}, x \neq y, x<y \Rightarrow y \nless x .
$$

- Example: The relation \leq on \mathbb{N} is antisymmetric, since

$$
x, y \in \mathbb{N}, x \neq y, x \leq y \Rightarrow y \not \leq x
$$

Symmetry and antisymmetry (cont'd)

- Example: The \subseteq relation on $\mathscr{P}(S)$ is antisymmetric, since

$$
A, B \subseteq S, A \neq B, A \subseteq B \Rightarrow B \nsubseteq A
$$

Symmetry and antisymmetry (cont'd)

- Example: The \subseteq relation on $\mathscr{P}(S)$ is antisymmetric, since

$$
A, B \subseteq S, A \neq B, A \subseteq B \Rightarrow B \nsubseteq A
$$

- II Warning: "Antisymmetric" does not mean "not symmetric". There are relations that are neither symmetric nor antisymmetric.

Symmetry and antisymmetry (cont'd)

- Example: The \subseteq relation on $\mathscr{P}(S)$ is antisymmetric, since

$$
A, B \subseteq S, A \neq B, A \subseteq B \Rightarrow B \nsubseteq A
$$

. Warning: "Antisymmetric" does not mean "not symmetric". There are relations that are neither symmetric nor antisymmetric.
Example: Let $S=\{1,2,3\}$. The relation

$$
r=\{(1,2),(2,1),(1,3)\}
$$

is neither symmetric nor antisymmetric.

Symmetry and antisymmetry

- In the graph of a symmetric relation, all the (non-loop) edges are "two-way streets".

Symmetry and antisymmetry

- In the graph of a symmetric relation, all the (non-loop) edges are "two-way streets".

- In the graph of an antisymmetric relation, all of the (non-loop) edges are "one-way streets".

Symmetry and antisymmetry

- In the graph of a symmetric relation, all the (non-loop) edges are "two-way streets".

- In the graph of an antisymmetric relation, all of the (non-loop) edges are "one-way streets".

- In a relation is neither symmetric nor antisymmetric, some streets are "two-way", some are "one-way".

A relation r on a set S is said to be transitive if

$$
(x, y) \in r \text { and }(y, z) \in r \Rightarrow(x, z) \in r \quad \text { for any } x, y, z \in S
$$

In other words, the relation allows for shortcuts.
Transitive or intransitive?

Transitivity (cont'd)

Transitive or intransitive?

Transitivity (cont'd)

Transitive or intransitive?

3
No "easy test" for transitivity:

Transitivity (cont'd)

Transitive or intransitive?

2
No "easy test" for transitivity:

- Try all possibilities.

Transitivity (cont'd)

Transitive or intransitive?

2
No "easy test" for transitivity:

- Try all possibilities.
- Use knowledge of the relation.

Transitivity (cont'd)

Transitive or non-transitive?

Transitivity (cont'd)

Transitive or non-transitive?

Transitivity (cont'd)

- Example: The $<$ relation on \mathbb{Z} is transitive, since

$$
x<y \text { and } y<z \Rightarrow x<z
$$

Transitivity (cont'd)

- Example: The $<$ relation on \mathbb{Z} is transitive, since

$$
x<y \text { and } y<z \Rightarrow x<z
$$

- Example: The \neq relation on \mathbb{N} is not transitive.

Transitivity (cont'd)

- Example: The $<$ relation on \mathbb{Z} is transitive, since

$$
x<y \text { and } y<z \Rightarrow x<z
$$

- Example: The \neq relation on \mathbb{N} is not transitive.

Let $x=1, y=2, z=1$.
Then $x \neq y$ and $y \neq z$, but we do not have $x \neq z$.

Transitivity (cont'd)

- Example: The $<$ relation on \mathbb{Z} is transitive, since

$$
x<y \text { and } y<z \Rightarrow x<z
$$

- Example: The \neq relation on \mathbb{N} is not transitive. Let $x=1, y=2, z=1$. Then $x \neq y$ and $y \neq z$, but we do not have $x \neq z$.
- Example: The \subseteq relation on $\mathscr{P}(S)$ is transitive.

Transitivity (cont'd)

- Example: The $<$ relation on \mathbb{Z} is transitive, since

$$
x<y \text { and } y<z \Rightarrow x<z
$$

- Example: The \neq relation on \mathbb{N} is not transitive. Let $x=1, y=2, z=1$. Then $x \neq y$ and $y \neq z$, but we do not have $x \neq z$.
- Example: The \subseteq relation on $\mathscr{P}(S)$ is transitive. Suppose that $A \subseteq B$ and $B \subseteq C$; is $A \subseteq C$?
- Example: The $<$ relation on \mathbb{Z} is transitive, since

$$
x<y \text { and } y<z \Rightarrow x<z
$$

- Example: The \neq relation on \mathbb{N} is not transitive.

Let $x=1, y=2, z=1$.
Then $x \neq y$ and $y \neq z$, but we do not have $x \neq z$.

- Example: The \subseteq relation on $\mathscr{P}(S)$ is transitive. Suppose that $A \subseteq B$ and $B \subseteq C$; is $A \subseteq C$? Need to show that $x \in A \Rightarrow x \in C$ for all $x \in A$.
- Example: The $<$ relation on \mathbb{Z} is transitive, since

$$
x<y \text { and } y<z \Rightarrow x<z
$$

- Example: The \neq relation on \mathbb{N} is not transitive.

Let $x=1, y=2, z=1$.
Then $x \neq y$ and $y \neq z$, but we do not have $x \neq z$.

- Example: The \subseteq relation on $\mathscr{P}(S)$ is transitive. Suppose that $A \subseteq B$ and $B \subseteq C$; is $A \subseteq C$? Need to show that $x \in A \Rightarrow x \in C$ for all $x \in A$. So let $x \in A$.
- Example: The $<$ relation on \mathbb{Z} is transitive, since

$$
x<y \text { and } y<z \Rightarrow x<z
$$

- Example: The \neq relation on \mathbb{N} is not transitive.

Let $x=1, y=2, z=1$.
Then $x \neq y$ and $y \neq z$, but we do not have $x \neq z$.

- Example: The \subseteq relation on $\mathscr{P}(S)$ is transitive. Suppose that $A \subseteq B$ and $B \subseteq C$; is $A \subseteq C$? Need to show that $x \in A \Rightarrow x \in C$ for all $x \in A$. So let $x \in A$.
Since $x \in A$ and $A \subseteq B$, we know $x \in B$.
- Example: The $<$ relation on \mathbb{Z} is transitive, since

$$
x<y \text { and } y<z \Rightarrow x<z
$$

- Example: The \neq relation on \mathbb{N} is not transitive.

Let $x=1, y=2, z=1$.
Then $x \neq y$ and $y \neq z$, but we do not have $x \neq z$.

- Example: The \subseteq relation on $\mathscr{P}(S)$ is transitive. Suppose that $A \subseteq B$ and $B \subseteq C$; is $A \subseteq C$?
Need to show that $x \in A \Rightarrow x \in C$ for all $x \in A$.
So let $x \in A$.
Since $x \in A$ and $A \subseteq B$, we know $x \in B$.
Since $x \in B$ and $B \subseteq C$, we know $x \in C$.

Let's try some examples!

Here are some relations. Are they reflexive? irreflexive?
symmetric? antisymmetric? transitive?

- The relation "is a sibling of" on the set of all people.

Let's try some examples!

Here are some relations. Are they reflexive? irreflexive?
symmetric? antisymmetric? transitive?

- The relation "is a sibling of" on the set of all people.
- The relation "has the same age as" on the set of all people.

Let's try some examples!

Here are some relations. Are they reflexive? irreflexive?
symmetric? antisymmetric? transitive?

- The relation "is a sibling of" on the set of all people.
- The relation "has the same age as" on the set of all people.
- The relation $\{(3,4),(6,8),(3,9),(4,3),(9,-2),(4,9)\}$ on \mathbb{Z}.

Let's try some examples!

Here are some relations. Are they reflexive? irreflexive?
symmetric? antisymmetric? transitive?

- The relation "is a sibling of" on the set of all people.
- The relation "has the same age as" on the set of all people.
- The relation $\{(3,4),(6,8),(3,9),(4,3),(9,-2),(4,9)\}$ on \mathbb{Z}.
- The relation \leq on \mathbb{Z}.

Let's try some examples!

Here are some relations. Are they reflexive? irreflexive?
symmetric? antisymmetric? transitive?

- The relation "is a sibling of" on the set of all people.
- The relation "has the same age as" on the set of all people.
- The relation $\{(3,4),(6,8),(3,9),(4,3),(9,-2),(4,9)\}$ on \mathbb{Z}.
- The relation \leq on \mathbb{Z}.
- The relation $<$ on \mathbb{Z}.

Let's try some examples!

Here are some relations. Are they reflexive? irreflexive?
symmetric? antisymmetric? transitive?

- The relation "is a sibling of" on the set of all people.
- The relation "has the same age as" on the set of all people.
- The relation $\{(3,4),(6,8),(3,9),(4,3),(9,-2),(4,9)\}$ on \mathbb{Z}.
- The relation \leq on \mathbb{Z}.
- The relation $<$ on \mathbb{Z}.
- The relation \subseteq on $\mathscr{P}(S)$.

Let's try some examples!

Here are some relations. Are they reflexive? irreflexive?
symmetric? antisymmetric? transitive?

- The relation "is a sibling of" on the set of all people.
- The relation "has the same age as" on the set of all people.
- The relation $\{(3,4),(6,8),(3,9),(4,3),(9,-2),(4,9)\}$ on \mathbb{Z}.
- The relation \leq on \mathbb{Z}.
- The relation $<$ on \mathbb{Z}.
- The relation \subseteq on $\mathscr{P}(S)$.
- The relation \subset on $\mathscr{P}(S)$.

Let's try some examples!

Here are some relations. Are they reflexive? irreflexive?
symmetric? antisymmetric? transitive?

- The relation "is a sibling of" on the set of all people.
- The relation "has the same age as" on the set of all people.
- The relation $\{(3,4),(6,8),(3,9),(4,3),(9,-2),(4,9)\}$ on \mathbb{Z}.
- The relation \leq on \mathbb{Z}.
- The relation $<$ on \mathbb{Z}.
- The relation \subseteq on $\mathscr{P}(S)$.
- The relation \subset on $\mathscr{P}(S)$.
- The relation "beats" on $\{$ rock, paper, scissors $\}$.

Let's try some examples!

Here are some relations. Are they reflexive? irreflexive?
symmetric? antisymmetric? transitive?

- The relation "is a sibling of" on the set of all people.
- The relation "has the same age as" on the set of all people.
- The relation $\{(3,4),(6,8),(3,9),(4,3),(9,-2),(4,9)\}$ on \mathbb{Z}.
- The relation \leq on \mathbb{Z}.
- The relation $<$ on \mathbb{Z}.
- The relation \subseteq on $\mathscr{P}(S)$.
- The relation \subset on $\mathscr{P}(S)$.
- The relation "beats" on \{rock, paper, scissors\}.
- The "friend" relation on Facebook.

Relational Databases

- First proposed by E. F. Codd (IBM) in 1970s.
- At the heart of Oracle, Microsoft Access, Microsoft SQL Server, IBM's dBase.

Relational Databases

- First proposed by E. F. Codd (IBM) in 1970s.
- At the heart of Oracle, Microsoft Access, Microsoft sQL Server, IBM's dBase.
- Main ideas:
- Store data in tables.
- Each table has rows and columns.
- In each table, special column called the key, used to identify rows. (Slight simplification.) Examples: SSN, FIDN, account number,
- Key entry for each row of table must be unique.
- Can look up row in a table by specifying its key.

Relational Databases (cont'd)

Basic information for our social network is stored in the Friends table:

Name	City	Hometown	Sex	Birthday	Status
Alex	Topeka	Topeka	F	$02 / 15 / 1996$	S
Alyssa	Hartford	Albany	F	$02 / 01 / 1964$	M
Angela	Charlotte	Denver	F	$06 / 15 / 1967$	S
Anna	Hartford	Hartford	F	$5 / 19 / 1989$	U
Chryssi	Boston	Boston	F	$12 / 23 / 1985$	S
Ellen	Hartford	Boston	F	$04 / 01 / 1958$	M
Erik	South Park	South Park	M	$08 / 01 / 1997$	S
Frank	Harrisburg	Phoenix	M	$12 / 12 / 1969$	D
Grace	Hartford	Boston	F	$02 / 25 / 1962$	U
Joanna	Topeka	Topeka	F	$02 / 15 / 1996$	S
John	Augusta	Atlanta	M	$10 / 25 / 1991$	S
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

Relational Databases (cont'd)

The Education table for a social network might look like the following:

Name	University	Class	Degree	Major
Ellen	Suffolk University	1986	JD	Criminal Law
Ellen	Harvard University	1980	BA	English
Frank	Dartmouth	1996	PhD	Physics
Frank	Dartmouth	1990	BS	Physics
Grace	Fordham University	2006	MS	Computer Science
Grace	Boston College	1984	BS	Computer Science
Larry	CUNY	2007	MBA	Finance
Larry	NYU	2005	BA	Literature
Lauren	Vassar College	1985	MA	Sociology
Lauren	Duke	1983	BA	English
\vdots	\vdots	\vdots	\vdots	\vdots

Relational Databases (cont'd)

Note the following:

- The Friends table is a 6-ary relation on

Name \times City \times Hometown \times Sex \times Birthday \times Status

Relational Databases (cont'd)

Note the following:

- The Friends table is a 6-ary relation on

Name \times City \times Hometown \times Sex \times Birthday \times Status

- The Name column can be used as a key for Friends table.

Relational Databases (cont'd)

Note the following:

- The Friends table is a 6-ary relation on

Name \times City \times Hometown \times Sex \times Birthday \times Status

- The Name column can be used as a key for Friends table.
- The Education table is a 5 -ary relation on

$$
\text { Name } \times \text { University } \times \text { Class } \times \text { Degree } \times \text { Major }
$$

Relational Databases (cont'd)

Note the following:

- The Friends table is a 6-ary relation on

Name \times City \times Hometown \times Sex \times Birthday \times Status

- The Name column can be used as a key for Friends table.
- The Education table is a 5-ary relation on

$$
\text { Name } \times \text { University } \times \text { Class } \times \text { Degree } \times \text { Major }
$$

- No column of the Education table serves as a key.

Relational Databases (cont'd)

- Extract info from a table by
- looking up tables for key entries, or
- looking across several tables and cross-indexing.

Relational Databases (cont'd)

- Extract info from a table by
- looking up tables for key entries, or
- looking across several tables and cross-indexing.
- For example:
- Look up entry in Friends table for the key Ellen to find her birthday (04/01/1958).

Relational Databases (cont'd)

- Extract info from a table by
- looking up tables for key entries, or
- looking across several tables and cross-indexing.
- For example:
- Look up entry in Friends table for the key Ellen to find her birthday (04/01/1958).
- Cross-index Ellen in the Education table to find that she got her JD degree from Suffolk University in 1986.

Relational Databases (cont'd)

- Extract info from a table by
- looking up tables for key entries, or
- looking across several tables and cross-indexing.
- For example:
- Look up entry in Friends table for the key Ellen to find her birthday (04/01/1958).
- Cross-index Ellen in the Education table to find that she got her JD degree from Suffolk University in 1986.
- Hence Ellen was 1986 - $1958=28$ years old when she received her JD degree.

Relational Databases (cont'd)

- Most common way to extract info from a relational database with the Structured Query Language, or SQL.

Relational Databases (cont'd)

- Most common way to extract info from a relational database with the Structured Query Language, or SQL.
- SQL, invented in the 1970s, is based on relational algebra, a combination of relations and logic.

Relational Databases (cont'd)

- Most common way to extract info from a relational database with the Structured Query Language, or SQL.
- SQL, invented in the 1970s, is based on relational algebra, a combination of relations and logic.
- The SQL select operator is used to extract info from a relational database.

Relational Databases (cont'd)

Example: Find the birthdate and sex of all married people in the database:

Relational Databases (cont'd)

Example: Find the birthdate and sex of all married people in the database:

select Birthdate, Sex from Friends
where Status $=\mathrm{M}$;

Relational Databases (cont'd)

Example: Find the birthdate and sex of all married people in the database:

select Birthdate, Sex from Friends where Status $=\mathrm{M}$;

Using mathematical notation: The Friends relation may be described as

$$
r_{\mathrm{f}}=\left\{\left(n_{i}, c_{i}, h_{i}, s_{i}, b_{i}, s t_{i}\right): i \in\{0, \ldots, 25\}\right\}
$$

Relational Databases (cont'd)

Example: Find the birthdate and sex of all married people in the database:

> select Birthdate, Sex from Friends where Status $=\mathrm{M}$;

Using mathematical notation: The Friends relation may be described as

$$
r_{\mathrm{f}}=\left\{\left(n_{i}, c_{i}, h_{i}, s_{i}, b_{i}, s t_{i}\right): i \in\{0, \ldots, 25\}\right\}
$$

and the results of the SQL select operation can be written as

$$
\left\{\left(b_{i}, s_{i}\right):\left(n_{i}, c_{i}, h_{i}, s_{i}, b_{i}, s t_{i}\right) \in r_{\mathrm{f}} \wedge s t_{i}=\mathrm{M}\right\}
$$

Relational Databases (cont'd)

Example: Use cross-referencing to find the name, birthdate, and graduation date of everyone in the social network:

Relational Databases (cont'd)

Example: Use cross-referencing to find the name, birthdate, and graduation date of everyone in the social network:
select Name, Birthdate, Class from Friends join Education on Friends.Name = Education.Name;

Relational Databases (cont’d)

Example: Use cross-referencing to find the name, birthdate, and graduation date of everyone in the social network:

select Name, Birthdate, Class from Friends join Education on Friends.Name = Education.Name;

Represent this as a relation?

Relational Databases (cont'd)

Example: Use cross-referencing to find the name, birthdate, and graduation date of everyone in the social network:

select Name, Birthdate, Class from Friends join Education on Friends.Name = Education.Name;

Represent this as a relation?
Write Education as a 5-ary relation:

$$
r_{\mathrm{e}}=\left\{\left(n_{i}, u_{i}, c l_{i}, d_{i}, m_{i}\right): i \in\{0, \ldots, 19\}\right\} .
$$

("cl" stands for "class").
Then

Relational Databases (cont'd)

Example: Use cross-referencing to find the name, birthdate, and graduation date of everyone in the social network:

> select Name, Birthdate, Class from Friends join Education on Friends.Name = Education.Name;

Represent this as a relation?
Write Education as a 5-ary relation:

$$
r_{\mathrm{e}}=\left\{\left(n_{i}, u_{i}, c l_{i}, d_{i}, m_{i}\right): i \in\{0, \ldots, 19\}\right\} .
$$

("cl" stands for "class").
Then

$$
\left\{\left(n, b_{i}, c l_{j}\right):\left(n, c_{i}, h_{i}, s_{i}, b_{i}, s t_{i}\right) \in r_{\mathrm{f}} \wedge\left(n, u_{j}, c l_{j}, d_{j}, m_{j}\right) \in r_{\mathrm{e}}\right\}
$$

Relational Databases (cont'd)

Example: Create a "friends of friends" table, which we can use to suggest new friends for our members.

Relational Databases (cont'd)

Example: Create a "friends of friends" table, which we can use to suggest new friends for our members.
Solution: Suppoose that FriendOf is a two-column table that represents current friendships, something like

Name1	Name2
Alex	Lena
Alex	Joanna
\vdots	\vdots
Lena	Alex
Lena	Anna
Lena	Joanna
\vdots	\vdots

Relational Databases (cont'd)

Example: Create a "friends of friends" table, which we can use to suggest new friends for our members.
Solution: Suppoose that FriendOf is a two-column table that represents current friendships, something like

Name1	Name2
Alex	Lena
Alex	Joanna
\vdots	\vdots
Lena	Alex
Lena	Anna
Lena	Joanna
\vdots	\vdots

Since Alex is a friend of Lena and Lena is a friend of Joanna, then Alex is a FOAF of Joanna.

Relational Databases (cont'd)

Example (cont'd): Suppose that FriendOfA and FriendOfB are two copies of the FriendOf table. Then (a first approximation to) a solution is given by

Relational Databases (cont'd)

Example (cont'd): Suppose that FriendOfA and FriendOfB are two copies of the FriendOf table. Then (a first approximation to) a solution is given by
select FriendOfA.Name1, FriendOfB.Name2
from FriendOfA join FriendOfB
on FriendOfA.Name2 = FriendOfB.Name1
as FriendSuggestions;

Relational Databases (cont'd)

Example (cont'd): Suppose that FriendOfA and FriendOfB are two copies of the FriendOf table. Then (a first approximation to) a solution is given by
select FriendOfA.Name1, FriendOfB.Name2
from FriendOfA join FriendOfB
on FriendOfA.Name2 = FriendOfB.Name1
as FriendSuggestions;
This needs a little fine-tuning, to avoid the following bogus friend suggestions:

- yourself, and
- someone who's already a friend.

