
CISC 1100: Structures of Computer Science
Chapter 5
Functions

Arthur G. Werschulz

Fordham University Department of Computer and Information Sciences
Copyright c© Arthur G. Werschulz, 2015. All rights reserved.

Summer, 2015

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 1 / 64

Why functions?

Sets: rigorous way to talk about collections of objects

Logic: rigorous way to talk about conditions and decisions

Relations: rigorous way to talk about how objects can relate
to each other

Function: a relation in which each element of the domain is
related to exactly one element in the codomain

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 2 / 64

Why functions?

Sets: rigorous way to talk about collections of objects

Logic: rigorous way to talk about conditions and decisions

Relations: rigorous way to talk about how objects can relate
to each other

Function: a relation in which each element of the domain is
related to exactly one element in the codomain

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 2 / 64

Why functions?

Sets: rigorous way to talk about collections of objects

Logic: rigorous way to talk about conditions and decisions

Relations: rigorous way to talk about how objects can relate
to each other

Function: a relation in which each element of the domain is
related to exactly one element in the codomain

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 2 / 64

Why functions?

Sets: rigorous way to talk about collections of objects

Logic: rigorous way to talk about conditions and decisions

Relations: rigorous way to talk about how objects can relate
to each other

Function: a relation in which each element of the domain is
related to exactly one element in the codomain

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 2 / 64

Some examples

People may have gone to several high schools, only one of
which was last

person→ high school: relation
person→ final high school: function

Facebook users have email addresses, but typically only one
favorite email address

Facebook user→ email address: relation
Facebook user→ favorite email address: function

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 3 / 64

Some examples

People may have gone to several high schools, only one of
which was last

person→ high school: relation

person→ final high school: function

Facebook users have email addresses, but typically only one
favorite email address

Facebook user→ email address: relation
Facebook user→ favorite email address: function

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 3 / 64

Some examples

People may have gone to several high schools, only one of
which was last

person→ high school: relation
person→ final high school: function

Facebook users have email addresses, but typically only one
favorite email address

Facebook user→ email address: relation
Facebook user→ favorite email address: function

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 3 / 64

Some examples

People may have gone to several high schools, only one of
which was last

person→ high school: relation
person→ final high school: function

Facebook users have email addresses, but typically only one
favorite email address

Facebook user→ email address: relation

Facebook user→ favorite email address: function

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 3 / 64

Some examples

People may have gone to several high schools, only one of
which was last

person→ high school: relation
person→ final high school: function

Facebook users have email addresses, but typically only one
favorite email address

Facebook user→ email address: relation
Facebook user→ favorite email address: function

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 3 / 64

Outline

What is a function?

Relations and functions

Properties of functions

Function composition

Identity and inverse functions

An application: cryptography

More about functions

An application: secure storage of computer passwords

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 4 / 64

What is a function?

You may have already had some experience with functions, such as
plotting curves such as y = −x or y = x2:

-2 -1 1 2
x

-2

-1

1

2

y

-2 -1 1 2
x

1

2

3

4

y

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 5 / 64

What is a function (cont’d)?

The black-box model:

x f y = f (x)

Parts of speech:

domain X : all possible inputs
codomain Y : all possible outputs
f : the name of the function (represents the rule telling
assigning the output value to a given input value)

Notation f : X → Y

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 6 / 64

What is a function (cont’d)?

The black-box model:

x f y = f (x)

Parts of speech:

domain X : all possible inputs
codomain Y : all possible outputs
f : the name of the function (represents the rule telling
assigning the output value to a given input value)

Notation f : X → Y

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 6 / 64

What is a function (cont’d)?

The black-box model:

x f y = f (x)

Parts of speech:

domain X : all possible inputs

codomain Y : all possible outputs
f : the name of the function (represents the rule telling
assigning the output value to a given input value)

Notation f : X → Y

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 6 / 64

What is a function (cont’d)?

The black-box model:

x f y = f (x)

Parts of speech:

domain X : all possible inputs
codomain Y : all possible outputs

f : the name of the function (represents the rule telling
assigning the output value to a given input value)

Notation f : X → Y

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 6 / 64

What is a function (cont’d)?

The black-box model:

x f y = f (x)

Parts of speech:

domain X : all possible inputs
codomain Y : all possible outputs
f : the name of the function (represents the rule telling
assigning the output value to a given input value)

Notation f : X → Y

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 6 / 64

What is a function (cont’d)?

The black-box model:

x f y = f (x)

Parts of speech:

domain X : all possible inputs
codomain Y : all possible outputs
f : the name of the function (represents the rule telling
assigning the output value to a given input value)

Notation f : X → Y

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 6 / 64

How to describe a function?

Graphs work for numerical functions.

Not all functions are numerical.

Could use English (even for numerical functions).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 7 / 64

How to describe a function?

Graphs work for numerical functions.

Not all functions are numerical.

Could use English (even for numerical functions).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 7 / 64

How to describe a function?

Graphs work for numerical functions.

Not all functions are numerical.

Could use English (even for numerical functions).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 7 / 64

How to describe a function (cont’d)?

Example: For the function

-2 -1 1 2
x

-2

-1

1

2

y

Domain is R.

Codomain is R.

Rule: This function returns the output value −x for any given
input value x .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 8 / 64

How to describe a function (cont’d)?

Example: For the function

-2 -1 1 2
x

-2

-1

1

2

y

Domain is R.

Codomain is R.

Rule: This function returns the output value −x for any given
input value x .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 8 / 64

How to describe a function (cont’d)?

Example: For the function

-2 -1 1 2
x

-2

-1

1

2

y

Domain is R.

Codomain is R.

Rule: This function returns the output value −x for any given
input value x .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 8 / 64

How to describe a function (cont’d)?

Example: For the function

-2 -1 1 2
x

-2

-1

1

2

y

Domain is R.

Codomain is R.

Rule: This function returns the output value −x for any given
input value x .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 8 / 64

How to describe a function (cont’d)?

Example: For the function

-2 -1 1 2
x

1

2

3

4

y

Domain is R.

Codomain is R (but could’ve been R≥0).

Rule: This function returns the output value x2 for any given
input value x .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 9 / 64

How to describe a function (cont’d)?

Example: For the function

-2 -1 1 2
x

1

2

3

4

y

Domain is R.

Codomain is R (but could’ve been R≥0).

Rule: This function returns the output value x2 for any given
input value x .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 9 / 64

How to describe a function (cont’d)?

Example: For the function

-2 -1 1 2
x

1

2

3

4

y

Domain is R.

Codomain is R

(but could’ve been R≥0).

Rule: This function returns the output value x2 for any given
input value x .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 9 / 64

How to describe a function (cont’d)?

Example: For the function

-2 -1 1 2
x

1

2

3

4

y

Domain is R.

Codomain is R (but could’ve been R≥0).

Rule: This function returns the output value x2 for any given
input value x .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 9 / 64

How to describe a function (cont’d)?

Example: For the function

-2 -1 1 2
x

1

2

3

4

y

Domain is R.

Codomain is R (but could’ve been R≥0).

Rule: This function returns the output value x2 for any given
input value x .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 9 / 64

How to describe a function (cont’d)?

Can use a table . . . more convenient than English.

Example: A function d : {1, 2, 3, 4, 5} → N whose table is
given by

t 1 2 3 4 5

d(t) 2 4 6 8 10

This tells us that d(1) = 2, d(2) = 4, etc.

Example: A function d∗ : {1, 2, 3, 4, 5} → {2, 4, 6, 8, 10}
given by

z 1 2 3 4 5

d∗(z) 2 4 6 8 10

The functions d and d∗ are different.
Why? Different codomains!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 10 / 64

How to describe a function (cont’d)?

Can use a table . . . more convenient than English.

Example: A function d : {1, 2, 3, 4, 5} → N whose table is
given by

t 1 2 3 4 5

d(t) 2 4 6 8 10

This tells us that d(1) = 2, d(2) = 4, etc.

Example: A function d∗ : {1, 2, 3, 4, 5} → {2, 4, 6, 8, 10}
given by

z 1 2 3 4 5

d∗(z) 2 4 6 8 10

The functions d and d∗ are different.
Why? Different codomains!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 10 / 64

How to describe a function (cont’d)?

Can use a table . . . more convenient than English.

Example: A function d : {1, 2, 3, 4, 5} → N whose table is
given by

t 1 2 3 4 5

d(t) 2 4 6 8 10

This tells us that d(1) = 2, d(2) = 4, etc.

Example: A function d∗ : {1, 2, 3, 4, 5} → {2, 4, 6, 8, 10}
given by

z 1 2 3 4 5

d∗(z) 2 4 6 8 10

The functions d and d∗ are different.
Why? Different codomains!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 10 / 64

How to describe a function (cont’d)?

Can use a table . . . more convenient than English.

Example: A function d : {1, 2, 3, 4, 5} → N whose table is
given by

t 1 2 3 4 5

d(t) 2 4 6 8 10

This tells us that d(1) = 2, d(2) = 4, etc.

Example: A function d∗ : {1, 2, 3, 4, 5} → {2, 4, 6, 8, 10}
given by

z 1 2 3 4 5

d∗(z) 2 4 6 8 10

The functions d and d∗ are different.
Why? Different codomains!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 10 / 64

How to describe a function (cont’d)?

Can use a table . . . more convenient than English.

Example: A function d : {1, 2, 3, 4, 5} → N whose table is
given by

t 1 2 3 4 5

d(t) 2 4 6 8 10

This tells us that d(1) = 2, d(2) = 4, etc.

Example: A function d∗ : {1, 2, 3, 4, 5} → {2, 4, 6, 8, 10}
given by

z 1 2 3 4 5

d∗(z) 2 4 6 8 10

The functions d and d∗ are different.
Why?

Different codomains!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 10 / 64

How to describe a function (cont’d)?

Can use a table . . . more convenient than English.

Example: A function d : {1, 2, 3, 4, 5} → N whose table is
given by

t 1 2 3 4 5

d(t) 2 4 6 8 10

This tells us that d(1) = 2, d(2) = 4, etc.

Example: A function d∗ : {1, 2, 3, 4, 5} → {2, 4, 6, 8, 10}
given by

z 1 2 3 4 5

d∗(z) 2 4 6 8 10

The functions d and d∗ are different.
Why? Different codomains!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 10 / 64

How to describe a function (cont’d)?

Example: A function d∗∗ : Z+ → Z+ given by the table

z 1 2 3 4 5 6 7 8 9 10 . . .

d∗∗(z) 2 4 6 8 10 12 14 16 18 20 . . .

Alternatively, can say that d∗∗ : Z+ → Z+ is given by the rule

d∗∗(x) = 2x ∀ x ∈ Z+.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 11 / 64

How to describe a function (cont’d)?

Example: A function d∗∗ : Z+ → Z+ given by the table

z 1 2 3 4 5 6 7 8 9 10 . . .

d∗∗(z) 2 4 6 8 10 12 14 16 18 20 . . .

Alternatively, can say that d∗∗ : Z+ → Z+ is given by the rule

d∗∗(x) = 2x ∀ x ∈ Z+.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 11 / 64

More examples

Coffee shop’s menu:
c p(c)

small $1.25
medium $2.15

large $2.75

This describes a function

p : {small,medium, large} → Q

Bakery’s menu:
i b(i)

bagel $1.00
croissant $1.25

danish $2.25
muffin $1.50

This describes a function

b : {bagel, croissant, danish,muffin} → Q

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 12 / 64

More examples

Coffee shop’s menu:
c p(c)

small $1.25
medium $2.15

large $2.75

This describes a function

p : {small,medium, large} → Q

Bakery’s menu:
i b(i)

bagel $1.00
croissant $1.25

danish $2.25
muffin $1.50

This describes a function

b : {bagel, croissant, danish,muffin} → Q
Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 12 / 64

Still more examples

My address book looks something like this:

n e(n)
...

...
Harry Q. Bovik bovik@cs.cmu.edu

James T. Kirk kirk@starfleet.federation.gov

Darth Vader vader@empire.gov
...

...

This table describes a function

e : {my friends} → {all possible email addresses}

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 13 / 64

Still more examples

My address book looks something like this:

n e(n)
...

...
Harry Q. Bovik bovik@cs.cmu.edu

James T. Kirk kirk@starfleet.federation.gov

Darth Vader vader@empire.gov
...

...

This table describes a function

e : {my friends} → {all possible email addresses}

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 13 / 64

Still more examples

Each Facebook user has a gender (which s/he needn’t specify):

p g(p)
...

...
Bovik, Harry Q. U

Lyons, Damian M. M
Weiss, Gary M. M

Papadakis-Kanaris, Christina F
Werschulz, Arthur G. M

...
...

This table describes a function

g : {all Facebook users} → G

where G = {M,F,U}.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 14 / 64

Still more examples

Each Facebook user has a gender (which s/he needn’t specify):

p g(p)
...

...
Bovik, Harry Q. U

Lyons, Damian M. M
Weiss, Gary M. M

Papadakis-Kanaris, Christina F
Werschulz, Arthur G. M

...
...

This table describes a function

g : {all Facebook users} → G

where G = {M,F,U}.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 14 / 64

Functions and relations

If r is a relation from X to Y :

Some elements of X might not participate in the relation, i.e.,
there might be x ∈ X such that (x , y) /∈ r for any y ∈ Y .
Some elements of X might be related to more than one
element of Y , i.e., there might be x ∈ X such that both
(x , y1) ∈ r and (x , y2) ∈ r , where y1 6= y2.

This cannot happen with functions. If f : X → Y , then

Every x ∈ X participates in the function, i.e., f (x) is defined
for each x ∈ X .
Each x ∈ X is associated with exactly one y ∈ Y , i.e., f (x) is
“well-defined” for each x ∈ X .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 15 / 64

Functions and relations

If r is a relation from X to Y :

Some elements of X might not participate in the relation, i.e.,
there might be x ∈ X such that (x , y) /∈ r for any y ∈ Y .
Some elements of X might be related to more than one
element of Y , i.e., there might be x ∈ X such that both
(x , y1) ∈ r and (x , y2) ∈ r , where y1 6= y2.

This cannot happen with functions. If f : X → Y , then

Every x ∈ X participates in the function, i.e., f (x) is defined
for each x ∈ X .
Each x ∈ X is associated with exactly one y ∈ Y , i.e., f (x) is
“well-defined” for each x ∈ X .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 15 / 64

Functions and relations (cont’d)

Example: The curve x = y2 looks like

1 2 3 4
x

-2

-1

1

2

y

Does it define a function from x-values to y -values?

No.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 16 / 64

Functions and relations (cont’d)

Example: The curve x = y2 looks like

1 2 3 4
x

-2

-1

1

2

y

Does it define a function from x-values to y -values? No.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 16 / 64

Functions and relations (cont’d)

Let’s look at some examples.

Define f : {1, 2, 3, 4} → {1, 2, 3, 4} by

x 1 2 3

f (x) 3 1 2

Is f a function?

No! What’s f (4)?

Let r be a relation from {1, 2, 3, 4} to {1, 2, 3, 4} given by

r = {(1, 3), (2, 4), (3, 1), (4, 4), (1, 4)}

Does r determine a function? No! r(1) would need to be
both 3 and 4.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 17 / 64

Functions and relations (cont’d)

Let’s look at some examples.

Define f : {1, 2, 3, 4} → {1, 2, 3, 4} by

x 1 2 3

f (x) 3 1 2

Is f a function? No! What’s f (4)?

Let r be a relation from {1, 2, 3, 4} to {1, 2, 3, 4} given by

r = {(1, 3), (2, 4), (3, 1), (4, 4), (1, 4)}

Does r determine a function? No! r(1) would need to be
both 3 and 4.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 17 / 64

Functions and relations (cont’d)

Let’s look at some examples.

Define f : {1, 2, 3, 4} → {1, 2, 3, 4} by

x 1 2 3

f (x) 3 1 2

Is f a function? No! What’s f (4)?

Let r be a relation from {1, 2, 3, 4} to {1, 2, 3, 4} given by

r = {(1, 3), (2, 4), (3, 1), (4, 4), (1, 4)}

Does r determine a function?

No! r(1) would need to be
both 3 and 4.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 17 / 64

Functions and relations (cont’d)

Let’s look at some examples.

Define f : {1, 2, 3, 4} → {1, 2, 3, 4} by

x 1 2 3

f (x) 3 1 2

Is f a function? No! What’s f (4)?

Let r be a relation from {1, 2, 3, 4} to {1, 2, 3, 4} given by

r = {(1, 3), (2, 4), (3, 1), (4, 4), (1, 4)}

Does r determine a function? No! r(1) would need to be
both 3 and 4.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 17 / 64

Functions and relations (cont’d)

More examples:

Let q be a relation from R to R defined by

q(x) = y iff x = y2

Is q a function?

No! Since 1 = 12 and 1 = (−1)2, the value
q(1) isn’t well-defined.

Let s be a relation from R≥0 to R≥0 defined by

s(x) = y iff x = y2

Is s a function? Yes! s(x) = y iff x = y2 iff y =
√
x .

�

Moral of the story? All three pieces (the domain, the
codomain, and the “rule”) are important.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 18 / 64

Functions and relations (cont’d)

More examples:

Let q be a relation from R to R defined by

q(x) = y iff x = y2

Is q a function? No! Since 1 = 12 and 1 = (−1)2, the value
q(1) isn’t well-defined.

Let s be a relation from R≥0 to R≥0 defined by

s(x) = y iff x = y2

Is s a function? Yes! s(x) = y iff x = y2 iff y =
√
x .

�

Moral of the story? All three pieces (the domain, the
codomain, and the “rule”) are important.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 18 / 64

Functions and relations (cont’d)

More examples:

Let q be a relation from R to R defined by

q(x) = y iff x = y2

Is q a function? No! Since 1 = 12 and 1 = (−1)2, the value
q(1) isn’t well-defined.

Let s be a relation from R≥0 to R≥0 defined by

s(x) = y iff x = y2

Is s a function?

Yes! s(x) = y iff x = y2 iff y =
√
x .

�

Moral of the story? All three pieces (the domain, the
codomain, and the “rule”) are important.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 18 / 64

Functions and relations (cont’d)

More examples:

Let q be a relation from R to R defined by

q(x) = y iff x = y2

Is q a function? No! Since 1 = 12 and 1 = (−1)2, the value
q(1) isn’t well-defined.

Let s be a relation from R≥0 to R≥0 defined by

s(x) = y iff x = y2

Is s a function? Yes! s(x) = y iff x = y2 iff y =
√
x .

�

Moral of the story? All three pieces (the domain, the
codomain, and the “rule”) are important.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 18 / 64

Functions and relations (cont’d)

More examples:

Let q be a relation from R to R defined by

q(x) = y iff x = y2

Is q a function? No! Since 1 = 12 and 1 = (−1)2, the value
q(1) isn’t well-defined.

Let s be a relation from R≥0 to R≥0 defined by

s(x) = y iff x = y2

Is s a function? Yes! s(x) = y iff x = y2 iff y =
√
x .

�

Moral of the story? All three pieces (the domain, the
codomain, and the “rule”) are important.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 18 / 64

More terminology

The range of a function is the set of all values it can assume,
i.e.,

Range(f) = f (X) = { f (x) : x ∈ X }.

We sometimes write f (X) for the range of f : X → Y .

Note that Range(f) ⊆ Y , i.e., the range is always a subset of
the codomain.

Example: Define g : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4
g(t) 3 1 2 1

Then Range(g) = Codomain(g).
Example: Define h : {1, 2, 3, 4} → {1, 2, 3, 4} by

t 1 2 3 4
h(t) 3 1 2 1

Then Range(h) 6= Codomain(h).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 19 / 64

More terminology

The range of a function is the set of all values it can assume,
i.e.,

Range(f) = f (X) = { f (x) : x ∈ X }.

We sometimes write f (X) for the range of f : X → Y .

Note that Range(f) ⊆ Y , i.e., the range is always a subset of
the codomain.

Example: Define g : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4
g(t) 3 1 2 1

Then

Range(g) = Codomain(g).
Example: Define h : {1, 2, 3, 4} → {1, 2, 3, 4} by

t 1 2 3 4
h(t) 3 1 2 1

Then Range(h) 6= Codomain(h).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 19 / 64

More terminology

The range of a function is the set of all values it can assume,
i.e.,

Range(f) = f (X) = { f (x) : x ∈ X }.

We sometimes write f (X) for the range of f : X → Y .

Note that Range(f) ⊆ Y , i.e., the range is always a subset of
the codomain.

Example: Define g : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4
g(t) 3 1 2 1

Then Range(g) = Codomain(g).

Example: Define h : {1, 2, 3, 4} → {1, 2, 3, 4} by

t 1 2 3 4
h(t) 3 1 2 1

Then Range(h) 6= Codomain(h).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 19 / 64

More terminology

The range of a function is the set of all values it can assume,
i.e.,

Range(f) = f (X) = { f (x) : x ∈ X }.

We sometimes write f (X) for the range of f : X → Y .

Note that Range(f) ⊆ Y , i.e., the range is always a subset of
the codomain.

Example: Define g : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4
g(t) 3 1 2 1

Then Range(g) = Codomain(g).
Example: Define h : {1, 2, 3, 4} → {1, 2, 3, 4} by

t 1 2 3 4
h(t) 3 1 2 1

Then

Range(h) 6= Codomain(h).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 19 / 64

More terminology

The range of a function is the set of all values it can assume,
i.e.,

Range(f) = f (X) = { f (x) : x ∈ X }.

We sometimes write f (X) for the range of f : X → Y .

Note that Range(f) ⊆ Y , i.e., the range is always a subset of
the codomain.

Example: Define g : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4
g(t) 3 1 2 1

Then Range(g) = Codomain(g).
Example: Define h : {1, 2, 3, 4} → {1, 2, 3, 4} by

t 1 2 3 4
h(t) 3 1 2 1

Then Range(h) 6= Codomain(h).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 19 / 64

Properties of functions

Relations sometimes have useful properties (reflexivity,
irreflexity, symmetry, anstisymmetry, transitivity).
Ditto with functions.

Let f : S → T be a function.

f is injective if f (x) = f (y)⇒ x = y , for any x , y ∈ S .
Equivalent formulation: x , y ∈ S and x 6= y ⇒ f (x) 6= f (y).
f is surjective if ∀ t ∈ T ,∃ s ∈ S : t = f (s).
Equivalent formulation: Range(f) = T .
f is bijective if f is both injective and surjective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 20 / 64

Properties of functions

Relations sometimes have useful properties (reflexivity,
irreflexity, symmetry, anstisymmetry, transitivity).
Ditto with functions.

Let f : S → T be a function.

f is injective if f (x) = f (y)⇒ x = y , for any x , y ∈ S .
Equivalent formulation: x , y ∈ S and x 6= y ⇒ f (x) 6= f (y).
f is surjective if ∀ t ∈ T ,∃ s ∈ S : t = f (s).
Equivalent formulation: Range(f) = T .
f is bijective if f is both injective and surjective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 20 / 64

Properties of functions

Relations sometimes have useful properties (reflexivity,
irreflexity, symmetry, anstisymmetry, transitivity).
Ditto with functions.

Let f : S → T be a function.

f is injective if f (x) = f (y)⇒ x = y , for any x , y ∈ S .

Equivalent formulation: x , y ∈ S and x 6= y ⇒ f (x) 6= f (y).
f is surjective if ∀ t ∈ T ,∃ s ∈ S : t = f (s).
Equivalent formulation: Range(f) = T .
f is bijective if f is both injective and surjective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 20 / 64

Properties of functions

Relations sometimes have useful properties (reflexivity,
irreflexity, symmetry, anstisymmetry, transitivity).
Ditto with functions.

Let f : S → T be a function.

f is injective if f (x) = f (y)⇒ x = y , for any x , y ∈ S .
Equivalent formulation: x , y ∈ S and x 6= y ⇒ f (x) 6= f (y).

f is surjective if ∀ t ∈ T ,∃ s ∈ S : t = f (s).
Equivalent formulation: Range(f) = T .
f is bijective if f is both injective and surjective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 20 / 64

Properties of functions

Relations sometimes have useful properties (reflexivity,
irreflexity, symmetry, anstisymmetry, transitivity).
Ditto with functions.

Let f : S → T be a function.

f is injective if f (x) = f (y)⇒ x = y , for any x , y ∈ S .
Equivalent formulation: x , y ∈ S and x 6= y ⇒ f (x) 6= f (y).
f is surjective if ∀ t ∈ T ,∃ s ∈ S : t = f (s).

Equivalent formulation: Range(f) = T .
f is bijective if f is both injective and surjective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 20 / 64

Properties of functions

Relations sometimes have useful properties (reflexivity,
irreflexity, symmetry, anstisymmetry, transitivity).
Ditto with functions.

Let f : S → T be a function.

f is injective if f (x) = f (y)⇒ x = y , for any x , y ∈ S .
Equivalent formulation: x , y ∈ S and x 6= y ⇒ f (x) 6= f (y).
f is surjective if ∀ t ∈ T ,∃ s ∈ S : t = f (s).
Equivalent formulation: Range(f) = T .

f is bijective if f is both injective and surjective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 20 / 64

Properties of functions

Relations sometimes have useful properties (reflexivity,
irreflexity, symmetry, anstisymmetry, transitivity).
Ditto with functions.

Let f : S → T be a function.

f is injective if f (x) = f (y)⇒ x = y , for any x , y ∈ S .
Equivalent formulation: x , y ∈ S and x 6= y ⇒ f (x) 6= f (y).
f is surjective if ∀ t ∈ T ,∃ s ∈ S : t = f (s).
Equivalent formulation: Range(f) = T .
f is bijective if f is both injective and surjective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 20 / 64

Properties of functions (cont’d)

Not injective,
not surjective.

Injective.

Surjective. Bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 21 / 64

Properties of functions (cont’d)

Not injective,
not surjective.

Injective.

Surjective. Bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 21 / 64

Properties of functions (cont’d)

Not injective,
not surjective.

Injective.

Surjective.

Bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 21 / 64

Properties of functions (cont’d)

Not injective,
not surjective.

Injective.

Surjective. Bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 21 / 64

Properties of functions (cont’d)

Alternative terminology:

Using nouns instead of adjectives:

“f is an injection.”
“f is a surjection.”
“f is a bijection.”

Simpler language.

“f is one-to-one” instead of “f is injective.”
“f maps S onto T ,”instead of “f : S → T is surjective.”

�

The word “onto” is a preposition, and not an adjective.
Please do not say “The function f is onto.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 22 / 64

Properties of functions (cont’d)

Alternative terminology:

Using nouns instead of adjectives:

“f is an injection.”
“f is a surjection.”
“f is a bijection.”

Simpler language.

“f is one-to-one” instead of “f is injective.”
“f maps S onto T ,”instead of “f : S → T is surjective.”

�

The word “onto” is a preposition, and not an adjective.
Please do not say “The function f is onto.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 22 / 64

Properties of functions (cont’d)

Alternative terminology:

Using nouns instead of adjectives:

“f is an injection.”
“f is a surjection.”
“f is a bijection.”

Simpler language.

“f is one-to-one” instead of “f is injective.”
“f maps S onto T ,”instead of “f : S → T is surjective.”

�

The word “onto” is a preposition, and not an adjective.
Please do not say “The function f is onto.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 22 / 64

Properties of functions (cont’d)

Alternative terminology:

Using nouns instead of adjectives:

“f is an injection.”
“f is a surjection.”
“f is a bijection.”

Simpler language.

“f is one-to-one” instead of “f is injective.”
“f maps S onto T ,”instead of “f : S → T is surjective.”

�

The word “onto” is a preposition, and not an adjective.
Please do not say “The function f is onto.”

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 22 / 64

Properties of functions (cont’d)

Another way of looking at these properties:
Think of f : S → T as labeling S-points with T -values, i.e.,

s ∈ S is labeled by f (s) ∈ T .

For f to be injective, no two distinct points in S can have the
same label.

For f to be surjective, every point in T must have at least one
label.

For f to be bijective, every point in T must have exactly one
label.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 23 / 64

Properties of functions (cont’d)

Another way of looking at these properties:
Think of f : S → T as labeling S-points with T -values, i.e.,

s ∈ S is labeled by f (s) ∈ T .

For f to be injective, no two distinct points in S can have the
same label.

For f to be surjective, every point in T must have at least one
label.

For f to be bijective, every point in T must have exactly one
label.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 23 / 64

Properties of functions (cont’d)

Another way of looking at these properties:
Think of f : S → T as labeling S-points with T -values, i.e.,

s ∈ S is labeled by f (s) ∈ T .

For f to be injective, no two distinct points in S can have the
same label.

For f to be surjective, every point in T must have at least one
label.

For f to be bijective, every point in T must have exactly one
label.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 23 / 64

Properties of functions (cont’d)

Another way of looking at these properties:
Think of f : S → T as labeling S-points with T -values, i.e.,

s ∈ S is labeled by f (s) ∈ T .

For f to be injective, no two distinct points in S can have the
same label.

For f to be surjective, every point in T must have at least one
label.

For f to be bijective, every point in T must have exactly one
label.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 23 / 64

Properties of functions (cont’d)

Example: Let C be a can of paint and let F be a floor.
Let’s transfer the paint from the can to the floor.
Define p : C → F by

p(d) is the spot on the floor where the paint drop d lands.

If no spot on floor winds up with more than one drop of paint,
the p is injective.

If the entire floor gets covered with paint, then p is surjective.

If every spot on entire floor gets covered with exactly one
drop of paint, then p is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 24 / 64

Properties of functions (cont’d)

Example: Let C be a can of paint and let F be a floor.
Let’s transfer the paint from the can to the floor.
Define p : C → F by

p(d) is the spot on the floor where the paint drop d lands.

If no spot on floor winds up with more than one drop of paint,
the p is injective.

If the entire floor gets covered with paint, then p is surjective.

If every spot on entire floor gets covered with exactly one
drop of paint, then p is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 24 / 64

Properties of functions (cont’d)

Example: Let C be a can of paint and let F be a floor.
Let’s transfer the paint from the can to the floor.
Define p : C → F by

p(d) is the spot on the floor where the paint drop d lands.

If no spot on floor winds up with more than one drop of paint,
the p is injective.

If the entire floor gets covered with paint, then p is surjective.

If every spot on entire floor gets covered with exactly one
drop of paint, then p is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 24 / 64

Properties of functions (cont’d)

Example: Let C be a can of paint and let F be a floor.
Let’s transfer the paint from the can to the floor.
Define p : C → F by

p(d) is the spot on the floor where the paint drop d lands.

If no spot on floor winds up with more than one drop of paint,
the p is injective.

If the entire floor gets covered with paint, then p is surjective.

If every spot on entire floor gets covered with exactly one
drop of paint, then p is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 24 / 64

Properties of functions (cont’d)

More examples:

Define h : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4

h(t) 3 1 2 2

h is

not injective, is surjective, is not bijective.

Define f : {1, 2, 3} → {1, 2, 3, 4} by

s 1 2 3

f (s) 3 2 1

f is injective, is not surjective, f is not bijective.

Define q : {1, 2, 3, 4} → {♣,♦,♥,♠} by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
q is injective, is surjective, is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 25 / 64

Properties of functions (cont’d)

More examples:

Define h : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4

h(t) 3 1 2 2

h is not injective,

is surjective, is not bijective.

Define f : {1, 2, 3} → {1, 2, 3, 4} by

s 1 2 3

f (s) 3 2 1

f is injective, is not surjective, f is not bijective.

Define q : {1, 2, 3, 4} → {♣,♦,♥,♠} by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
q is injective, is surjective, is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 25 / 64

Properties of functions (cont’d)

More examples:

Define h : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4

h(t) 3 1 2 2

h is not injective, is surjective,

is not bijective.

Define f : {1, 2, 3} → {1, 2, 3, 4} by

s 1 2 3

f (s) 3 2 1

f is injective, is not surjective, f is not bijective.

Define q : {1, 2, 3, 4} → {♣,♦,♥,♠} by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
q is injective, is surjective, is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 25 / 64

Properties of functions (cont’d)

More examples:

Define h : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4

h(t) 3 1 2 2

h is not injective, is surjective, is not bijective.

Define f : {1, 2, 3} → {1, 2, 3, 4} by

s 1 2 3

f (s) 3 2 1

f is injective, is not surjective, f is not bijective.

Define q : {1, 2, 3, 4} → {♣,♦,♥,♠} by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
q is injective, is surjective, is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 25 / 64

Properties of functions (cont’d)

More examples:

Define h : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4

h(t) 3 1 2 2

h is not injective, is surjective, is not bijective.

Define f : {1, 2, 3} → {1, 2, 3, 4} by

s 1 2 3

f (s) 3 2 1

f

is injective, is not surjective, f is not bijective.

Define q : {1, 2, 3, 4} → {♣,♦,♥,♠} by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
q is injective, is surjective, is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 25 / 64

Properties of functions (cont’d)

More examples:

Define h : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4

h(t) 3 1 2 2

h is not injective, is surjective, is not bijective.

Define f : {1, 2, 3} → {1, 2, 3, 4} by

s 1 2 3

f (s) 3 2 1

f is injective,

is not surjective, f is not bijective.

Define q : {1, 2, 3, 4} → {♣,♦,♥,♠} by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
q is injective, is surjective, is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 25 / 64

Properties of functions (cont’d)

More examples:

Define h : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4

h(t) 3 1 2 2

h is not injective, is surjective, is not bijective.

Define f : {1, 2, 3} → {1, 2, 3, 4} by

s 1 2 3

f (s) 3 2 1

f is injective, is not surjective,

f is not bijective.

Define q : {1, 2, 3, 4} → {♣,♦,♥,♠} by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
q is injective, is surjective, is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 25 / 64

Properties of functions (cont’d)

More examples:

Define h : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4

h(t) 3 1 2 2

h is not injective, is surjective, is not bijective.

Define f : {1, 2, 3} → {1, 2, 3, 4} by

s 1 2 3

f (s) 3 2 1

f is injective, is not surjective, f is not bijective.

Define q : {1, 2, 3, 4} → {♣,♦,♥,♠} by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
q is injective, is surjective, is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 25 / 64

Properties of functions (cont’d)

More examples:

Define h : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4

h(t) 3 1 2 2

h is not injective, is surjective, is not bijective.

Define f : {1, 2, 3} → {1, 2, 3, 4} by

s 1 2 3

f (s) 3 2 1

f is injective, is not surjective, f is not bijective.

Define q : {1, 2, 3, 4} → {♣,♦,♥,♠} by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
q

is injective, is surjective, is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 25 / 64

Properties of functions (cont’d)

More examples:

Define h : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4

h(t) 3 1 2 2

h is not injective, is surjective, is not bijective.

Define f : {1, 2, 3} → {1, 2, 3, 4} by

s 1 2 3

f (s) 3 2 1

f is injective, is not surjective, f is not bijective.

Define q : {1, 2, 3, 4} → {♣,♦,♥,♠} by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
q is injective,

is surjective, is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 25 / 64

Properties of functions (cont’d)

More examples:

Define h : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4

h(t) 3 1 2 2

h is not injective, is surjective, is not bijective.

Define f : {1, 2, 3} → {1, 2, 3, 4} by

s 1 2 3

f (s) 3 2 1

f is injective, is not surjective, f is not bijective.

Define q : {1, 2, 3, 4} → {♣,♦,♥,♠} by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
q is injective, is surjective,

is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 25 / 64

Properties of functions (cont’d)

More examples:

Define h : {1, 2, 3, 4} → {1, 2, 3} by

t 1 2 3 4

h(t) 3 1 2 2

h is not injective, is surjective, is not bijective.

Define f : {1, 2, 3} → {1, 2, 3, 4} by

s 1 2 3

f (s) 3 2 1

f is injective, is not surjective, f is not bijective.

Define q : {1, 2, 3, 4} → {♣,♦,♥,♠} by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
q is injective, is surjective, is bijective.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 25 / 64

Properties of functions (cont’d)

Can we ever rule out the existence of injections or surjections?

Pigeonhole Principle:

Let A and B be finite sets.
1 If |A| < |B|, then there can be no surjection from A to B.
2 If |A| > |B|, then there can be no injection from A to B.
3 If |A| 6= |B|, then there can be no bijection from A to B.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 26 / 64

Properties of functions (cont’d)

Can we ever rule out the existence of injections or surjections?

Pigeonhole Principle:

Let A and B be finite sets.
1 If |A| < |B|, then there can be no surjection from A to B.
2 If |A| > |B|, then there can be no injection from A to B.
3 If |A| 6= |B|, then there can be no bijection from A to B.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 26 / 64

Properties of functions (cont’d)

Pigeonhole Principle Example:

Suppose we have five softball players, and four pre-existing
softball teams.
Then at least two of them will play on the same team.

Why? Let S = {the softball players} and T = {the teams}.
Define p : S → T by

p(s) ∈ T is the team on which s ∈ S plays.

Pigeonhole Principle: p cannot be an injection.

Thus, there exist distinct i and j such that p(i) = p(j).

So players i and j must be on the same team.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 27 / 64

Properties of functions (cont’d)

Pigeonhole Principle Example:

Suppose we have five softball players, and four pre-existing
softball teams.
Then at least two of them will play on the same team.

Why? Let S = {the softball players} and T = {the teams}.
Define p : S → T by

p(s) ∈ T is the team on which s ∈ S plays.

Pigeonhole Principle: p cannot be an injection.

Thus, there exist distinct i and j such that p(i) = p(j).

So players i and j must be on the same team.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 27 / 64

Properties of functions (cont’d)

Pigeonhole Principle Example:

Suppose we have five softball players, and four pre-existing
softball teams.
Then at least two of them will play on the same team.

Why? Let S = {the softball players} and T = {the teams}.
Define p : S → T by

p(s) ∈ T is the team on which s ∈ S plays.

Pigeonhole Principle: p cannot be an injection.

Thus, there exist distinct i and j such that p(i) = p(j).

So players i and j must be on the same team.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 27 / 64

Properties of functions (cont’d)

Pigeonhole Principle Example:

Suppose we have five softball players, and four pre-existing
softball teams.
Then at least two of them will play on the same team.

Why? Let S = {the softball players} and T = {the teams}.
Define p : S → T by

p(s) ∈ T is the team on which s ∈ S plays.

Pigeonhole Principle: p cannot be an injection.

Thus, there exist distinct i and j such that p(i) = p(j).

So players i and j must be on the same team.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 27 / 64

Properties of functions (cont’d)

Pigeonhole Principle Example:

Suppose we have five softball players, and four pre-existing
softball teams.
Then at least two of them will play on the same team.

Why? Let S = {the softball players} and T = {the teams}.
Define p : S → T by

p(s) ∈ T is the team on which s ∈ S plays.

Pigeonhole Principle: p cannot be an injection.

Thus, there exist distinct i and j such that p(i) = p(j).

So players i and j must be on the same team.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 27 / 64

Properties of functions (cont’d)

Pigeonhole Principle Example:

Suppose that people in a room shake hands with some other
people in the room.

Then at least two of these people will shake hands the same
number of times.

Why? Let P = {people in the room}.
Let n = |P|, and define f : P → {1, . . . , n − 1} by

f (j) =the number of people with whom j ∈ P shakes hands

(Note that you don’t shake hands with yourself.)

Pigeonhole Principle: f cannot be an injection.

Thus, there exist distinct i and j such that f (i) = f (j).

So persons i and j shake hands the same number of times.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 28 / 64

Properties of functions (cont’d)

Pigeonhole Principle Example:

Suppose that people in a room shake hands with some other
people in the room.
Then at least two of these people will shake hands the same
number of times.

Why? Let P = {people in the room}.
Let n = |P|, and define f : P → {1, . . . , n − 1} by

f (j) =the number of people with whom j ∈ P shakes hands

(Note that you don’t shake hands with yourself.)

Pigeonhole Principle: f cannot be an injection.

Thus, there exist distinct i and j such that f (i) = f (j).

So persons i and j shake hands the same number of times.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 28 / 64

Properties of functions (cont’d)

Pigeonhole Principle Example:

Suppose that people in a room shake hands with some other
people in the room.
Then at least two of these people will shake hands the same
number of times.

Why? Let P = {people in the room}.
Let n = |P|, and define f : P → {1, . . . , n − 1} by

f (j) =the number of people with whom j ∈ P shakes hands

(Note that you don’t shake hands with yourself.)

Pigeonhole Principle: f cannot be an injection.

Thus, there exist distinct i and j such that f (i) = f (j).

So persons i and j shake hands the same number of times.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 28 / 64

Properties of functions (cont’d)

Pigeonhole Principle Example:

Suppose that people in a room shake hands with some other
people in the room.
Then at least two of these people will shake hands the same
number of times.

Why? Let P = {people in the room}.
Let n = |P|, and define f : P → {1, . . . , n − 1} by

f (j) =the number of people with whom j ∈ P shakes hands

(Note that you don’t shake hands with yourself.)

Pigeonhole Principle: f cannot be an injection.

Thus, there exist distinct i and j such that f (i) = f (j).

So persons i and j shake hands the same number of times.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 28 / 64

Properties of functions (cont’d)

Pigeonhole Principle Example:

Suppose that people in a room shake hands with some other
people in the room.
Then at least two of these people will shake hands the same
number of times.

Why? Let P = {people in the room}.
Let n = |P|, and define f : P → {1, . . . , n − 1} by

f (j) =the number of people with whom j ∈ P shakes hands

(Note that you don’t shake hands with yourself.)

Pigeonhole Principle: f cannot be an injection.

Thus, there exist distinct i and j such that f (i) = f (j).

So persons i and j shake hands the same number of times.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 28 / 64

Properties of functions (cont’d)

Pigeonhole Principle Example:

Suppose that people in a room shake hands with some other
people in the room.
Then at least two of these people will shake hands the same
number of times.

Why? Let P = {people in the room}.
Let n = |P|, and define f : P → {1, . . . , n − 1} by

f (j) =the number of people with whom j ∈ P shakes hands

(Note that you don’t shake hands with yourself.)

Pigeonhole Principle: f cannot be an injection.

Thus, there exist distinct i and j such that f (i) = f (j).

So persons i and j shake hands the same number of times.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 28 / 64

Function composition

How to design a big piece of software?

Word processor
Web browser
Kernel of an operating system

Decompose it into smaller “modules”, with well-defined
communication channels

Loose coupling
High cohesion

Other direction: design software components for reuse
(object-oriented design)

All this is part of software engineering.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 29 / 64

Function composition

How to design a big piece of software?

Word processor
Web browser
Kernel of an operating system

Decompose it into smaller “modules”, with well-defined
communication channels

Loose coupling
High cohesion

Other direction: design software components for reuse
(object-oriented design)

All this is part of software engineering.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 29 / 64

Function composition

How to design a big piece of software?

Word processor
Web browser
Kernel of an operating system

Decompose it into smaller “modules”, with well-defined
communication channels

Loose coupling
High cohesion

Other direction: design software components for reuse
(object-oriented design)

All this is part of software engineering.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 29 / 64

Function composition

How to design a big piece of software?

Word processor
Web browser
Kernel of an operating system

Decompose it into smaller “modules”, with well-defined
communication channels

Loose coupling
High cohesion

Other direction: design software components for reuse
(object-oriented design)

All this is part of software engineering.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 29 / 64

Function composition

How to design a big piece of software?

Word processor
Web browser
Kernel of an operating system

Decompose it into smaller “modules”, with well-defined
communication channels

Loose coupling
High cohesion

Other direction: design software components for reuse
(object-oriented design)

All this is part of software engineering.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 29 / 64

Function composition (cont’d)

Example: We want to compute a complicated function, such
as h : R→ R defined as

h(x) = (3x2+2x+7)14+32(3x2+2x+7)5−11(3x2+2x+7)3

∀ x ∈ R.

Break up the calculation of z = h(x) into two pieces:
1 Calculate y = 3x2 + 2x + 7.
2 Calculate z = y14 + 32y5 − 11y3.

Write y = f (x), where the f : R→ R is defined as

f (x) = 3x2 + 2x + 7 ∀ x ∈ R.
Write z = g(y), where the function g : R→ R is defined as

g(y) = y14 + 32y5 − 11y3 ∀ y ∈ R.
Then

h(x) = g
(
f (x)

)
∀ x ∈ R.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 30 / 64

Function composition (cont’d)

Example: We want to compute a complicated function, such
as h : R→ R defined as

h(x) = (3x2+2x+7)14+32(3x2+2x+7)5−11(3x2+2x+7)3

∀ x ∈ R.

Break up the calculation of z = h(x) into two pieces:
1 Calculate y = 3x2 + 2x + 7.
2 Calculate z = y14 + 32y5 − 11y3.

Write y = f (x), where the f : R→ R is defined as

f (x) = 3x2 + 2x + 7 ∀ x ∈ R.
Write z = g(y), where the function g : R→ R is defined as

g(y) = y14 + 32y5 − 11y3 ∀ y ∈ R.
Then

h(x) = g
(
f (x)

)
∀ x ∈ R.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 30 / 64

Function composition (cont’d)

Example: We want to compute a complicated function, such
as h : R→ R defined as

h(x) = (3x2+2x+7)14+32(3x2+2x+7)5−11(3x2+2x+7)3

∀ x ∈ R.

Break up the calculation of z = h(x) into two pieces:
1 Calculate y = 3x2 + 2x + 7.
2 Calculate z = y14 + 32y5 − 11y3.

Write y = f (x), where the f : R→ R is defined as

f (x) = 3x2 + 2x + 7 ∀ x ∈ R.

Write z = g(y), where the function g : R→ R is defined as

g(y) = y14 + 32y5 − 11y3 ∀ y ∈ R.
Then

h(x) = g
(
f (x)

)
∀ x ∈ R.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 30 / 64

Function composition (cont’d)

Example: We want to compute a complicated function, such
as h : R→ R defined as

h(x) = (3x2+2x+7)14+32(3x2+2x+7)5−11(3x2+2x+7)3

∀ x ∈ R.

Break up the calculation of z = h(x) into two pieces:
1 Calculate y = 3x2 + 2x + 7.
2 Calculate z = y14 + 32y5 − 11y3.

Write y = f (x), where the f : R→ R is defined as

f (x) = 3x2 + 2x + 7 ∀ x ∈ R.
Write z = g(y), where the function g : R→ R is defined as

g(y) = y14 + 32y5 − 11y3 ∀ y ∈ R.
Then

h(x) = g
(
f (x)

)
∀ x ∈ R.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 30 / 64

Function composition (cont’d)

Let f : X → Y and g : Y → Z . The composite function
g ◦ f : X → Z is defined as

(g ◦ f)(x) = g
(
f (x)

)
∀ x ∈ X .

X
f //

g◦f

��

Y

g

��
Z

�

Although we write g ◦ f and we read g before f when we
say “g composed with f ,” we first calculate y = f (x) and
then z = g(y) when we compute z = g

(
f (x)

)
.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 31 / 64

Function composition (cont’d)

Let f : X → Y and g : Y → Z . The composite function
g ◦ f : X → Z is defined as

(g ◦ f)(x) = g
(
f (x)

)
∀ x ∈ X .

X
f //

g◦f

��

Y

g

��
Z

�

Although we write g ◦ f and we read g before f when we
say “g composed with f ,” we first calculate y = f (x) and
then z = g(y) when we compute z = g

(
f (x)

)
.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 31 / 64

Function composition (cont’d)

Let f : X → Y and g : Y → Z . The composite function
g ◦ f : X → Z is defined as

(g ◦ f)(x) = g
(
f (x)

)
∀ x ∈ X .

X
f //

g◦f

��

Y

g

��
Z

�

Although we write g ◦ f and we read g before f when we
say “g composed with f ,” we first calculate y = f (x) and
then z = g(y) when we compute z = g

(
f (x)

)
.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 31 / 64

Function composition (cont’d)

�

The two functions must be compatible: Codomain of the
first is (a subset of) domain of second.

Example: Define d : R→ R by

d(x) = 2x ∀ x ∈ R

and p : Z→ Z by

p(x) =

{
0 if x is even,

1 if x is odd.

Then p ◦ d is ill-defined—what’s (p ◦ d)(14)?
However d ◦ p : Z→ R is well-defined.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 32 / 64

Function composition (cont’d)

�

The two functions must be compatible: Codomain of the
first is (a subset of) domain of second.

Example: Define d : R→ R by

d(x) = 2x ∀ x ∈ R

and p : Z→ Z by

p(x) =

{
0 if x is even,

1 if x is odd.

Then p ◦ d is ill-defined—what’s (p ◦ d)(14)?
However d ◦ p : Z→ R is well-defined.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 32 / 64

Function composition (cont’d)

�

The two functions must be compatible: Codomain of the
first is (a subset of) domain of second.

Example: Define d : R→ R by

d(x) = 2x ∀ x ∈ R

and p : Z→ Z by

p(x) =

{
0 if x is even,

1 if x is odd.

Then p ◦ d is ill-defined—what’s (p ◦ d)(14)?

However d ◦ p : Z→ R is well-defined.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 32 / 64

Function composition (cont’d)

�

The two functions must be compatible: Codomain of the
first is (a subset of) domain of second.

Example: Define d : R→ R by

d(x) = 2x ∀ x ∈ R

and p : Z→ Z by

p(x) =

{
0 if x is even,

1 if x is odd.

Then p ◦ d is ill-defined—what’s (p ◦ d)(14)?
However d ◦ p : Z→ R is well-defined.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 32 / 64

Function composition (cont’d)

Let f : X → Y and g : Y → Z . Computing the composite
function g ◦ f at a point x ∈ X is a two-step process:

1 Compute y = f (x).
2 Compute z = g(y).

Then z = (g ◦ f)(x).

Example: Define f , g : R→ R by

f (x) = 2x and g(x) = x + 1 ∀ x ∈ R.

We have

(f ◦ g)(2) = f (g(2)) = f (2 + 1) = f (3) = 2× 3 = 6;

and

(g ◦ f)(2) = g(f (2)) = f (2) + 1 = 2× 2 + 1 = 5;

So (f ◦ g)(2) 6= (g ◦ f)(2).
Function composition is not commutative!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 33 / 64

Function composition (cont’d)

Let f : X → Y and g : Y → Z . Computing the composite
function g ◦ f at a point x ∈ X is a two-step process:

1 Compute y = f (x).

2 Compute z = g(y).

Then z = (g ◦ f)(x).

Example: Define f , g : R→ R by

f (x) = 2x and g(x) = x + 1 ∀ x ∈ R.

We have

(f ◦ g)(2) = f (g(2)) = f (2 + 1) = f (3) = 2× 3 = 6;

and

(g ◦ f)(2) = g(f (2)) = f (2) + 1 = 2× 2 + 1 = 5;

So (f ◦ g)(2) 6= (g ◦ f)(2).
Function composition is not commutative!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 33 / 64

Function composition (cont’d)

Let f : X → Y and g : Y → Z . Computing the composite
function g ◦ f at a point x ∈ X is a two-step process:

1 Compute y = f (x).
2 Compute z = g(y).

Then z = (g ◦ f)(x).

Example: Define f , g : R→ R by

f (x) = 2x and g(x) = x + 1 ∀ x ∈ R.

We have

(f ◦ g)(2) = f (g(2)) = f (2 + 1) = f (3) = 2× 3 = 6;

and

(g ◦ f)(2) = g(f (2)) = f (2) + 1 = 2× 2 + 1 = 5;

So (f ◦ g)(2) 6= (g ◦ f)(2).
Function composition is not commutative!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 33 / 64

Function composition (cont’d)

Let f : X → Y and g : Y → Z . Computing the composite
function g ◦ f at a point x ∈ X is a two-step process:

1 Compute y = f (x).
2 Compute z = g(y).

Then z = (g ◦ f)(x).

Example: Define f , g : R→ R by

f (x) = 2x and g(x) = x + 1 ∀ x ∈ R.

We have

(f ◦ g)(2) = f (g(2)) = f (2 + 1) = f (3) = 2× 3 = 6;

and

(g ◦ f)(2) = g(f (2)) = f (2) + 1 = 2× 2 + 1 = 5;

So (f ◦ g)(2) 6= (g ◦ f)(2).
Function composition is not commutative!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 33 / 64

Function composition (cont’d)

Let f : X → Y and g : Y → Z . Computing the composite
function g ◦ f at a point x ∈ X is a two-step process:

1 Compute y = f (x).
2 Compute z = g(y).

Then z = (g ◦ f)(x).

Example: Define f , g : R→ R by

f (x) = 2x and g(x) = x + 1 ∀ x ∈ R.

We have

(f ◦ g)(2) = f (g(2)) = f (2 + 1) = f (3) = 2× 3 = 6;

and

(g ◦ f)(2) = g(f (2)) = f (2) + 1 = 2× 2 + 1 = 5;

So (f ◦ g)(2) 6= (g ◦ f)(2).
Function composition is not commutative!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 33 / 64

Function composition (cont’d)

Let f : X → Y and g : Y → Z . Computing the composite
function g ◦ f at a point x ∈ X is a two-step process:

1 Compute y = f (x).
2 Compute z = g(y).

Then z = (g ◦ f)(x).

Example: Define f , g : R→ R by

f (x) = 2x and g(x) = x + 1 ∀ x ∈ R.

We have

(f ◦ g)(2) = f (g(2)) = f (2 + 1) = f (3) = 2× 3 = 6;

and

(g ◦ f)(2) = g(f (2)) = f (2) + 1 = 2× 2 + 1 = 5;

So (f ◦ g)(2) 6= (g ◦ f)(2).
Function composition is not commutative!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 33 / 64

Function composition (cont’d)

Let f : X → Y and g : Y → Z . Computing the composite
function g ◦ f at a point x ∈ X is a two-step process:

1 Compute y = f (x).
2 Compute z = g(y).

Then z = (g ◦ f)(x).

Example: Define f , g : R→ R by

f (x) = 2x and g(x) = x + 1 ∀ x ∈ R.

We have

(f ◦ g)(2) = f (g(2)) = f (2 + 1) = f (3) = 2× 3 = 6;

and

(g ◦ f)(2) = g(f (2)) = f (2) + 1 = 2× 2 + 1 = 5;

So (f ◦ g)(2) 6= (g ◦ f)(2).
Function composition is not commutative!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 33 / 64

Function composition (cont’d)

Let f : X → Y and g : Y → Z . Computing the composite
function g ◦ f at a point x ∈ X is a two-step process:

1 Compute y = f (x).
2 Compute z = g(y).

Then z = (g ◦ f)(x).

Example: Define f , g : R→ R by

f (x) = 2x and g(x) = x + 1 ∀ x ∈ R.

We have

(f ◦ g)(2) = f (g(2)) = f (2 + 1) = f (3) = 2× 3 = 6;

and

(g ◦ f)(2) = g(f (2)) = f (2) + 1 = 2× 2 + 1 = 5;

So (f ◦ g)(2) 6= (g ◦ f)(2).

Function composition is not commutative!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 33 / 64

Function composition (cont’d)

Let f : X → Y and g : Y → Z . Computing the composite
function g ◦ f at a point x ∈ X is a two-step process:

1 Compute y = f (x).
2 Compute z = g(y).

Then z = (g ◦ f)(x).

Example: Define f , g : R→ R by

f (x) = 2x and g(x) = x + 1 ∀ x ∈ R.

We have

(f ◦ g)(2) = f (g(2)) = f (2 + 1) = f (3) = 2× 3 = 6;

and

(g ◦ f)(2) = g(f (2)) = f (2) + 1 = 2× 2 + 1 = 5;

So (f ◦ g)(2) 6= (g ◦ f)(2).
Function composition is not commutative!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 33 / 64

Function composition (cont’d)

Example: Let P be the set of all people. Define functions
f : P → P and m : P → P by

f (p) = the (birth) father of p ∀ p ∈ P

and

m(p) = the (birth) mother of p ∀ p ∈ P.

What is m ◦m? m ◦ f ? f ◦m? f ◦ f ?

Solution: We have (m ◦m)(p) = m
(
m(p)

)
, which is the mother

of the mother of p, i.e., the maternal grandmother of p. Similarly,
we find that

m ◦ f = paternal grandmother,

f ◦m = maternal grandfather,

f ◦ f = paternal grandfather.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 34 / 64

Function composition (cont’d)

Example: Let P be the set of all people. Define functions
f : P → P and m : P → P by

f (p) = the (birth) father of p ∀ p ∈ P

and

m(p) = the (birth) mother of p ∀ p ∈ P.

What is m ◦m? m ◦ f ? f ◦m? f ◦ f ?

Solution: We have (m ◦m)(p) = m
(
m(p)

)
, which is the mother

of the mother of p, i.e.,

the maternal grandmother of p. Similarly,
we find that

m ◦ f = paternal grandmother,

f ◦m = maternal grandfather,

f ◦ f = paternal grandfather.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 34 / 64

Function composition (cont’d)

Example: Let P be the set of all people. Define functions
f : P → P and m : P → P by

f (p) = the (birth) father of p ∀ p ∈ P

and

m(p) = the (birth) mother of p ∀ p ∈ P.

What is m ◦m? m ◦ f ? f ◦m? f ◦ f ?

Solution: We have (m ◦m)(p) = m
(
m(p)

)
, which is the mother

of the mother of p, i.e., the maternal grandmother of p.

Similarly,
we find that

m ◦ f = paternal grandmother,

f ◦m = maternal grandfather,

f ◦ f = paternal grandfather.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 34 / 64

Function composition (cont’d)

Example: Let P be the set of all people. Define functions
f : P → P and m : P → P by

f (p) = the (birth) father of p ∀ p ∈ P

and

m(p) = the (birth) mother of p ∀ p ∈ P.

What is m ◦m? m ◦ f ? f ◦m? f ◦ f ?

Solution: We have (m ◦m)(p) = m
(
m(p)

)
, which is the mother

of the mother of p, i.e., the maternal grandmother of p. Similarly,
we find that

m ◦ f = paternal grandmother,

f ◦m = maternal grandfather,

f ◦ f = paternal grandfather.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 34 / 64

Identity and inverse functions

The identity function on a set A is the function idA : A→ A
defined by

idA(a) = a ∀ a ∈ A

If f : X → Y , then

f ◦ idX = f = idY ◦f .

Why this name? Analogous to

a× 1 = a = 1× a ∀ a ∈ R.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 35 / 64

Identity and inverse functions

The identity function on a set A is the function idA : A→ A
defined by

idA(a) = a ∀ a ∈ A

If f : X → Y , then

f ◦ idX = f = idY ◦f .

Why this name? Analogous to

a× 1 = a = 1× a ∀ a ∈ R.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 35 / 64

Identity and inverse functions

The identity function on a set A is the function idA : A→ A
defined by

idA(a) = a ∀ a ∈ A

If f : X → Y , then

f ◦ idX = f = idY ◦f .

Why this name? Analogous to

a× 1 = a = 1× a ∀ a ∈ R.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 35 / 64

Identity and inverse functions (cont’d)

Example: Let V be the set of all vowels. The identity
function idV : V → V is given by

x a e i o u

idV (x) a e i o u

Example: Let C be the set of all consonants. The identity
function idC : C → C is similar:

x b c d f ... z

idC (x) b c d f ... z

Why do we care about a function that “does nothing”?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 36 / 64

Identity and inverse functions (cont’d)

Example: Let V be the set of all vowels. The identity
function idV : V → V is given by

x a e i o u

idV (x) a e i o u

Example: Let C be the set of all consonants. The identity
function idC : C → C is similar:

x b c d f ... z

idC (x) b c d f ... z

Why do we care about a function that “does nothing”?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 36 / 64

Identity and inverse functions (cont’d)

Example: Let V be the set of all vowels. The identity
function idV : V → V is given by

x a e i o u

idV (x) a e i o u

Example: Let C be the set of all consonants. The identity
function idC : C → C is similar:

x b c d f ... z

idC (x) b c d f ... z

Why do we care about a function that “does nothing”?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 36 / 64

Identity and inverse functions (cont’d)

The function f : X → Y is invertible if there exists another
function f −1 : Y → X such that

f −1 ◦ f = idX and f ◦ f −1 = idY ,

i.e.,
f −1
(
f (x)

)
= x ∀ x ∈ X

f
(
f −1(y)

)
= y ∀ y ∈ Y .

If f is invertible, then f −1 is the functional inverse of f .
�

Don’t confuse f −1 with a reciprocal (1/f)!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 37 / 64

Identity and inverse functions (cont’d)

The function f : X → Y is invertible if there exists another
function f −1 : Y → X such that

f −1 ◦ f = idX and f ◦ f −1 = idY ,

i.e.,
f −1
(
f (x)

)
= x ∀ x ∈ X

f
(
f −1(y)

)
= y ∀ y ∈ Y .

If f is invertible, then f −1 is the functional inverse of f .

�

Don’t confuse f −1 with a reciprocal (1/f)!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 37 / 64

Identity and inverse functions (cont’d)

The function f : X → Y is invertible if there exists another
function f −1 : Y → X such that

f −1 ◦ f = idX and f ◦ f −1 = idY ,

i.e.,
f −1
(
f (x)

)
= x ∀ x ∈ X

f
(
f −1(y)

)
= y ∀ y ∈ Y .

If f is invertible, then f −1 is the functional inverse of f .
�

Don’t confuse f −1 with a reciprocal (1/f)!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 37 / 64

Identity and inverse functions (cont’d)

Example: Define g : Z→ Z by

g(x) = x − 7 ∀ x ∈ Z.

Show that g−1 : Z→ Z is given by

g−1(y) = y + 7 ∀ y ∈ Z.

Solution: We have

(g ◦ g−1)(y) = g
(
g−1(y)

)
= g(y + 7)

= (y + 7)− 7 = y
∀ y ∈ Z

and

(g−1 ◦ g)(x) = g−1
(
g(x)

)
= g−1(x − 7)

= (x − 7) + 7 = x
∀ x ∈ Z.

So g−1 is the functional inverse of g , as claimed.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 38 / 64

Identity and inverse functions (cont’d)

Example: Define g : Z→ Z by

g(x) = x − 7 ∀ x ∈ Z.

Show that g−1 : Z→ Z is given by

g−1(y) = y + 7 ∀ y ∈ Z.

Solution: We have

(g ◦ g−1)(y) = g
(
g−1(y)

)
= g(y + 7)

= (y + 7)− 7 = y
∀ y ∈ Z

and

(g−1 ◦ g)(x) = g−1
(
g(x)

)
= g−1(x − 7)

= (x − 7) + 7 = x
∀ x ∈ Z.

So g−1 is the functional inverse of g , as claimed.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 38 / 64

Identity and inverse functions (cont’d)

Example: Define g : Z→ Z by

g(x) = x − 7 ∀ x ∈ Z.

Show that g−1 : Z→ Z is given by

g−1(y) = y + 7 ∀ y ∈ Z.

Solution: We have

(g ◦ g−1)(y) = g
(
g−1(y)

)
= g(y + 7)

= (y + 7)− 7 = y
∀ y ∈ Z

and

(g−1 ◦ g)(x) = g−1
(
g(x)

)
= g−1(x − 7)

= (x − 7) + 7 = x
∀ x ∈ Z.

So g−1 is the functional inverse of g , as claimed.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 38 / 64

Identity and inverse functions (cont’d)

Example: Define g : Z→ Z by

g(x) = x − 7 ∀ x ∈ Z.

Show that g−1 : Z→ Z is given by

g−1(y) = y + 7 ∀ y ∈ Z.

Solution: We have

(g ◦ g−1)(y) = g
(
g−1(y)

)
= g(y + 7)

= (y + 7)− 7 = y
∀ y ∈ Z

and

(g−1 ◦ g)(x) = g−1
(
g(x)

)
= g−1(x − 7)

= (x − 7) + 7 = x
∀ x ∈ Z.

So g−1 is the functional inverse of g , as claimed.
Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 38 / 64

Identity and inverse functions (cont’d)

�

Not all functions are invertible, and the difference between
invertibility and non-invertibility may be subtle.

Example: Define m : Q→ Q by

m(x) = 2x ∀ x ∈ Q.

Is m invertible? If so, what is its inverse function?

Solution: We need to solve the equation

y = m(x) = 2x

for x in terms of y :

y = 2x ⇐⇒ x = 1
2y .

Now y ∈ Q =⇒ x = 1
2y ∈ Q. Thus m is invertible, with

m−1 : Q→ Q given by

m−1(y) = 1
2y ∀ y ∈ Q.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 39 / 64

Identity and inverse functions (cont’d)

�

Not all functions are invertible, and the difference between
invertibility and non-invertibility may be subtle.

Example: Define m : Q→ Q by

m(x) = 2x ∀ x ∈ Q.

Is m invertible? If so, what is its inverse function?

Solution: We need to solve the equation

y = m(x) = 2x

for x in terms of y :

y = 2x ⇐⇒ x = 1
2y .

Now y ∈ Q =⇒ x = 1
2y ∈ Q. Thus m is invertible, with

m−1 : Q→ Q given by

m−1(y) = 1
2y ∀ y ∈ Q.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 39 / 64

Identity and inverse functions (cont’d)

�

Not all functions are invertible, and the difference between
invertibility and non-invertibility may be subtle.

Example: Define m : Q→ Q by

m(x) = 2x ∀ x ∈ Q.

Is m invertible? If so, what is its inverse function?

Solution: We need to solve the equation

y = m(x) = 2x

for x in terms of y :

y = 2x ⇐⇒ x = 1
2y .

Now y ∈ Q =⇒ x = 1
2y ∈ Q. Thus m is invertible, with

m−1 : Q→ Q given by

m−1(y) = 1
2y ∀ y ∈ Q.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 39 / 64

Identity and inverse functions (cont’d)

Example: Define m̃ : N→ N by

m̃(x) = 2x ∀ x ∈ N.

Is m̃ invertible? If so, give its inverse function.

Solution: We need to solve the equation

y = m̃(x) = 2x

for x in terms of y :

y = 2x ⇐⇒ x = 1
2y .

Does y ∈ N =⇒ x = 1
2y ∈ N?

No! For example, take y = 1, getting x = 1
2 .

So m̃ is not invertible.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 40 / 64

Identity and inverse functions (cont’d)

Example: Define m̃ : N→ N by

m̃(x) = 2x ∀ x ∈ N.

Is m̃ invertible? If so, give its inverse function.

Solution: We need to solve the equation

y = m̃(x) = 2x

for x in terms of y :

y = 2x ⇐⇒ x = 1
2y .

Does y ∈ N =⇒ x = 1
2y ∈ N?

No! For example, take y = 1, getting x = 1
2 .

So m̃ is not invertible.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 40 / 64

Identity and inverse functions (cont’d)

Example: Define m̃ : N→ N by

m̃(x) = 2x ∀ x ∈ N.

Is m̃ invertible? If so, give its inverse function.

Solution: We need to solve the equation

y = m̃(x) = 2x

for x in terms of y :

y = 2x ⇐⇒ x = 1
2y .

Does y ∈ N =⇒ x = 1
2y ∈ N?

No! For example, take y = 1, getting x = 1
2 .

So m̃ is not invertible.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 40 / 64

Identity and inverse functions (cont’d)

Example: Define m̃ : N→ N by

m̃(x) = 2x ∀ x ∈ N.

Is m̃ invertible? If so, give its inverse function.

Solution: We need to solve the equation

y = m̃(x) = 2x

for x in terms of y :

y = 2x ⇐⇒ x = 1
2y .

Does y ∈ N =⇒ x = 1
2y ∈ N?

No! For example, take y = 1, getting x = 1
2 .

So m̃ is not invertible.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 40 / 64

Identity and inverse functions (cont’d)

Example: Define m̃ : N→ N by

m̃(x) = 2x ∀ x ∈ N.

Is m̃ invertible? If so, give its inverse function.

Solution: We need to solve the equation

y = m̃(x) = 2x

for x in terms of y :

y = 2x ⇐⇒ x = 1
2y .

Does y ∈ N =⇒ x = 1
2y ∈ N?

No! For example, take y = 1, getting x = 1
2 .

So m̃ is not invertible.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 40 / 64

Identity and inverse functions (cont’d)

Example: Define m̃ : N→ N by

m̃(x) = 2x ∀ x ∈ N.

Is m̃ invertible? If so, give its inverse function.

Solution: We need to solve the equation

y = m̃(x) = 2x

for x in terms of y :

y = 2x ⇐⇒ x = 1
2y .

Does y ∈ N =⇒ x = 1
2y ∈ N?

No! For example, take y = 1, getting x = 1
2 .

So m̃ is not invertible.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 40 / 64

Identity and inverse functions (cont’d)

So how can we determine whether a given function is
invertible?

Fact: The function f : X → Y is invertible if and only if f is a
bijection.

Explanation: Substitute f (x) = y into x = f −1(f (x)), finding

x = f −1(y) ⇐⇒ y = f (x).

This gives a relation f −1 : Y → X . Is it a function?

For any y ∈ Y , there must exist a unique x ∈ X such that
x = f −1(y), i.e., such that y = f (x).

Uniqueness holds iff f is an injection.
If y = f (x) and also y = f (x ′), we wouldn’t know whether we
should use x or x ′ as the value of f −1(y).
Existence holds iff for any y ∈ Y , there exists some x ∈ X
such that f (x) = y , i.e., iff f is a surjection.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 41 / 64

Identity and inverse functions (cont’d)

So how can we determine whether a given function is
invertible?

Fact: The function f : X → Y is invertible if and only if f is a
bijection.

Explanation: Substitute f (x) = y into x = f −1(f (x)), finding

x = f −1(y) ⇐⇒ y = f (x).

This gives a relation f −1 : Y → X . Is it a function?

For any y ∈ Y , there must exist a unique x ∈ X such that
x = f −1(y), i.e., such that y = f (x).

Uniqueness holds iff f is an injection.
If y = f (x) and also y = f (x ′), we wouldn’t know whether we
should use x or x ′ as the value of f −1(y).
Existence holds iff for any y ∈ Y , there exists some x ∈ X
such that f (x) = y , i.e., iff f is a surjection.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 41 / 64

Identity and inverse functions (cont’d)

So how can we determine whether a given function is
invertible?

Fact: The function f : X → Y is invertible if and only if f is a
bijection.

Explanation: Substitute f (x) = y into x = f −1(f (x)), finding

x = f −1(y) ⇐⇒ y = f (x).

This gives a relation f −1 : Y → X . Is it a function?

For any y ∈ Y , there must exist a unique x ∈ X such that
x = f −1(y), i.e., such that y = f (x).

Uniqueness holds iff f is an injection.
If y = f (x) and also y = f (x ′), we wouldn’t know whether we
should use x or x ′ as the value of f −1(y).
Existence holds iff for any y ∈ Y , there exists some x ∈ X
such that f (x) = y , i.e., iff f is a surjection.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 41 / 64

Identity and inverse functions (cont’d)

So how can we determine whether a given function is
invertible?

Fact: The function f : X → Y is invertible if and only if f is a
bijection.

Explanation: Substitute f (x) = y into x = f −1(f (x)), finding

x = f −1(y) ⇐⇒ y = f (x).

This gives a relation f −1 : Y → X . Is it a function?

For any y ∈ Y , there must exist a unique x ∈ X such that
x = f −1(y), i.e., such that y = f (x).

Uniqueness holds iff f is an injection.
If y = f (x) and also y = f (x ′), we wouldn’t know whether we
should use x or x ′ as the value of f −1(y).
Existence holds iff for any y ∈ Y , there exists some x ∈ X
such that f (x) = y , i.e., iff f is a surjection.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 41 / 64

Identity and inverse functions (cont’d)

So how can we determine whether a given function is
invertible?

Fact: The function f : X → Y is invertible if and only if f is a
bijection.

Explanation: Substitute f (x) = y into x = f −1(f (x)), finding

x = f −1(y) ⇐⇒ y = f (x).

This gives a relation f −1 : Y → X . Is it a function?

For any y ∈ Y , there must exist a unique x ∈ X such that
x = f −1(y), i.e., such that y = f (x).

Uniqueness holds iff f is an injection.

If y = f (x) and also y = f (x ′), we wouldn’t know whether we
should use x or x ′ as the value of f −1(y).
Existence holds iff for any y ∈ Y , there exists some x ∈ X
such that f (x) = y , i.e., iff f is a surjection.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 41 / 64

Identity and inverse functions (cont’d)

So how can we determine whether a given function is
invertible?

Fact: The function f : X → Y is invertible if and only if f is a
bijection.

Explanation: Substitute f (x) = y into x = f −1(f (x)), finding

x = f −1(y) ⇐⇒ y = f (x).

This gives a relation f −1 : Y → X . Is it a function?

For any y ∈ Y , there must exist a unique x ∈ X such that
x = f −1(y), i.e., such that y = f (x).

Uniqueness holds iff f is an injection.
If y = f (x) and also y = f (x ′), we wouldn’t know whether we
should use x or x ′ as the value of f −1(y).

Existence holds iff for any y ∈ Y , there exists some x ∈ X
such that f (x) = y , i.e., iff f is a surjection.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 41 / 64

Identity and inverse functions (cont’d)

So how can we determine whether a given function is
invertible?

Fact: The function f : X → Y is invertible if and only if f is a
bijection.

Explanation: Substitute f (x) = y into x = f −1(f (x)), finding

x = f −1(y) ⇐⇒ y = f (x).

This gives a relation f −1 : Y → X . Is it a function?

For any y ∈ Y , there must exist a unique x ∈ X such that
x = f −1(y), i.e., such that y = f (x).

Uniqueness holds iff f is an injection.
If y = f (x) and also y = f (x ′), we wouldn’t know whether we
should use x or x ′ as the value of f −1(y).
Existence holds iff for any y ∈ Y , there exists some x ∈ X
such that f (x) = y , i.e., iff f is a surjection.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 41 / 64

Identity and inverse functions (cont’d)

Which of the following functions are invertible?

A function from the set {1, 2, 3, . . . , 999} to the
set {1, 2, 3, . . . , 999, 1000}.

No! (Pigeonhole principle: no such function is an surjection.)

The function q : {1, 2, 3, 4} → {♣,♦,♥,♠} defined by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
Yes. q is a bijection. In fact its inverse is the function
q−1 : {♣,♦,♥,♠} → {1, 2, 3, 4} defined by

s ♣ ♦ ♥ ♠
q−1(s) 4 3 2 1

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 42 / 64

Identity and inverse functions (cont’d)

Which of the following functions are invertible?

A function from the set {1, 2, 3, . . . , 999} to the
set {1, 2, 3, . . . , 999, 1000}.
No! (Pigeonhole principle: no such function is an surjection.)

The function q : {1, 2, 3, 4} → {♣,♦,♥,♠} defined by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
Yes. q is a bijection. In fact its inverse is the function
q−1 : {♣,♦,♥,♠} → {1, 2, 3, 4} defined by

s ♣ ♦ ♥ ♠
q−1(s) 4 3 2 1

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 42 / 64

Identity and inverse functions (cont’d)

Which of the following functions are invertible?

A function from the set {1, 2, 3, . . . , 999} to the
set {1, 2, 3, . . . , 999, 1000}.
No! (Pigeonhole principle: no such function is an surjection.)

The function q : {1, 2, 3, 4} → {♣,♦,♥,♠} defined by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣

Yes. q is a bijection. In fact its inverse is the function
q−1 : {♣,♦,♥,♠} → {1, 2, 3, 4} defined by

s ♣ ♦ ♥ ♠
q−1(s) 4 3 2 1

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 42 / 64

Identity and inverse functions (cont’d)

Which of the following functions are invertible?

A function from the set {1, 2, 3, . . . , 999} to the
set {1, 2, 3, . . . , 999, 1000}.
No! (Pigeonhole principle: no such function is an surjection.)

The function q : {1, 2, 3, 4} → {♣,♦,♥,♠} defined by

τ 1 2 3 4

q(τ) ♠ ♥ ♦ ♣
Yes. q is a bijection. In fact its inverse is the function
q−1 : {♣,♦,♥,♠} → {1, 2, 3, 4} defined by

s ♣ ♦ ♥ ♠
q−1(s) 4 3 2 1

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 42 / 64

Identity and inverse functions (cont’d)

Which of the following functions are invertible?

The function f : R→ R defined by

f (x) = x2 ∀ x ∈ R.

No. f is not a surjection, since (e.g.) there is no x ∈ R such
that f (x) = −1.

The function f : R→ R≥0 defined by

f (x) = x2 ∀ x ∈ R.

No. f is not an injection, since f (1) = 1 and f (−1) = 1.

The function f : R≥0 → R≥0 defined by

f (x) = x2 ∀ x ∈ R.

Yes! Its inverse is the function f −1 : R≥0 → R≥0 defined by

f −1(y) =
√
y ∀ y ∈ R≥0.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 43 / 64

Identity and inverse functions (cont’d)

Which of the following functions are invertible?

The function f : R→ R defined by

f (x) = x2 ∀ x ∈ R.

No. f is not a surjection, since (e.g.) there is no x ∈ R such
that f (x) = −1.

The function f : R→ R≥0 defined by

f (x) = x2 ∀ x ∈ R.

No. f is not an injection, since f (1) = 1 and f (−1) = 1.

The function f : R≥0 → R≥0 defined by

f (x) = x2 ∀ x ∈ R.

Yes! Its inverse is the function f −1 : R≥0 → R≥0 defined by

f −1(y) =
√
y ∀ y ∈ R≥0.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 43 / 64

Identity and inverse functions (cont’d)

Which of the following functions are invertible?

The function f : R→ R defined by

f (x) = x2 ∀ x ∈ R.

No. f is not a surjection, since (e.g.) there is no x ∈ R such
that f (x) = −1.

The function f : R→ R≥0 defined by

f (x) = x2 ∀ x ∈ R.

No. f is not an injection, since f (1) = 1 and f (−1) = 1.

The function f : R≥0 → R≥0 defined by

f (x) = x2 ∀ x ∈ R.

Yes! Its inverse is the function f −1 : R≥0 → R≥0 defined by

f −1(y) =
√
y ∀ y ∈ R≥0.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 43 / 64

Identity and inverse functions (cont’d)

Which of the following functions are invertible?

The function f : R→ R defined by

f (x) = x2 ∀ x ∈ R.

No. f is not a surjection, since (e.g.) there is no x ∈ R such
that f (x) = −1.

The function f : R→ R≥0 defined by

f (x) = x2 ∀ x ∈ R.

No. f is not an injection, since f (1) = 1 and f (−1) = 1.

The function f : R≥0 → R≥0 defined by

f (x) = x2 ∀ x ∈ R.

Yes! Its inverse is the function f −1 : R≥0 → R≥0 defined by

f −1(y) =
√
y ∀ y ∈ R≥0.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 43 / 64

Identity and inverse functions (cont’d)

Which of the following functions are invertible?

The function f : R→ R defined by

f (x) = x2 ∀ x ∈ R.

No. f is not a surjection, since (e.g.) there is no x ∈ R such
that f (x) = −1.

The function f : R→ R≥0 defined by

f (x) = x2 ∀ x ∈ R.

No. f is not an injection, since f (1) = 1 and f (−1) = 1.

The function f : R≥0 → R≥0 defined by

f (x) = x2 ∀ x ∈ R.

Yes! Its inverse is the function f −1 : R≥0 → R≥0 defined by

f −1(y) =
√
y ∀ y ∈ R≥0.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 43 / 64

Identity and inverse functions (cont’d)

Which of the following functions are invertible?

The function f : R→ R defined by

f (x) = x2 ∀ x ∈ R.

No. f is not a surjection, since (e.g.) there is no x ∈ R such
that f (x) = −1.

The function f : R→ R≥0 defined by

f (x) = x2 ∀ x ∈ R.

No. f is not an injection, since f (1) = 1 and f (−1) = 1.

The function f : R≥0 → R≥0 defined by

f (x) = x2 ∀ x ∈ R.

Yes! Its inverse is the function f −1 : R≥0 → R≥0 defined by

f −1(y) =
√
y ∀ y ∈ R≥0.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 43 / 64

Identity and inverse functions (cont’d)

One last example: Let g : R→ R be defined by

g(s) = 4s − 3 ∀ s ∈ R .

Let’s find an explicit formula for g−1 : R→ R.

By definition, we know that s = g−1(t) is equivalent to
t = g(s).

If we solve the equation

t = g(s) = 4s − 3

for s in terms of t, then s = g−1(t).

Using simple algebra, we have

t = 4s − 3 ⇐⇒ t + 3 = 4s ⇐⇒ s = 1
4(t + 3) .

Thus g−1 : R→ R is given by the rule

g−1(t) = 1
4(t + 3) ∀ t ∈ R .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 44 / 64

Identity and inverse functions (cont’d)

One last example: Let g : R→ R be defined by

g(s) = 4s − 3 ∀ s ∈ R .

Let’s find an explicit formula for g−1 : R→ R.

By definition, we know that s = g−1(t) is equivalent to
t = g(s).

If we solve the equation

t = g(s) = 4s − 3

for s in terms of t, then s = g−1(t).

Using simple algebra, we have

t = 4s − 3 ⇐⇒ t + 3 = 4s ⇐⇒ s = 1
4(t + 3) .

Thus g−1 : R→ R is given by the rule

g−1(t) = 1
4(t + 3) ∀ t ∈ R .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 44 / 64

Identity and inverse functions (cont’d)

One last example: Let g : R→ R be defined by

g(s) = 4s − 3 ∀ s ∈ R .

Let’s find an explicit formula for g−1 : R→ R.

By definition, we know that s = g−1(t) is equivalent to
t = g(s).

If we solve the equation

t = g(s) = 4s − 3

for s in terms of t, then s = g−1(t).

Using simple algebra, we have

t = 4s − 3

⇐⇒ t + 3 = 4s ⇐⇒ s = 1
4(t + 3) .

Thus g−1 : R→ R is given by the rule

g−1(t) = 1
4(t + 3) ∀ t ∈ R .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 44 / 64

Identity and inverse functions (cont’d)

One last example: Let g : R→ R be defined by

g(s) = 4s − 3 ∀ s ∈ R .

Let’s find an explicit formula for g−1 : R→ R.

By definition, we know that s = g−1(t) is equivalent to
t = g(s).

If we solve the equation

t = g(s) = 4s − 3

for s in terms of t, then s = g−1(t).

Using simple algebra, we have

t = 4s − 3 ⇐⇒ t + 3 = 4s

⇐⇒ s = 1
4(t + 3) .

Thus g−1 : R→ R is given by the rule

g−1(t) = 1
4(t + 3) ∀ t ∈ R .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 44 / 64

Identity and inverse functions (cont’d)

One last example: Let g : R→ R be defined by

g(s) = 4s − 3 ∀ s ∈ R .

Let’s find an explicit formula for g−1 : R→ R.

By definition, we know that s = g−1(t) is equivalent to
t = g(s).

If we solve the equation

t = g(s) = 4s − 3

for s in terms of t, then s = g−1(t).

Using simple algebra, we have

t = 4s − 3 ⇐⇒ t + 3 = 4s ⇐⇒ s = 1
4(t + 3) .

Thus g−1 : R→ R is given by the rule

g−1(t) = 1
4(t + 3) ∀ t ∈ R .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 44 / 64

Identity and inverse functions (cont’d)

One last example: Let g : R→ R be defined by

g(s) = 4s − 3 ∀ s ∈ R .

Let’s find an explicit formula for g−1 : R→ R.

By definition, we know that s = g−1(t) is equivalent to
t = g(s).

If we solve the equation

t = g(s) = 4s − 3

for s in terms of t, then s = g−1(t).

Using simple algebra, we have

t = 4s − 3 ⇐⇒ t + 3 = 4s ⇐⇒ s = 1
4(t + 3) .

Thus g−1 : R→ R is given by the rule

g−1(t) = 1
4(t + 3) ∀ t ∈ R .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 44 / 64

Identity and inverse functions (cont’d)

Suppose f : X → Y is invertible.
How to find f −1 : Y → X?

Recall that

x = f −1(y) if and only if y = f (x).

Follow these steps:

1 Write down the equation y = f (x) or (equivalently) f (x) = y .
2 Solve the equation f (x) = y for x in terms of y , checking that

there must be exactly one solution that gives x in terms of y ,
and
for any y ∈ Y , the resulting x value must be an element of X .

You’ll now have something of the form

x = some expression involving y .

This expression on the right-hand side is precisely f −1(y).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 45 / 64

Identity and inverse functions (cont’d)

Suppose f : X → Y is invertible.
How to find f −1 : Y → X?
Recall that

x = f −1(y) if and only if y = f (x).

Follow these steps:

1 Write down the equation y = f (x) or (equivalently) f (x) = y .
2 Solve the equation f (x) = y for x in terms of y , checking that

there must be exactly one solution that gives x in terms of y ,
and
for any y ∈ Y , the resulting x value must be an element of X .

You’ll now have something of the form

x = some expression involving y .

This expression on the right-hand side is precisely f −1(y).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 45 / 64

Identity and inverse functions (cont’d)

Suppose f : X → Y is invertible.
How to find f −1 : Y → X?
Recall that

x = f −1(y) if and only if y = f (x).

Follow these steps:

1 Write down the equation y = f (x) or (equivalently) f (x) = y .

2 Solve the equation f (x) = y for x in terms of y , checking that

there must be exactly one solution that gives x in terms of y ,
and
for any y ∈ Y , the resulting x value must be an element of X .

You’ll now have something of the form

x = some expression involving y .

This expression on the right-hand side is precisely f −1(y).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 45 / 64

Identity and inverse functions (cont’d)

Suppose f : X → Y is invertible.
How to find f −1 : Y → X?
Recall that

x = f −1(y) if and only if y = f (x).

Follow these steps:

1 Write down the equation y = f (x) or (equivalently) f (x) = y .
2 Solve the equation f (x) = y for x in terms of y , checking that

there must be exactly one solution that gives x in terms of y ,
and
for any y ∈ Y , the resulting x value must be an element of X .

You’ll now have something of the form

x = some expression involving y .

This expression on the right-hand side is precisely f −1(y).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 45 / 64

Identity and inverse functions (cont’d)

Suppose f : X → Y is invertible.
How to find f −1 : Y → X?
Recall that

x = f −1(y) if and only if y = f (x).

Follow these steps:

1 Write down the equation y = f (x) or (equivalently) f (x) = y .
2 Solve the equation f (x) = y for x in terms of y , checking that

there must be exactly one solution that gives x in terms of y ,
and
for any y ∈ Y , the resulting x value must be an element of X .

You’ll now have something of the form

x = some expression involving y .

This expression on the right-hand side is precisely f −1(y).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 45 / 64

Identity and inverse functions (cont’d)

Suppose f : X → Y is invertible.
How to find f −1 : Y → X?
Recall that

x = f −1(y) if and only if y = f (x).

Follow these steps:

1 Write down the equation y = f (x) or (equivalently) f (x) = y .
2 Solve the equation f (x) = y for x in terms of y , checking that

there must be exactly one solution that gives x in terms of y ,
and
for any y ∈ Y , the resulting x value must be an element of X .

You’ll now have something of the form

x = some expression involving y .

This expression on the right-hand side is precisely f −1(y).
Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 45 / 64

Inverse of composite functions

Fact: Let f : A→ B and g : B → C be invertible functions. Then
g ◦ f : A→ C is invertible, with

(g ◦ f)−1 = f −1 ◦ g−1.

Why? We need to show that

(f −1 ◦g−1)◦ (g ◦ f) = idA and (g ◦ f)◦ (f −1 ◦g−1) = idC .

But

(f −1◦g−1)◦(g◦f) = f −1◦(g−1◦g)◦f = f −1◦idB ◦f = f −1◦f = idA

and

(g◦f)◦(f −1◦g−1) = g◦(f ◦f −1)◦g−1 = g◦idB ◦g−1 = g◦g−1 = idC .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 46 / 64

Inverse of composite functions

Fact: Let f : A→ B and g : B → C be invertible functions. Then
g ◦ f : A→ C is invertible, with

(g ◦ f)−1 = f −1 ◦ g−1.

Why? We need to show that

(f −1 ◦g−1)◦ (g ◦ f) = idA and (g ◦ f)◦ (f −1 ◦g−1) = idC .

But

(f −1◦g−1)◦(g◦f) = f −1◦(g−1◦g)◦f = f −1◦idB ◦f = f −1◦f = idA

and

(g◦f)◦(f −1◦g−1) = g◦(f ◦f −1)◦g−1 = g◦idB ◦g−1 = g◦g−1 = idC .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 46 / 64

Inverse of composite functions

Fact: Let f : A→ B and g : B → C be invertible functions. Then
g ◦ f : A→ C is invertible, with

(g ◦ f)−1 = f −1 ◦ g−1.

Why? We need to show that

(f −1 ◦g−1)◦ (g ◦ f) = idA and (g ◦ f)◦ (f −1 ◦g−1) = idC .

But

(f −1◦g−1)◦(g◦f)

= f −1◦(g−1◦g)◦f = f −1◦idB ◦f = f −1◦f = idA

and

(g◦f)◦(f −1◦g−1) = g◦(f ◦f −1)◦g−1 = g◦idB ◦g−1 = g◦g−1 = idC .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 46 / 64

Inverse of composite functions

Fact: Let f : A→ B and g : B → C be invertible functions. Then
g ◦ f : A→ C is invertible, with

(g ◦ f)−1 = f −1 ◦ g−1.

Why? We need to show that

(f −1 ◦g−1)◦ (g ◦ f) = idA and (g ◦ f)◦ (f −1 ◦g−1) = idC .

But

(f −1◦g−1)◦(g◦f) = f −1◦(g−1◦g)◦f

= f −1◦idB ◦f = f −1◦f = idA

and

(g◦f)◦(f −1◦g−1) = g◦(f ◦f −1)◦g−1 = g◦idB ◦g−1 = g◦g−1 = idC .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 46 / 64

Inverse of composite functions

Fact: Let f : A→ B and g : B → C be invertible functions. Then
g ◦ f : A→ C is invertible, with

(g ◦ f)−1 = f −1 ◦ g−1.

Why? We need to show that

(f −1 ◦g−1)◦ (g ◦ f) = idA and (g ◦ f)◦ (f −1 ◦g−1) = idC .

But

(f −1◦g−1)◦(g◦f) = f −1◦(g−1◦g)◦f = f −1◦idB ◦f

= f −1◦f = idA

and

(g◦f)◦(f −1◦g−1) = g◦(f ◦f −1)◦g−1 = g◦idB ◦g−1 = g◦g−1 = idC .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 46 / 64

Inverse of composite functions

Fact: Let f : A→ B and g : B → C be invertible functions. Then
g ◦ f : A→ C is invertible, with

(g ◦ f)−1 = f −1 ◦ g−1.

Why? We need to show that

(f −1 ◦g−1)◦ (g ◦ f) = idA and (g ◦ f)◦ (f −1 ◦g−1) = idC .

But

(f −1◦g−1)◦(g◦f) = f −1◦(g−1◦g)◦f = f −1◦idB ◦f = f −1◦f

= idA

and

(g◦f)◦(f −1◦g−1) = g◦(f ◦f −1)◦g−1 = g◦idB ◦g−1 = g◦g−1 = idC .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 46 / 64

Inverse of composite functions

Fact: Let f : A→ B and g : B → C be invertible functions. Then
g ◦ f : A→ C is invertible, with

(g ◦ f)−1 = f −1 ◦ g−1.

Why? We need to show that

(f −1 ◦g−1)◦ (g ◦ f) = idA and (g ◦ f)◦ (f −1 ◦g−1) = idC .

But

(f −1◦g−1)◦(g◦f) = f −1◦(g−1◦g)◦f = f −1◦idB ◦f = f −1◦f = idA

and

(g◦f)◦(f −1◦g−1) = g◦(f ◦f −1)◦g−1 = g◦idB ◦g−1 = g◦g−1 = idC .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 46 / 64

Inverse of composite functions

Fact: Let f : A→ B and g : B → C be invertible functions. Then
g ◦ f : A→ C is invertible, with

(g ◦ f)−1 = f −1 ◦ g−1.

Why? We need to show that

(f −1 ◦g−1)◦ (g ◦ f) = idA and (g ◦ f)◦ (f −1 ◦g−1) = idC .

But

(f −1◦g−1)◦(g◦f) = f −1◦(g−1◦g)◦f = f −1◦idB ◦f = f −1◦f = idA

and

(g◦f)◦(f −1◦g−1)

= g◦(f ◦f −1)◦g−1 = g◦idB ◦g−1 = g◦g−1 = idC .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 46 / 64

Inverse of composite functions

Fact: Let f : A→ B and g : B → C be invertible functions. Then
g ◦ f : A→ C is invertible, with

(g ◦ f)−1 = f −1 ◦ g−1.

Why? We need to show that

(f −1 ◦g−1)◦ (g ◦ f) = idA and (g ◦ f)◦ (f −1 ◦g−1) = idC .

But

(f −1◦g−1)◦(g◦f) = f −1◦(g−1◦g)◦f = f −1◦idB ◦f = f −1◦f = idA

and

(g◦f)◦(f −1◦g−1) = g◦(f ◦f −1)◦g−1

= g◦idB ◦g−1 = g◦g−1 = idC .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 46 / 64

Inverse of composite functions

Fact: Let f : A→ B and g : B → C be invertible functions. Then
g ◦ f : A→ C is invertible, with

(g ◦ f)−1 = f −1 ◦ g−1.

Why? We need to show that

(f −1 ◦g−1)◦ (g ◦ f) = idA and (g ◦ f)◦ (f −1 ◦g−1) = idC .

But

(f −1◦g−1)◦(g◦f) = f −1◦(g−1◦g)◦f = f −1◦idB ◦f = f −1◦f = idA

and

(g◦f)◦(f −1◦g−1) = g◦(f ◦f −1)◦g−1 = g◦idB ◦g−1

= g◦g−1 = idC .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 46 / 64

Inverse of composite functions

Fact: Let f : A→ B and g : B → C be invertible functions. Then
g ◦ f : A→ C is invertible, with

(g ◦ f)−1 = f −1 ◦ g−1.

Why? We need to show that

(f −1 ◦g−1)◦ (g ◦ f) = idA and (g ◦ f)◦ (f −1 ◦g−1) = idC .

But

(f −1◦g−1)◦(g◦f) = f −1◦(g−1◦g)◦f = f −1◦idB ◦f = f −1◦f = idA

and

(g◦f)◦(f −1◦g−1) = g◦(f ◦f −1)◦g−1 = g◦idB ◦g−1 = g◦g−1

= idC .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 46 / 64

Inverse of composite functions

Fact: Let f : A→ B and g : B → C be invertible functions. Then
g ◦ f : A→ C is invertible, with

(g ◦ f)−1 = f −1 ◦ g−1.

Why? We need to show that

(f −1 ◦g−1)◦ (g ◦ f) = idA and (g ◦ f)◦ (f −1 ◦g−1) = idC .

But

(f −1◦g−1)◦(g◦f) = f −1◦(g−1◦g)◦f = f −1◦idB ◦f = f −1◦f = idA

and

(g◦f)◦(f −1◦g−1) = g◦(f ◦f −1)◦g−1 = g◦idB ◦g−1 = g◦g−1 = idC .

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 46 / 64

Inverse of composite functions (cont’d)

Example: Define f , g : R→ R by

f (x) = 2x + 7 and g(x) = x3 − 8 ∀ x ∈ R.

You may (should?) check that f and g are both invertible, with

f −1(y) = 1
2(y − 7) and g−1(y) = 3

√
y + 8 ∀ y ∈ R.

Thus g ◦ f : R→ R is invertible, with

(g ◦ f)−1(y) = (f −1 ◦ g−1)(y) = f −1
(
g−1(y)

)
= f −1(3

√
y + 8) = 1

2(3
√

y + 8− 7)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 47 / 64

Inverse of composite functions (cont’d)

Example: Define f , g : R→ R by

f (x) = 2x + 7 and g(x) = x3 − 8 ∀ x ∈ R.

You may (should?) check that f and g are both invertible, with

f −1(y) = 1
2(y − 7) and g−1(y) = 3

√
y + 8 ∀ y ∈ R.

Thus g ◦ f : R→ R is invertible, with

(g ◦ f)−1(y) = (f −1 ◦ g−1)(y) = f −1
(
g−1(y)

)
= f −1(3

√
y + 8) = 1

2(3
√

y + 8− 7)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 47 / 64

Inverse of composite functions (cont’d)

Example: Define f , g : R→ R by

f (x) = 2x + 7 and g(x) = x3 − 8 ∀ x ∈ R.

You may (should?) check that f and g are both invertible, with

f −1(y) = 1
2(y − 7) and g−1(y) = 3

√
y + 8 ∀ y ∈ R.

Thus g ◦ f : R→ R is invertible, with

(g ◦ f)−1(y) = (f −1 ◦ g−1)(y) = f −1
(
g−1(y)

)

= f −1(3
√
y + 8) = 1

2(3
√

y + 8− 7)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 47 / 64

Inverse of composite functions (cont’d)

Example: Define f , g : R→ R by

f (x) = 2x + 7 and g(x) = x3 − 8 ∀ x ∈ R.

You may (should?) check that f and g are both invertible, with

f −1(y) = 1
2(y − 7) and g−1(y) = 3

√
y + 8 ∀ y ∈ R.

Thus g ◦ f : R→ R is invertible, with

(g ◦ f)−1(y) = (f −1 ◦ g−1)(y) = f −1
(
g−1(y)

)
= f −1(3

√
y + 8)

= 1
2(3
√

y + 8− 7)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 47 / 64

Inverse of composite functions (cont’d)

Example: Define f , g : R→ R by

f (x) = 2x + 7 and g(x) = x3 − 8 ∀ x ∈ R.

You may (should?) check that f and g are both invertible, with

f −1(y) = 1
2(y − 7) and g−1(y) = 3

√
y + 8 ∀ y ∈ R.

Thus g ◦ f : R→ R is invertible, with

(g ◦ f)−1(y) = (f −1 ◦ g−1)(y) = f −1
(
g−1(y)

)
= f −1(3

√
y + 8) = 1

2(3
√
y + 8− 7)

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 47 / 64

Inverse of composite functions (cont’d)

This extends to compositions of any number of functions, e.g.,

(f ◦ g ◦ h)−1 = h−1 ◦ g−1 ◦ f −1.

To undo a sequence of steps, undo all the steps, but in reverse
order.

Useful in Alice, Part III (unmelting the snow woman).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 48 / 64

Inverse of composite functions (cont’d)

This extends to compositions of any number of functions, e.g.,

(f ◦ g ◦ h)−1 = h−1 ◦ g−1 ◦ f −1.

To undo a sequence of steps, undo all the steps, but in reverse
order.

Useful in Alice, Part III (unmelting the snow woman).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 48 / 64

Inverse of composite functions (cont’d)

This extends to compositions of any number of functions, e.g.,

(f ◦ g ◦ h)−1 = h−1 ◦ g−1 ◦ f −1.

To undo a sequence of steps, undo all the steps, but in reverse
order.

Useful in Alice, Part III (unmelting the snow woman).

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 48 / 64

An example: cryptography

Consider the following scenarios:

When you purchase an item from an e-business, you submit
(among other things) a credit card number.
If this information is intercepted when it is transmitted to the
online store, you are a prime candidate for identity theft.

A military officer needs to send battle plans to his troops.
If the plans are intercepted and the enemy reads the plans,
the battle (and perhaps the war) will be lost.

These are problems in computational cryptography, which deals
with the problem of hiding information from people who shouldn’t
see it.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 49 / 64

An example: cryptography

Consider the following scenarios:

When you purchase an item from an e-business, you submit
(among other things) a credit card number.
If this information is intercepted when it is transmitted to the
online store, you are a prime candidate for identity theft.

A military officer needs to send battle plans to his troops.
If the plans are intercepted and the enemy reads the plans,
the battle (and perhaps the war) will be lost.

These are problems in computational cryptography, which deals
with the problem of hiding information from people who shouldn’t
see it.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 49 / 64

An example: cryptography

Consider the following scenarios:

When you purchase an item from an e-business, you submit
(among other things) a credit card number.
If this information is intercepted when it is transmitted to the
online store, you are a prime candidate for identity theft.

A military officer needs to send battle plans to his troops.
If the plans are intercepted and the enemy reads the plans,
the battle (and perhaps the war) will be lost.

These are problems in computational cryptography, which deals
with the problem of hiding information from people who shouldn’t
see it.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 49 / 64

An example: cryptography (cont’d)

Julius Caesar needed to securely send military messages to his
troops. Given the original cleartext, he created a ciphertext by
replacing each letter by the one that comes three positions later in
alphabetical order (Caesar rotation). This defines a encoding
function e : {A, B, . . . , Z} → {A, B, . . . , Z}, defined by the table

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

e(x) D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Corresponding decoding function d : {A, B, . . . , Z} → {A, B, . . . , Z}
is the inverse of the encoding function:

e
(
d(x)

)
= x and d

(
e(x)

)
= x

for any x ∈ {A, B, . . . , Z}. More succinctly,

e ◦ d = id{A,B,...,Z} = d ◦ e.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 50 / 64

An example: cryptography (cont’d)

Julius Caesar needed to securely send military messages to his
troops. Given the original cleartext, he created a ciphertext by
replacing each letter by the one that comes three positions later in
alphabetical order (Caesar rotation). This defines a encoding
function e : {A, B, . . . , Z} → {A, B, . . . , Z}, defined by the table

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

e(x) D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Corresponding decoding function d : {A, B, . . . , Z} → {A, B, . . . , Z}
is the inverse of the encoding function:

e
(
d(x)

)
= x and d

(
e(x)

)
= x

for any x ∈ {A, B, . . . , Z}. More succinctly,

e ◦ d = id{A,B,...,Z} = d ◦ e.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 50 / 64

An example: cryptography (cont’d)

For Caesar rotation e : {A, B, . . . , Z} → {A, B, . . . , Z}

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

e(x) D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

decoding function d : {A, B, . . . , Z} → {A, B, . . . , Z} is

y A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

d(y) X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

(“swap the rows”).
For example, ATTACK AT NOON encodes as DWWDFN DW QRRQ.

If an enemy were to see this message and if he didn’t know
the secret, he’d simply dismiss it as gibberish.

But Caesar’s forces (who had already been told what the
encoding and decoding methods were), would be able to
decode it!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 51 / 64

An example: cryptography (cont’d)

For Caesar rotation e : {A, B, . . . , Z} → {A, B, . . . , Z}

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

e(x) D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

decoding function d : {A, B, . . . , Z} → {A, B, . . . , Z} is

y A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

d(y) X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

(“swap the rows”).
For example, ATTACK AT NOON encodes as DWWDFN DW QRRQ.

If an enemy were to see this message and if he didn’t know
the secret, he’d simply dismiss it as gibberish.

But Caesar’s forces (who had already been told what the
encoding and decoding methods were), would be able to
decode it!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 51 / 64

An example: cryptography (cont’d)

For Caesar rotation e : {A, B, . . . , Z} → {A, B, . . . , Z}

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

e(x) D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

decoding function d : {A, B, . . . , Z} → {A, B, . . . , Z} is

y A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

d(y) X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

(“swap the rows”).

For example, ATTACK AT NOON encodes as DWWDFN DW QRRQ.

If an enemy were to see this message and if he didn’t know
the secret, he’d simply dismiss it as gibberish.

But Caesar’s forces (who had already been told what the
encoding and decoding methods were), would be able to
decode it!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 51 / 64

An example: cryptography (cont’d)

For Caesar rotation e : {A, B, . . . , Z} → {A, B, . . . , Z}

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

e(x) D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

decoding function d : {A, B, . . . , Z} → {A, B, . . . , Z} is

y A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

d(y) X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

(“swap the rows”).
For example, ATTACK AT NOON encodes as

DWWDFN DW QRRQ.

If an enemy were to see this message and if he didn’t know
the secret, he’d simply dismiss it as gibberish.

But Caesar’s forces (who had already been told what the
encoding and decoding methods were), would be able to
decode it!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 51 / 64

An example: cryptography (cont’d)

For Caesar rotation e : {A, B, . . . , Z} → {A, B, . . . , Z}

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

e(x) D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

decoding function d : {A, B, . . . , Z} → {A, B, . . . , Z} is

y A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

d(y) X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

(“swap the rows”).
For example, ATTACK AT NOON encodes as DWWDFN DW QRRQ.

If an enemy were to see this message and if he didn’t know
the secret, he’d simply dismiss it as gibberish.

But Caesar’s forces (who had already been told what the
encoding and decoding methods were), would be able to
decode it!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 51 / 64

An example: cryptography (cont’d)

For Caesar rotation e : {A, B, . . . , Z} → {A, B, . . . , Z}

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

e(x) D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

decoding function d : {A, B, . . . , Z} → {A, B, . . . , Z} is

y A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

d(y) X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

(“swap the rows”).
For example, ATTACK AT NOON encodes as DWWDFN DW QRRQ.

If an enemy were to see this message and if he didn’t know
the secret, he’d simply dismiss it as gibberish.

But Caesar’s forces (who had already been told what the
encoding and decoding methods were), would be able to
decode it!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 51 / 64

An example: cryptography (cont’d)

For Caesar rotation e : {A, B, . . . , Z} → {A, B, . . . , Z}

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

e(x) D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

decoding function d : {A, B, . . . , Z} → {A, B, . . . , Z} is

y A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

d(y) X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

(“swap the rows”).
For example, ATTACK AT NOON encodes as DWWDFN DW QRRQ.

If an enemy were to see this message and if he didn’t know
the secret, he’d simply dismiss it as gibberish.

But Caesar’s forces (who had already been told what the
encoding and decoding methods were), would be able to
decode it!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 51 / 64

An example: cryptography (cont’d)

What about setting up e-commerce website?

Sensitive information can be snooped if sent in plaintext.
Must encrypt!

Let Cplain be the set of plaintext credit card numbers and
Ccipher be the set of ciphertext credit card numbers.

We want an encoding function Enc: Cplain → Ccipher and a
decoding function Dec: Ccipher → Cplain, which is the inverse
of Enc

Security? Even if the details of computing Enc were to leak
out, it must be hard for a Bad Guy to compute Dec.

Can we do this?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 52 / 64

An example: cryptography (cont’d)

What about setting up e-commerce website?

Sensitive information can be snooped if sent in plaintext.
Must encrypt!

Let Cplain be the set of plaintext credit card numbers and
Ccipher be the set of ciphertext credit card numbers.

We want an encoding function Enc: Cplain → Ccipher and a
decoding function Dec: Ccipher → Cplain, which is the inverse
of Enc

Security? Even if the details of computing Enc were to leak
out, it must be hard for a Bad Guy to compute Dec.

Can we do this?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 52 / 64

An example: cryptography (cont’d)

What about setting up e-commerce website?

Sensitive information can be snooped if sent in plaintext.
Must encrypt!

Let Cplain be the set of plaintext credit card numbers and
Ccipher be the set of ciphertext credit card numbers.

We want an encoding function Enc: Cplain → Ccipher and a
decoding function Dec: Ccipher → Cplain, which is the inverse
of Enc

Security? Even if the details of computing Enc were to leak
out, it must be hard for a Bad Guy to compute Dec.

Can we do this?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 52 / 64

An example: cryptography (cont’d)

What about setting up e-commerce website?

Sensitive information can be snooped if sent in plaintext.
Must encrypt!

Let Cplain be the set of plaintext credit card numbers and
Ccipher be the set of ciphertext credit card numbers.

We want an encoding function Enc: Cplain → Ccipher and a
decoding function Dec: Ccipher → Cplain, which is the inverse
of Enc

Security? Even if the details of computing Enc were to leak
out, it must be hard for a Bad Guy to compute Dec.

Can we do this?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 52 / 64

An example: cryptography (cont’d)

What about setting up e-commerce website?

Sensitive information can be snooped if sent in plaintext.
Must encrypt!

Let Cplain be the set of plaintext credit card numbers and
Ccipher be the set of ciphertext credit card numbers.

We want an encoding function Enc: Cplain → Ccipher and a
decoding function Dec: Ccipher → Cplain, which is the inverse
of Enc

Security? Even if the details of computing Enc were to leak
out, it must be hard for a Bad Guy to compute Dec.

Can we do this?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 52 / 64

An example: cryptography (cont’d)

What about setting up e-commerce website?

Sensitive information can be snooped if sent in plaintext.
Must encrypt!

Let Cplain be the set of plaintext credit card numbers and
Ccipher be the set of ciphertext credit card numbers.

We want an encoding function Enc: Cplain → Ccipher and a
decoding function Dec: Ccipher → Cplain, which is the inverse
of Enc

Security? Even if the details of computing Enc were to leak
out, it must be hard for a Bad Guy to compute Dec.

Can we do this?

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 52 / 64

An example: cryptography (cont’d)

Good news: we know how to build an (Enc,Dec) pair that we
believe is reasonably secure.

Based on simple idea:

Multiplication and factorization are (more-or-less) inverse
operations.
We know how to quickly multiply two large (e.g., 100-digit)
numbers. Can multiply two n-digit numbers in time
proportional to n2.
Nobody knows how to quickly factor a large (e.g., 200-digit)
number. All known algorithms require time that’s exponential
in the number of digits.

No “security through obscurity”!

�

This does not mean that these techniques are provably
secure!

Nobody knows how to do fast factorization.
Nobody has ever proved that fast factorization is impossible!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 53 / 64

An example: cryptography (cont’d)

Good news: we know how to build an (Enc,Dec) pair that we
believe is reasonably secure.

Based on simple idea:

Multiplication and factorization are (more-or-less) inverse
operations.

We know how to quickly multiply two large (e.g., 100-digit)
numbers. Can multiply two n-digit numbers in time
proportional to n2.
Nobody knows how to quickly factor a large (e.g., 200-digit)
number. All known algorithms require time that’s exponential
in the number of digits.

No “security through obscurity”!

�

This does not mean that these techniques are provably
secure!

Nobody knows how to do fast factorization.
Nobody has ever proved that fast factorization is impossible!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 53 / 64

An example: cryptography (cont’d)

Good news: we know how to build an (Enc,Dec) pair that we
believe is reasonably secure.

Based on simple idea:

Multiplication and factorization are (more-or-less) inverse
operations.
We know how to quickly multiply two large (e.g., 100-digit)
numbers. Can multiply two n-digit numbers in time
proportional to n2.

Nobody knows how to quickly factor a large (e.g., 200-digit)
number. All known algorithms require time that’s exponential
in the number of digits.

No “security through obscurity”!

�

This does not mean that these techniques are provably
secure!

Nobody knows how to do fast factorization.
Nobody has ever proved that fast factorization is impossible!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 53 / 64

An example: cryptography (cont’d)

Good news: we know how to build an (Enc,Dec) pair that we
believe is reasonably secure.

Based on simple idea:

Multiplication and factorization are (more-or-less) inverse
operations.
We know how to quickly multiply two large (e.g., 100-digit)
numbers. Can multiply two n-digit numbers in time
proportional to n2.
Nobody knows how to quickly factor a large (e.g., 200-digit)
number. All known algorithms require time that’s exponential
in the number of digits.

No “security through obscurity”!

�

This does not mean that these techniques are provably
secure!

Nobody knows how to do fast factorization.
Nobody has ever proved that fast factorization is impossible!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 53 / 64

An example: cryptography (cont’d)

Good news: we know how to build an (Enc,Dec) pair that we
believe is reasonably secure.

Based on simple idea:

Multiplication and factorization are (more-or-less) inverse
operations.
We know how to quickly multiply two large (e.g., 100-digit)
numbers. Can multiply two n-digit numbers in time
proportional to n2.
Nobody knows how to quickly factor a large (e.g., 200-digit)
number. All known algorithms require time that’s exponential
in the number of digits.

No “security through obscurity”!

�

This does not mean that these techniques are provably
secure!

Nobody knows how to do fast factorization.
Nobody has ever proved that fast factorization is impossible!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 53 / 64

An example: cryptography (cont’d)

Good news: we know how to build an (Enc,Dec) pair that we
believe is reasonably secure.

Based on simple idea:

Multiplication and factorization are (more-or-less) inverse
operations.
We know how to quickly multiply two large (e.g., 100-digit)
numbers. Can multiply two n-digit numbers in time
proportional to n2.
Nobody knows how to quickly factor a large (e.g., 200-digit)
number. All known algorithms require time that’s exponential
in the number of digits.

No “security through obscurity”!

�

This does not mean that these techniques are provably
secure!

Nobody knows how to do fast factorization.
Nobody has ever proved that fast factorization is impossible!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 53 / 64

More about functions

Where else do functions crop up in computer science?

Standard mathematical functions Here’s a partial list of
functions you may have encountered:

math name unix name description√
sqrt square root

sin sin trigonometric sine
cos cos trigonometric cosine
tan tan trigonometric tangent

sin−1 asin trigonometric arc (inverse) sine
cos−1 acos trigonometric arc cosine
tan−1 atan trigonometric arc tangent

exp exp exponential function
ln log natural logarithm
| · | fabs absolute value

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 54 / 64

More about functions (cont’d)

Standard mathematical functions (cont’d) You may be less
familiar with the following:

The max function. If x and y are numbers, then max(x , y) is
the maximum of x and y . For example, max(2.3,−4.2) = 2.3.

The min function. If x and y are numbers, then min(x , y) is
the minimum of x and y . For example,
min(2.3,−4.2) = −4.2.

The ceiling function. If x is a number, then dxe is the
smallest integer that is greater than or equal to x . For
example, d4.001e = 5.

The floor function. If x is a number, then bxc is the largest
integer that is less than or equal to x . For example,
b4.999c = 4.

The names of these functions, as found in the unix standard
library, are fmax, fmin, ceil, and floor.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 55 / 64

More about functions (cont’d)

Standard mathematical functions (cont’d) You may be less
familiar with the following:

The max function. If x and y are numbers, then max(x , y) is
the maximum of x and y . For example, max(2.3,−4.2) = 2.3.

The min function. If x and y are numbers, then min(x , y) is
the minimum of x and y . For example,
min(2.3,−4.2) = −4.2.

The ceiling function. If x is a number, then dxe is the
smallest integer that is greater than or equal to x . For
example, d4.001e = 5.

The floor function. If x is a number, then bxc is the largest
integer that is less than or equal to x . For example,
b4.999c = 4.

The names of these functions, as found in the unix standard
library, are fmax, fmin, ceil, and floor.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 55 / 64

More about functions (cont’d)

Standard mathematical functions (cont’d) You may be less
familiar with the following:

The max function. If x and y are numbers, then max(x , y) is
the maximum of x and y . For example, max(2.3,−4.2) = 2.3.

The min function. If x and y are numbers, then min(x , y) is
the minimum of x and y . For example,
min(2.3,−4.2) = −4.2.

The ceiling function. If x is a number, then dxe is the
smallest integer that is greater than or equal to x . For
example, d4.001e = 5.

The floor function. If x is a number, then bxc is the largest
integer that is less than or equal to x . For example,
b4.999c = 4.

The names of these functions, as found in the unix standard
library, are fmax, fmin, ceil, and floor.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 55 / 64

More about functions (cont’d)

Standard mathematical functions (cont’d) You may be less
familiar with the following:

The max function. If x and y are numbers, then max(x , y) is
the maximum of x and y . For example, max(2.3,−4.2) = 2.3.

The min function. If x and y are numbers, then min(x , y) is
the minimum of x and y . For example,
min(2.3,−4.2) = −4.2.

The ceiling function. If x is a number, then dxe is the
smallest integer that is greater than or equal to x . For
example, d4.001e = 5.

The floor function. If x is a number, then bxc is the largest
integer that is less than or equal to x . For example,
b4.999c = 4.

The names of these functions, as found in the unix standard
library, are fmax, fmin, ceil, and floor.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 55 / 64

More about functions (cont’d)

Standard mathematical functions (cont’d) You may be less
familiar with the following:

The max function. If x and y are numbers, then max(x , y) is
the maximum of x and y . For example, max(2.3,−4.2) = 2.3.

The min function. If x and y are numbers, then min(x , y) is
the minimum of x and y . For example,
min(2.3,−4.2) = −4.2.

The ceiling function. If x is a number, then dxe is the
smallest integer that is greater than or equal to x . For
example, d4.001e = 5.

The floor function. If x is a number, then bxc is the largest
integer that is less than or equal to x . For example,
b4.999c = 4.

The names of these functions, as found in the unix standard
library, are fmax, fmin, ceil, and floor.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 55 / 64

More about functions (cont’d)

Growth functions: Used to measure efficiency of algorithms.
Typically a function f : Z→ Z, with

f (n) = cost of using algorithm to solve problem with input size n

Here are some standard growth functions:

function name

log n logarithmic
n linear

n log n (no commonly-accepted name)
n2 quadratic
n3 cubic
2n exponential
n! factorial

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 56 / 64

More about functions (cont’d)

Growth functions: Used to measure efficiency of algorithms.
Typically a function f : Z→ Z, with

f (n) = cost of using algorithm to solve problem with input size n

Here are some standard growth functions:

function name

log n logarithmic
n linear

n log n (no commonly-accepted name)
n2 quadratic
n3 cubic
2n exponential
n! factorial

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 56 / 64

More about functions (cont’d)

Growth functions (cont’d):
Let’s do some graphing.

4 6 8 10
x

500

1000

1500

2000

y

y = x2 y = x3 y = x4

10 15 20
x

50 000

100 000

150 000

200 000

y

y = x4 y = 2x

Breakpoint (between tractable and intractable problems):
polynomial vs. exponential

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 57 / 64

More about functions (cont’d)

Growth functions (cont’d):
Let’s do some graphing.

4 6 8 10
x

500

1000

1500

2000

y

y = x2 y = x3 y = x4

10 15 20
x

50 000

100 000

150 000

200 000

y

y = x4 y = 2x

Breakpoint (between tractable and intractable problems):
polynomial vs. exponential

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 57 / 64

More about functions (cont’d)

Growth functions (cont’d):
Let’s do some graphing.

4 6 8 10
x

500

1000

1500

2000

y

y = x2 y = x3 y = x4

10 15 20
x

50 000

100 000

150 000

200 000

y

y = x4 y = 2x

Breakpoint (between tractable and intractable problems):
polynomial vs. exponential

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 57 / 64

More about functions (cont’d)

Functions in program construction
Functions are ubiquitous in the design and implementation of
computer programs. For starters, functions are the main building
block for many computer programming languages. For instance,
every executable C or C++ program will have a function named
main, which is the starting point for program execution.

An example in C++:

#include <iostream>

int main()

{

std::cout << "Hello, world!\n";

}

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 58 / 64

More about functions (cont’d)

Functions in program construction
Functions are ubiquitous in the design and implementation of
computer programs. For starters, functions are the main building
block for many computer programming languages. For instance,
every executable C or C++ program will have a function named
main, which is the starting point for program execution.

An example in C++:

#include <iostream>

int main()

{

std::cout << "Hello, world!\n";

}

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 58 / 64

More about functions (cont’d)

Functions in program construction (cont’d):
Look at the following:

int main()

{

do_initialization();

do {

data = get_input_data();

result = process_data(data);

put_result(result);

still_working = more_to_process();

} while (still_working);

do_cleanup();

}

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 59 / 64

More about functions (cont’d)

Functions in program construction (cont’d): This particular
main function involves other functions. Note the following points:

This is a syntactically correct C++ (or C) main function.

This could be the main function for almost any text-based
task.

main involves other functions. These can be written by other
programmers. In fact, they themselves can involve
(sub)functions, and so on. Can use this “functional
decomposition” to split the work amongst a team of
programmers.

At each stage, we have a working system (without all the
features).

When functions are fully fleshed out, we have a complete
working system.

This approach can make testing a lot easier.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 60 / 64

An application: secure storage of passwords

unix uses an encryption scheme to store passwords.

Key ingredient: An encryption function f : S → S , where S is
the set of all possible character strings.

Properties of f ?

f must be an injection.
f must be easy to compute.
f : S → Range(S) must be hard to invert. That is, given an
encrypted password e, computing the plaintext
password f −1(e) must be prohibitively expensive.

System stores each user’s encrypted password in a
world-readable file.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 61 / 64

An application: secure storage of passwords

unix uses an encryption scheme to store passwords.

Key ingredient: An encryption function f : S → S , where S is
the set of all possible character strings.

Properties of f ?

f must be an injection.
f must be easy to compute.
f : S → Range(S) must be hard to invert. That is, given an
encrypted password e, computing the plaintext
password f −1(e) must be prohibitively expensive.

System stores each user’s encrypted password in a
world-readable file.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 61 / 64

An application: secure storage of passwords

unix uses an encryption scheme to store passwords.

Key ingredient: An encryption function f : S → S , where S is
the set of all possible character strings.

Properties of f ?

f must be an injection.
f must be easy to compute.
f : S → Range(S) must be hard to invert. That is, given an
encrypted password e, computing the plaintext
password f −1(e) must be prohibitively expensive.

System stores each user’s encrypted password in a
world-readable file.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 61 / 64

An application: secure storage of passwords

unix uses an encryption scheme to store passwords.

Key ingredient: An encryption function f : S → S , where S is
the set of all possible character strings.

Properties of f ?

f must be an injection.

f must be easy to compute.
f : S → Range(S) must be hard to invert. That is, given an
encrypted password e, computing the plaintext
password f −1(e) must be prohibitively expensive.

System stores each user’s encrypted password in a
world-readable file.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 61 / 64

An application: secure storage of passwords

unix uses an encryption scheme to store passwords.

Key ingredient: An encryption function f : S → S , where S is
the set of all possible character strings.

Properties of f ?

f must be an injection.
f must be easy to compute.

f : S → Range(S) must be hard to invert. That is, given an
encrypted password e, computing the plaintext
password f −1(e) must be prohibitively expensive.

System stores each user’s encrypted password in a
world-readable file.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 61 / 64

An application: secure storage of passwords

unix uses an encryption scheme to store passwords.

Key ingredient: An encryption function f : S → S , where S is
the set of all possible character strings.

Properties of f ?

f must be an injection.
f must be easy to compute.
f : S → Range(S) must be hard to invert. That is, given an
encrypted password e, computing the plaintext
password f −1(e) must be prohibitively expensive.

System stores each user’s encrypted password in a
world-readable file.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 61 / 64

An application: secure storage of passwords

unix uses an encryption scheme to store passwords.

Key ingredient: An encryption function f : S → S , where S is
the set of all possible character strings.

Properties of f ?

f must be an injection.
f must be easy to compute.
f : S → Range(S) must be hard to invert. That is, given an
encrypted password e, computing the plaintext
password f −1(e) must be prohibitively expensive.

System stores each user’s encrypted password in a
world-readable file.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 61 / 64

An application: secure storage of passwords (cont’d)

When trying to log in, user presents login ID and purported
password p̃.

System computes ẽ = f (p̃).

System compares ẽ with actual encrypted password e.

User is allowed in if and only if ẽ = e.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 62 / 64

An application: secure storage of passwords (cont’d)

When trying to log in, user presents login ID and purported
password p̃.

System computes ẽ = f (p̃).

System compares ẽ with actual encrypted password e.

User is allowed in if and only if ẽ = e.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 62 / 64

An application: secure storage of passwords (cont’d)

When trying to log in, user presents login ID and purported
password p̃.

System computes ẽ = f (p̃).

System compares ẽ with actual encrypted password e.

User is allowed in if and only if ẽ = e.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 62 / 64

An application: secure storage of passwords (cont’d)

When trying to log in, user presents login ID and purported
password p̃.

System computes ẽ = f (p̃).

System compares ẽ with actual encrypted password e.

User is allowed in if and only if ẽ = e.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 62 / 64

An application: secure storage of passwords (cont’d)

If f isn’t injective, user might be admitted upon presenting an
incorrect password (a “synonym”).

If f cannot be computed quickly, login process takes too long.

If f −1 can be computed quickly, then a Bad Guy could
compute plaintext password, given the encrypted password.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 63 / 64

An application: secure storage of passwords (cont’d)

If f isn’t injective, user might be admitted upon presenting an
incorrect password (a “synonym”).

If f cannot be computed quickly, login process takes too long.

If f −1 can be computed quickly, then a Bad Guy could
compute plaintext password, given the encrypted password.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 63 / 64

An application: secure storage of passwords (cont’d)

If f isn’t injective, user might be admitted upon presenting an
incorrect password (a “synonym”).

If f cannot be computed quickly, login process takes too long.

If f −1 can be computed quickly, then a Bad Guy could
compute plaintext password, given the encrypted password.

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 63 / 64

An application: secure storage of passwords (cont’d)

Note the following:

Exhaustive search isn’t an option for Bad Guys, since search
space is too big. For instance, if using a password of length
from 4 through 8 in the standard 95-character ascii character
set, there are

8∑
j=4

95j = 6,704,780,953,650,625

possible passwords; if you could check one billion per second,
this would take about 78 days to check.
Exhaustive search over a subspace is an option.

If you only use lower-case letters, there are only
217,180,128,880 passwords, which we could check in about
200 seconds.
A dictionary attack can break passwords in (e.g.) English (or
French or Urdu).

The moral of the story: choose good passwords!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 64 / 64

An application: secure storage of passwords (cont’d)

Note the following:

Exhaustive search isn’t an option for Bad Guys, since search
space is too big. For instance, if using a password of length
from 4 through 8 in the standard 95-character ascii character
set, there are

8∑
j=4

95j = 6,704,780,953,650,625

possible passwords; if you could check one billion per second,
this would take about 78 days to check.

Exhaustive search over a subspace is an option.
If you only use lower-case letters, there are only
217,180,128,880 passwords, which we could check in about
200 seconds.
A dictionary attack can break passwords in (e.g.) English (or
French or Urdu).

The moral of the story: choose good passwords!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 64 / 64

An application: secure storage of passwords (cont’d)

Note the following:

Exhaustive search isn’t an option for Bad Guys, since search
space is too big. For instance, if using a password of length
from 4 through 8 in the standard 95-character ascii character
set, there are

8∑
j=4

95j = 6,704,780,953,650,625

possible passwords; if you could check one billion per second,
this would take about 78 days to check.
Exhaustive search over a subspace is an option.

If you only use lower-case letters, there are only
217,180,128,880 passwords, which we could check in about
200 seconds.
A dictionary attack can break passwords in (e.g.) English (or
French or Urdu).

The moral of the story: choose good passwords!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 64 / 64

An application: secure storage of passwords (cont’d)

Note the following:

Exhaustive search isn’t an option for Bad Guys, since search
space is too big. For instance, if using a password of length
from 4 through 8 in the standard 95-character ascii character
set, there are

8∑
j=4

95j = 6,704,780,953,650,625

possible passwords; if you could check one billion per second,
this would take about 78 days to check.
Exhaustive search over a subspace is an option.

If you only use lower-case letters, there are only
217,180,128,880 passwords, which we could check in about
200 seconds.

A dictionary attack can break passwords in (e.g.) English (or
French or Urdu).

The moral of the story: choose good passwords!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 64 / 64

An application: secure storage of passwords (cont’d)

Note the following:

Exhaustive search isn’t an option for Bad Guys, since search
space is too big. For instance, if using a password of length
from 4 through 8 in the standard 95-character ascii character
set, there are

8∑
j=4

95j = 6,704,780,953,650,625

possible passwords; if you could check one billion per second,
this would take about 78 days to check.
Exhaustive search over a subspace is an option.

If you only use lower-case letters, there are only
217,180,128,880 passwords, which we could check in about
200 seconds.
A dictionary attack can break passwords in (e.g.) English (or
French or Urdu).

The moral of the story: choose good passwords!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 64 / 64

An application: secure storage of passwords (cont’d)

Note the following:

Exhaustive search isn’t an option for Bad Guys, since search
space is too big. For instance, if using a password of length
from 4 through 8 in the standard 95-character ascii character
set, there are

8∑
j=4

95j = 6,704,780,953,650,625

possible passwords; if you could check one billion per second,
this would take about 78 days to check.
Exhaustive search over a subspace is an option.

If you only use lower-case letters, there are only
217,180,128,880 passwords, which we could check in about
200 seconds.
A dictionary attack can break passwords in (e.g.) English (or
French or Urdu).

The moral of the story: choose good passwords!

Arthur G. Werschulz CISC 1100/Summer, 2015/Chapter 5 64 / 64

