CISC 1100: Structures of Computer Science Chapter 6 Counting

Arthur G. Werschulz

Fordham University Department of Computer and Information Sciences Copyright © Arthur G. Werschulz, 2015. All rights reserved.

Summer, 2015

Why talk about counting in a college-level course?

- Counting isn't as easy as it looks.

Why talk about counting in a college-level course?

- Counting isn't as easy as it looks.
- Simple sets: trivial to count.

Why talk about counting in a college-level course?

- Counting isn't as easy as it looks.
- Simple sets: trivial to count.
- Complicated sets: hard to count.

Why talk about counting in a college-level course?

- Counting isn't as easy as it looks.
- Simple sets: trivial to count.
- Complicated sets: hard to count.
- Facebook FOAF.

Why talk about counting in a college-level course?

- Counting isn't as easy as it looks.
- Simple sets: trivial to count.
- Complicated sets: hard to count.
- Facebook FOAF.
- Number of ways to fill a committee.

Why talk about counting in a college-level course?

- Counting isn't as easy as it looks.
- Simple sets: trivial to count.
- Complicated sets: hard to count.
- Facebook FOAF.
- Number of ways to fill a committee.
- Number of ways to fill a slate of officers.

Why talk about counting in a college-level course?

- Counting isn't as easy as it looks.
- Simple sets: trivial to count.
- Complicated sets: hard to count.
- Facebook FOAF.
- Number of ways to fill a committee.
- Number of ways to fill a slate of officers.
- Number of outcomes in a game (chess, poker, ...).

Why talk about counting in a college-level course?

- Counting isn't as easy as it looks.
- Simple sets: trivial to count.
- Complicated sets: hard to count.
- Facebook FOAF.
- Number of ways to fill a committee.
- Number of ways to fill a slate of officers.
- Number of outcomes in a game (chess, poker, ...).
- Methodically enumerating a set.

Why talk about counting in a college-level course?

- Counting isn't as easy as it looks.
- Simple sets: trivial to count.
- Complicated sets: hard to count.
- Facebook FOAF.
- Number of ways to fill a committee.
- Number of ways to fill a slate of officers.
- Number of outcomes in a game (chess, poker, ...).
- Methodically enumerating a set.
- Connection between counting and probability theory.

Outline

- Counting and how to count
- Elementary rules for counting
- The addition rule
- The multiplication rule
- Using the elementary rules for counting together
- Permutations and combinations
- Additional examples

Counting and how to count

- Some things are easy to count (e.g., number of students in this class).

Counting and how to count

- Some things are easy to count (e.g., number of students in this class).
- Some things are harder to count.

Counting and how to count

- Some things are easy to count (e.g., number of students in this class).
- Some things are harder to count.
- Example: You are asked to select a pair of men's jeans.
- Four styles are available (standard fit, loose fit, boot fit, and slim fit).
- Each style comes in two colors (blue or black).

Counting and how to count

- Some things are easy to count (e.g., number of students in this class).
- Some things are harder to count.
- Example: You are asked to select a pair of men's jeans.
- Four styles are available (standard fit, loose fit, boot fit, and slim fit).
- Each style comes in two colors (blue or black).
- You could list all possibilities for this problem.

Counting and how to count

- Some things are easy to count (e.g., number of students in this class).
- Some things are harder to count.
- Example: You are asked to select a pair of men's jeans.
- Four styles are available (standard fit, loose fit, boot fit, and slim fit).
- Each style comes in two colors (blue or black).
- You could list all possibilities for this problem.

Color	Jeans Style			
	Standard	Loose	Boot	Slim
	Standard-Blue	Loose-Blue	Boot-Blue	Slim-Blue
Black	Standard-Black	Loose-Black	Boot-Black	Slim-Black

Counting and how to count

- Some things are easy to count (e.g., number of students in this class).
- Some things are harder to count.
- Example: You are asked to select a pair of men's jeans.
- Four styles are available (standard fit, loose fit, boot fit, and slim fit).
- Each style comes in two colors (blue or black).
- You could list all possibilities for this problem.

Color	Jeans Style			
	Standard	Loose	Boot	Slim
	Standard-Blue	Loose-Blue	Boot-Blue	Slim-Blue
Black	Standard-Black	Loose-Black	Boot-Black	Slim-Black

Counting and how to count (cont'd)

- This doesn't generalize.
- What if more than two "features"?

Counting and how to count (cont'd)

- This doesn't generalize.
- What if more than two "features"?
- One idea: Use a tree structure to help you enumerate the choices.

Counting and how to count (cont'd)

Example: We toss a penny, a nickel, and a dime into the air. How many different configurations?

- How to encode? As a triple:
(penny's state, nickel's state, dime's state)

Counting and how to count (cont'd)

Example: We toss a penny, a nickel, and a dime into the air. How many different configurations?

- How to encode? As a triple: (penny's state, nickel's state, dime's state)
- Configurations?

$$
\begin{aligned}
\mathrm{C}=\{ & (\mathrm{H}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{H}, \mathrm{~T}),(\mathrm{H}, \mathrm{~T}, \mathrm{H}),(\mathrm{H}, \mathrm{~T}, \mathrm{~T}), \\
& (\mathrm{T}, \mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{~T}),(\mathrm{T}, \mathrm{~T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T}, \mathrm{~T})\} .
\end{aligned}
$$

Counting and how to count (cont'd)

Example: We toss a penny, a nickel, and a dime into the air. How many different configurations?

- How to encode? As a triple: (penny's state, nickel's state, dime's state)
- Configurations?

$$
\begin{aligned}
\mathrm{C}=\{ & (\mathrm{H}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{H}, \mathrm{~T}),(\mathrm{H}, \mathrm{~T}, \mathrm{H}),(\mathrm{H}, \mathrm{~T}, \mathrm{~T}), \\
& (\mathrm{T}, \mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{~T}),(\mathrm{T}, \mathrm{~T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T}, \mathrm{~T})\} .
\end{aligned}
$$

- How many configurations? 8.

Counting and how to count (cont'd)

Example: We toss a penny, a nickel, and a dime into the air. How many different configurations?

- How to encode? As a triple: (penny's state, nickel's state, dime's state)
- Configurations?

$$
\begin{aligned}
\mathrm{C}=\{ & (\mathrm{H}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{H}, \mathrm{~T}),(\mathrm{H}, \mathrm{~T}, \mathrm{H}),(\mathrm{H}, \mathrm{~T}, \mathrm{~T}), \\
& (\mathrm{T}, \mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{~T}),(\mathrm{T}, \mathrm{~T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T}, \mathrm{~T})\} .
\end{aligned}
$$

- How many configurations? 8.

Counting and how to count (cont'd)

Example: We toss a penny, a nickel, and a dime into the air. How many different configurations?

- How to encode? As a triple: (penny's state, nickel's state, dime's state)
- Configurations?

$$
\begin{aligned}
C=\{ & (\mathrm{H}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{H}, \mathrm{~T}),(\mathrm{H}, \mathrm{~T}, \mathrm{H}),(\mathrm{H}, \mathrm{~T}, \mathrm{~T}), \\
& (\mathrm{T}, \mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{~T}),(\mathrm{T}, \mathrm{~T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T}, \mathrm{~T})\} .
\end{aligned}
$$

- How many configurations? 8.
- How to count configurations without listing?

Elementary rules of counting

- Two basic rules:
- Addition rule
- Multiplication rule
- Using these rules together

Elementary rules of counting: the addition rule

- Example: You need to purchase one shirt of any kind. The store has five short sleeve shirts and eight long sleeve shirts. How many possible ways are there to choose a shirt?

Elementary rules of counting: the addition rule

- Example: You need to purchase one shirt of any kind. The store has five short sleeve shirts and eight long sleeve shirts. How many possible ways are there to choose a shirt?
- Solution: $8+5=13$.

Elementary rules of counting: the addition rule

- Example: You need to purchase one shirt of any kind. The store has five short sleeve shirts and eight long sleeve shirts. How many possible ways are there to choose a shirt?
- Solution: $8+5=13$.
- Addition rule:

Elementary rules of counting: the addition rule

- Example: You need to purchase one shirt of any kind. The store has five short sleeve shirts and eight long sleeve shirts. How many possible ways are there to choose a shirt?
- Solution: $8+5=13$.
- Addition rule:
- If we have two choices C_{1} and C_{2}, with C_{1} having a set O_{1} of possible outcomes and C_{2} having a set O_{2} of possible outcomes, with $\left|O_{1}\right|=n_{1}$ and $\left|O_{2}\right|=n_{2}$, then the total number of outcomes for C_{1} or C_{2} occurring is $n_{1}+n_{2}$.

Elementary rules of counting: the addition rule

- Example: You need to purchase one shirt of any kind. The store has five short sleeve shirts and eight long sleeve shirts. How many possible ways are there to choose a shirt?
- Solution: $8+5=13$.
- Addition rule:
- If we have two choices C_{1} and C_{2}, with C_{1} having a set O_{1} of possible outcomes and C_{2} having a set O_{2} of possible outcomes, with $\left|O_{1}\right|=n_{1}$ and $\left|O_{2}\right|=n_{2}$, then the total number of outcomes for C_{1} or C_{2} occurring is $n_{1}+n_{2}$.
- If we have k choices C_{1}, \ldots, C_{k} having n_{1}, \ldots, n_{k} possible outcomes, then the total number of ways of C_{1} occurring or C_{2} occurring or \ldots or C_{k} occurring is $n_{1}+n_{2}+\cdots+n_{k}$.

Elementary rules of counting: the addition rule

- Example: You need to purchase one shirt of any kind. The store has five short sleeve shirts and eight long sleeve shirts. How many possible ways are there to choose a shirt?
- Solution: $8+5=13$.
- Addition rule:
- If we have two choices C_{1} and C_{2}, with C_{1} having a set O_{1} of possible outcomes and C_{2} having a set O_{2} of possible outcomes, with $\left|O_{1}\right|=n_{1}$ and $\left|O_{2}\right|=n_{2}$, then the total number of outcomes for C_{1} or C_{2} occurring is $n_{1}+n_{2}$.
- If we have k choices C_{1}, \ldots, C_{k} having n_{1}, \ldots, n_{k} possible outcomes, then the total number of ways of C_{1} occurring or C_{2} occurring or \ldots or C_{k} occurring is $n_{1}+n_{2}+\cdots+n_{k}$.
- Fairly straightforward.

Elementary rules of counting: the multiplication rule

- In our jeans example,
\# of jeans configurations $=$
(\# number of styles) \times (\# of colors)
- In our jeans example,
\# of jeans configurations $=$
(\# number of styles) \times (\# of colors)
- Multiplication rule:

Elementary rules of counting: the multiplication rule

- In our jeans example,
\# of jeans configurations = (\# number of styles) \times (\# of colors)
- Multiplication rule:
- If we have two choices C_{1} and C_{2}, with C_{1} having a set O_{1} of possible outcomes and C_{2} having a set O_{2} of possible outcomes, with $\left|O_{1}\right|=n_{1}$ and $\left|O_{2}\right|=n_{2}$, then the total number of possible outcomes for C_{1} and C_{2} occurring is $n_{1} \times n_{2}$.

Elementary rules of counting: the multiplication rule

- In our jeans example,
$\#$ of jeans configurations $=$
$(\#$ number of styles $) \times(\#$ of colors $)$
- Multiplication rule:
- If we have two choices C_{1} and C_{2}, with C_{1} having a set O_{1} of possible outcomes and C_{2} having a set O_{2} of possible outcomes, with $\left|O_{1}\right|=n_{1}$ and $\left|O_{2}\right|=n_{2}$, then the total number of possible outcomes for C_{1} and C_{2} occurring is $n_{1} \times n_{2}$.
- More generally, if we have k choices C_{1}, \ldots, C_{k} having n_{1}, \ldots, n_{k} possible outcomes, then the total number of ways of C_{1} occurring and C_{2} occurring and \ldots and C_{k} occurring is $n_{1} \times n_{2} \times \cdots \times n_{k}$.

Elementary rules of counting: the multiplication rule

- In our jeans example,
$\#$ of jeans configurations $=$
$(\#$ number of styles $) \times(\#$ of colors $)$
- Multiplication rule:
- If we have two choices C_{1} and C_{2}, with C_{1} having a set O_{1} of possible outcomes and C_{2} having a set O_{2} of possible outcomes, with $\left|O_{1}\right|=n_{1}$ and $\left|O_{2}\right|=n_{2}$, then the total number of possible outcomes for C_{1} and C_{2} occurring is $n_{1} \times n_{2}$.
- More generally, if we have k choices C_{1}, \ldots, C_{k} having n_{1}, \ldots, n_{k} possible outcomes, then the total number of ways of C_{1} occurring and C_{2} occurring and \ldots and C_{k} occurring is $n_{1} \times n_{2} \times \cdots \times n_{k}$.
- Roughly speaking:
- addition rule: "or" rule
- multiplication rule: "and" rule

Elementary rules of counting: the multiplication rule (cont'd)

Example: Solve jeans problem via multiplication rule ...

- four styles (standard, loose, slim, and boot fits) and
- two colors (black, blue)

Elementary rules of counting: the multiplication rule (cont'd)

Example: Solve jeans problem via multiplication rule ...

- four styles (standard, loose, slim, and boot fits) and
- two colors (black, blue)

Solution: Our choices?

$$
\begin{aligned}
& C_{1}=\text { "choose the jeans style" } \\
& C_{2}=\text { "choose the jeans color". }
\end{aligned}
$$

Our outcomes?

$$
\begin{aligned}
& O_{1}=\{\text { standard fit, loose fit, boot fit, slim fit }\} \\
& O_{2}=\{\text { black, blue }\}
\end{aligned}
$$

Now determine the cardinalities of the sets:

$$
n_{1}=\left|O_{1}\right|=4 \quad n_{2}=\left|C_{2}\right|=2
$$

Now we apply the multiplication rule
Total number of outcomes $=n_{1} \times n_{2}=4 \times 2=8$.

Elementary rules of counting: the multiplication rule (cont'd)

- Why does the multiplication rule work?

Elementary rules of counting: the multiplication rule (cont'd)

- Why does the multiplication rule work?
- The set of possible outcomes is for O_{1} and O_{2} occurring is $O_{1} \times O_{2}$.

Elementary rules of counting: the multiplication rule (cont'd)

- Why does the multiplication rule work?
- The set of possible outcomes is for O_{1} and O_{2} occurring is $O_{1} \times O_{2}$.
- We know that $\left|O_{1} \times O_{2}\right|=\left|O_{1}\right| \cdot\left|O_{2}\right|$.

Elementary rules of counting: the multiplication rule (cont'd)

- Why does the multiplication rule work?
- The set of possible outcomes is for O_{1} and O_{2} occurring is $O_{1} \times O_{2}$.
- We know that $\left|O_{1} \times O_{2}\right|=\left|O_{1}\right| \cdot\left|O_{2}\right|$.
- This is the multiplication rule!

Elementary rules of counting: the multiplication rule (cont'd)

Example: Suppose that you flip a coin twice and record the outcome (head or tail) for each flip. How many possible outcomes are there?

Elementary rules of counting: the multiplication rule (cont'd)

Example: Suppose that you flip a coin twice and record the outcome (head or tail) for each flip. How many possible outcomes are there?
Solution: There are two choices, C_{1} and C_{2}, corresponding to the two coin flips. C_{1} and C_{2} must occur, so the multiplication rule applies. Each choice has two possible outcomes, thus $n_{1}=2$ and $n_{2}=2$. Thus by the multiplication principle of counting, there are $2 \times 2=4$ possible outcomes.

Elementary rules of counting: the multiplication rule (cont'd)

Example: You are asked to flip a coin five times and to record the outcome (head or tail) for each flip. How many possible outcomes are there?

Elementary rules of counting: the multiplication rule (cont'd)

Example: You are asked to flip a coin five times and to record the outcome (head or tail) for each flip. How many possible outcomes are there?

Solution:

- This example differs from the previous one only in that there are five choices instead of two.

Elementary rules of counting: the multiplication rule (cont'd)

Example: You are asked to flip a coin five times and to record the outcome (head or tail) for each flip. How many possible outcomes are there?

Solution:

- This example differs from the previous one only in that there are five choices instead of two.
- For each choice there are two possible outcomes.

Elementary rules of counting: the multiplication rule (cont'd)

Example: You are asked to flip a coin five times and to record the outcome (head or tail) for each flip. How many possible outcomes are there?

Solution:

- This example differs from the previous one only in that there are five choices instead of two.
- For each choice there are two possible outcomes.
- The total number of outcomes is

$$
2 \times 2 \times 2 \times 2 \times 2=2^{5}=32
$$

Elementary rules of counting: the multiplication rule (cont'd)

Example: You play a lottery where you choose five numbers and each number must be between 1 and 20, inclusive. You must choose the numbers in the order that they appear in the winning selection. If a number may be selected more than once, then how many ways can you fill out the lottery card?

Elementary rules of counting: the multiplication rule (cont'd)

Example: You play a lottery where you choose five numbers and each number must be between 1 and 20, inclusive. You must choose the numbers in the order that they appear in the winning selection. If a number may be selected more than once, then how many ways can you fill out the lottery card?

Solution:

- There are five choices, corresponding to the five numbers that you must choose.

Elementary rules of counting: the multiplication rule (cont'd)

Example: You play a lottery where you choose five numbers and each number must be between 1 and 20, inclusive. You must choose the numbers in the order that they appear in the winning selection. If a number may be selected more than once, then how many ways can you fill out the lottery card?

Solution:

- There are five choices, corresponding to the five numbers that you must choose.
- Each of the five choices must occur, so the multiplication rule applies.

Elementary rules of counting: the multiplication rule (cont'd)

Example: You play a lottery where you choose five numbers and each number must be between 1 and 20, inclusive. You must choose the numbers in the order that they appear in the winning selection. If a number may be selected more than once, then how many ways can you fill out the lottery card?

Solution:

- There are five choices, corresponding to the five numbers that you must choose.
- Each of the five choices must occur, so the multiplication rule applies.
- Each choice has twenty possible outcomes (i.e., you pick a number between 1 and 20).

Elementary rules of counting: the multiplication rule (cont'd)

Example: You play a lottery where you choose five numbers and each number must be between 1 and 20, inclusive. You must choose the numbers in the order that they appear in the winning selection. If a number may be selected more than once, then how many ways can you fill out the lottery card?

Solution:

- There are five choices, corresponding to the five numbers that you must choose.
- Each of the five choices must occur, so the multiplication rule applies.
- Each choice has twenty possible outcomes (i.e., you pick a number between 1 and 20).
- There are

$$
20 \times 20 \times 20 \times 20 \times 20=20^{5}=3,200,000
$$

possible ways to fill out the lottery card.

Elementary rules of counting: the multiplication rule (cont'd)

Example: You play a lottery where you choose five numbers and each number must be between 1 and 20, inclusive. You must choose the numbers in the order that they appear in the winning selection. The numbers are chosen by the lottery commission from a bin and once a number is chosen it is discarded and cannot be chosen again. In how many ways can you fill out the lottery card?

Elementary rules of counting: the multiplication rule (cont'd)

Solution:

Elementary rules of counting: the multiplication rule (cont'd)

Solution:

- Close to the previous one, but a number cannot be chosen more than once.

Elementary rules of counting: the multiplication rule (cont'd)

Solution:

- Close to the previous one, but a number cannot be chosen more than once.
- Hence, the number of possible outcomes for each choice is progressively reduced by one.

Elementary rules of counting: the multiplication rule (cont'd)

Solution:

- Close to the previous one, but a number cannot be chosen more than once.
- Hence, the number of possible outcomes for each choice is progressively reduced by one.
- Number the five choices $C_{1} \ldots C_{5}$ such that C_{1} corresponds to the first number selected and C_{5} to the last number selected.

Elementary rules of counting: the multiplication rule (cont'd)

Solution:

- Close to the previous one, but a number cannot be chosen more than once.
- Hence, the number of possible outcomes for each choice is progressively reduced by one.
- Number the five choices $C_{1} \ldots C_{5}$ such that C_{1} corresponds to the first number selected and C_{5} to the last number selected.
- The number of outcomes for C_{1} is 20 , for C_{2} is 19 , for C_{3} is 18 , for C_{4} is 17 and for C_{5} is 16 .

Elementary rules of counting: the multiplication rule (cont'd)

Solution:

- Close to the previous one, but a number cannot be chosen more than once.
- Hence, the number of possible outcomes for each choice is progressively reduced by one.
- Number the five choices $C_{1} \ldots C_{5}$ such that C_{1} corresponds to the first number selected and C_{5} to the last number selected.
- The number of outcomes for C_{1} is 20 , for C_{2} is 19 , for C_{3} is 18 , for C_{4} is 17 and for C_{5} is 16 .
- Thus the number of possible outcomes is

$$
20 \times 19 \times 18 \times 17 \times 16=1,860,480 .
$$

Elementary rules of counting: the multiplication rule (contd)

Elementary rules of counting: the multiplication rule (cont'd)

- Il Don't be misled by the word "and"!
- Example: How many ways are there to choose one class among 5 day classes and 2 evening classes?

Elementary rules of counting: the multiplication rule (cont'd)

- Il Don't be misled by the word "and"!
- Example: How many ways are there to choose one class among 5 day classes and 2 evening classes?
- Solution: $5+2=7$ ways.

Elementary rules of counting: combining the rules together

- Example: How many odd three-digit numbers are there (allowing leading zeros, such as 007)?

Elementary rules of counting: combining the rules together

- Example: How many odd three-digit numbers are there (allowing leading zeros, such as 007)?
- First solution:

Elementary rules of counting: combining the rules together

- Example: How many odd three-digit numbers are there (allowing leading zeros, such as 007)?
- First solution:
- We have three choices, one per digit. Let C_{1}, C_{2}, C_{3} denote the choices for the first, second, third digits.

Elementary rules of counting: combining the rules together

- Example: How many odd three-digit numbers are there (allowing leading zeros, such as 007)?
- First solution:
- We have three choices, one per digit. Let C_{1}, C_{2}, C_{3} denote the choices for the first, second, third digits.
- $O_{1}=O_{2}=\{0,1,2,3,4,5,6,7,8,9\}$, while $O_{3}=\{1,3,5,7,9\}$.

Elementary rules of counting: combining the rules together

- Example: How many odd three-digit numbers are there (allowing leading zeros, such as 007)?
- First solution:
- We have three choices, one per digit. Let C_{1}, C_{2}, C_{3} denote the choices for the first, second, third digits.
- $O_{1}=O_{2}=\{0,1,2,3,4,5,6,7,8,9\}$, while $O_{3}=\{1,3,5,7,9\}$.
- So $\left|O_{1}\right|=10,\left|O_{2}\right|=10,\left|O_{3}\right|=5$.

Elementary rules of counting: combining the rules together

- Example: How many odd three-digit numbers are there (allowing leading zeros, such as 007)?
- First solution:
- We have three choices, one per digit. Let C_{1}, C_{2}, C_{3} denote the choices for the first, second, third digits.
- $O_{1}=O_{2}=\{0,1,2,3,4,5,6,7,8,9\}$, while $O_{3}=\{1,3,5,7,9\}$.
- So $\left|O_{1}\right|=10,\left|O_{2}\right|=10,\left|O_{3}\right|=5$.
- Hence there are $10 \times 10 \times 5=500$ outcomes.

Elementary rules of counting: combining the rules together

- Example: How many odd three-digit numbers are there (allowing leading zeros, such as 007)?

Elementary rules of counting: combining the rules together

- Example: How many odd three-digit numbers are there (allowing leading zeros, such as 007)?
- Second solution:

Elementary rules of counting: combining the rules together

- Example: How many odd three-digit numbers are there (allowing leading zeros, such as 007)?
- Second solution:
- Number of outcomes = number of outcomes where the three-digit number ends in a 1 or 3 or 5 or 7 or 9 .

Elementary rules of counting: combining the rules together

- Example: How many odd three-digit numbers are there (allowing leading zeros, such as 007)?
- Second solution:
- Number of outcomes = number of outcomes where the three-digit number ends in a 1 or 3 or 5 or 7 or 9 .
- Each of these five cases has $10 \times 10=100$ outcomes.

Elementary rules of counting: combining the rules together

- Example: How many odd three-digit numbers are there (allowing leading zeros, such as 007)?
- Second solution:
- Number of outcomes = number of outcomes where the three-digit number ends in a 1 or 3 or 5 or 7 or 9 .
- Each of these five cases has $10 \times 10=100$ outcomes.
- So there are $5 \times 100=500$ outcomes overall.

Facts about playing cards

- A deck of cards contains 52 cards.
- A deck of cards contains 52 cards.
- Each card belongs to one of four suits
\& (Clubs), \diamond (Diamonds), \diamond (Hearts), $\boldsymbol{\phi}$ (Spades)
and one of thirteen denominations

$$
2,3,4,5,6,7,8,9,10, J \text { (ack), Q(ueen), K(ing), A(ce). }
$$

- A deck of cards contains 52 cards.
- Each card belongs to one of four suits
\& (Clubs), \diamond (Diamonds), \diamond (Hearts), 内 (Spades)
and one of thirteen denominations

$$
2,3,4,5,6,7,8,9,10, J \text { (ack), Q(ueen), K(ing), A(ce). }
$$

- The clubs and spades are black and the diamonds and hearts are red.

Facts about playing cards

- A deck of cards contains 52 cards.
- Each card belongs to one of four suits
\& (Clubs), \diamond (Diamonds), \diamond (Hearts), $\boldsymbol{\uparrow}$ (Spades)
and one of thirteen denominations

$$
2,3,4,5,6,7,8,9,10, J \text { (ack), Q(ueen), K(ing), A(ce). }
$$

- The clubs and spades are black and the diamonds and hearts are red.
- Unless otherwise specified, assume that for any example you begin with a complete deck and that as cards are dealt they are not immediately replaced back into the deck.

Facts about playing cards

- A deck of cards contains 52 cards.
- Each card belongs to one of four suits
$\&$ (Clubs), \diamond (Diamonds), \diamond (Hearts), © (Spades)
and one of thirteen denominations

$$
2,3,4,5,6,7,8,9,10, J \text { (ack), Q(ueen), K(ing), A(ce). }
$$

- The clubs and spades are black and the diamonds and hearts are red.
- Unless otherwise specified, assume that for any example you begin with a complete deck and that as cards are dealt they are not immediately replaced back into the deck.
- We abbreviate a card using the denomination and then suit, such that $2 \circlearrowleft$ (or 2 H) represents the 2 of Hearts.

Poker hands

- In standard poker you receive 5 cards.

Poker hands

- In standard poker you receive 5 cards.
- The suits are equally important.

Poker hands

- In standard poker you receive 5 cards.
- The suits are equally important.
- The face values are ordered

$$
2<3<4<5<6<7<8<9<10<\mathrm{J}<\mathrm{Q}<\mathrm{K}<\mathrm{A}
$$

- In standard poker you receive 5 cards.
- The suits are equally important.
- The face values are ordered

$$
2<3<4<5<6<7<8<9<10<\mathrm{J}<\mathrm{Q}<\mathrm{K}<\mathrm{A}
$$

- While you can later discard cards and then replace them, for most of our examples we will only consider the initial configuration.
- In standard poker you receive 5 cards.
- The suits are equally important.
- The face values are ordered

$$
2<3<4<5<6<7<8<9<10<\mathrm{J}<\mathrm{Q}<\mathrm{K}<\mathrm{A}
$$

- While you can later discard cards and then replace them, for most of our examples we will only consider the initial configuration.
- Pair (two of a kind): two cards that are the same denomination, such as a pair of 4's.

Poker hands

- In standard poker you receive 5 cards.
- The suits are equally important.
- The face values are ordered

$$
2<3<4<5<6<7<8<9<10<\mathrm{J}<\mathrm{Q}<\mathrm{K}<\mathrm{A}
$$

- While you can later discard cards and then replace them, for most of our examples we will only consider the initial configuration.
- Pair (two of a kind): two cards that are the same denomination, such as a pair of 4's.
- Three of a kind and four of a kind are defined similarly.

Poker hands

- In standard poker you receive 5 cards.
- The suits are equally important.
- The face values are ordered

$$
2<3<4<5<6<7<8<9<10<\mathrm{J}<\mathrm{Q}<\mathrm{K}<\mathrm{A}
$$

- While you can later discard cards and then replace them, for most of our examples we will only consider the initial configuration.
- Pair (two of a kind): two cards that are the same denomination, such as a pair of 4's.
- Three of a kind and four of a kind are defined similarly.
- Full house: three of one kind and a pair of another kind.

Poker hands

- In standard poker you receive 5 cards.
- The suits are equally important.
- The face values are ordered

$$
2<3<4<5<6<7<8<9<10<\mathrm{J}<\mathrm{Q}<\mathrm{K}<\mathrm{A}
$$

- While you can later discard cards and then replace them, for most of our examples we will only consider the initial configuration.
- Pair (two of a kind): two cards that are the same denomination, such as a pair of 4's.
- Three of a kind and four of a kind are defined similarly.
- Full house: three of one kind and a pair of another kind.
- Straight: the cards are in sequential order, with no gaps.

Poker hands

- In standard poker you receive 5 cards.
- The suits are equally important.
- The face values are ordered

$$
2<3<4<5<6<7<8<9<10<\mathrm{J}<\mathrm{Q}<\mathrm{K}<\mathrm{A}
$$

- While you can later discard cards and then replace them, for most of our examples we will only consider the initial configuration.
- Pair (two of a kind): two cards that are the same denomination, such as a pair of 4's.
- Three of a kind and four of a kind are defined similarly.
- Full house: three of one kind and a pair of another kind.
- Straight: the cards are in sequential order, with no gaps.
- Flush: all five cards are of the same suit.

Poker hands

- In standard poker you receive 5 cards.
- The suits are equally important.
- The face values are ordered

$$
2<3<4<5<6<7<8<9<10<\mathrm{J}<\mathrm{Q}<\mathrm{K}<\mathrm{A}
$$

- While you can later discard cards and then replace them, for most of our examples we will only consider the initial configuration.
- Pair (two of a kind): two cards that are the same denomination, such as a pair of 4's.
- Three of a kind and four of a kind are defined similarly.
- Full house: three of one kind and a pair of another kind.
- Straight: the cards are in sequential order, with no gaps.
- Flush: all five cards are of the same suit.
- Straight flush: all five cards are of the same suit and in sequential order (i.e., a straight and a flush).

Poker hands (cont'd)

Ordering of the hands (highest to lowest):

Poker hands (cont'd)

Ordering of the hands (highest to lowest):

- straight flush (with a "royal flush" [ace high] the highest possible hand of all)
- four of a kind
- full house
- flush
- straight
- three of a kind
- two pairs
- one pair
- high card

A poker example

In how many ways can you draw a flush in poker, assuming that the order of the five cards drawn matters? (We will learn how to relax this assumption in the next section.)

- There are four basic ways to get a flush: all clubs or all diamonds or all hearts or all spades.

A poker example

In how many ways can you draw a flush in poker, assuming that the order of the five cards drawn matters? (We will learn how to relax this assumption in the next section.)

- There are four basic ways to get a flush: all clubs or all diamonds or all hearts or all spades.
- Each is an outcome satisfying the condition of drawing a flush; we want to determine the total number of outcomes of these four non-overlapping outcomes.

A poker example

In how many ways can you draw a flush in poker, assuming that the order of the five cards drawn matters? (We will learn how to relax this assumption in the next section.)

- There are four basic ways to get a flush: all clubs or all diamonds or all hearts or all spades.
- Each is an outcome satisfying the condition of drawing a flush; we want to determine the total number of outcomes of these four non-overlapping outcomes.
- How many ways can we get an all-clubs flush? By multiplication rule to select 5 cards without replacement,
$\#$ ways to draw five clubs $=13 \times 12 \times 11 \times 10 \times 9=154,440$.

A poker example

In how many ways can you draw a flush in poker, assuming that the order of the five cards drawn matters? (We will learn how to relax this assumption in the next section.)

- There are four basic ways to get a flush: all clubs or all diamonds or all hearts or all spades.
- Each is an outcome satisfying the condition of drawing a flush; we want to determine the total number of outcomes of these four non-overlapping outcomes.
- How many ways can we get an all-clubs flush? By multiplication rule to select 5 cards without replacement,
$\#$ ways to draw five clubs $=13 \times 12 \times 11 \times 10 \times 9=154,440$.
- Therefore, by the addition rule, there are $4 \times 154,440=617,760$ ways to get a flush.

Permutations and Combinations

- Sometimes order matters, sometimes it doesn't.

Permutations and Combinations

- Sometimes order matters, sometimes it doesn't.
- Example: How many ways to get a royal flush in spades?

$$
\mathrm{A} \boldsymbol{\uparrow}, \mathrm{~K} \boldsymbol{\phi}, \mathrm{Q} \boldsymbol{\uparrow}, \mathrm{~J} \boldsymbol{\uparrow}, 10 \boldsymbol{\uparrow}
$$

Permutations and Combinations

- Sometimes order matters, sometimes it doesn't.
- Example: How many ways to get a royal flush in spades?

$$
A \boldsymbol{\uparrow}, K \boldsymbol{\phi}, Q \boldsymbol{\uparrow}, J \boldsymbol{\phi}, 10 \boldsymbol{\uparrow}
$$

- If order matters, there are $5 \times 4 \times 3 \times 2 \times 1=120$ ways.

Permutations and Combinations

- Sometimes order matters, sometimes it doesn't.
- Example: How many ways to get a royal flush in spades?

$$
A \boldsymbol{\uparrow}, K \boldsymbol{\phi}, Q \boldsymbol{\uparrow}, J \boldsymbol{\phi}, 10 \boldsymbol{\uparrow}
$$

- If order matters, there are $5 \times 4 \times 3 \times 2 \times 1=120$ ways.
- If order does not matter, there is only 1 way.

Permutations and Combinations

- Sometimes order matters, sometimes it doesn't.
- Example: How many ways to get a royal flush in spades?

$$
\mathrm{A} \boldsymbol{\uparrow}, \mathrm{~K} \boldsymbol{\phi}, \mathrm{Q} \boldsymbol{\uparrow}, \mathrm{~J} \boldsymbol{\phi}, 10 \boldsymbol{\uparrow}
$$

- If order matters, there are $5 \times 4 \times 3 \times 2 \times 1=120$ ways.
- If order does not matter, there is only 1 way.
- Order matters: permutation

Permutations and Combinations

- Sometimes order matters, sometimes it doesn't.
- Example: How many ways to get a royal flush in spades?

$$
\mathrm{A} \boldsymbol{\uparrow}, \mathrm{~K} \boldsymbol{\phi}, \mathrm{Q} \boldsymbol{\uparrow}, \mathrm{~J} \boldsymbol{\phi}, 10 \boldsymbol{\uparrow}
$$

- If order matters, there are $5 \times 4 \times 3 \times 2 \times 1=120$ ways.
- If order does not matter, there is only 1 way.
- Order matters: permutation
- Order doesn't matter: combination

Permutations

- Permutation: order matters, cannot reuse objects.
- Permutation: order matters, cannot reuse objects.
- Phone numbers 123-456-7890 and 789-012-3456 are different. These are two permutations of the set of digits.
- Permutation: order matters, cannot reuse objects.
- Phone numbers 123-456-7890 and 789-012-3456 are different. These are two permutations of the set of digits.
- Example: How many ways to seat 5 children in 5 chairs?
- Permutation: order matters, cannot reuse objects.
- Phone numbers 123-456-7890 and 789-012-3456 are different. These are two permutations of the set of digits.
- Example: How many ways to seat 5 children in 5 chairs?
- Both criteria for permutations are satisfied.
- Permutation: order matters, cannot reuse objects.
- Phone numbers 123-456-7890 and 789-012-3456 are different. These are two permutations of the set of digits.
- Example: How many ways to seat 5 children in 5 chairs?
- Both criteria for permutations are satisfied.
- Counting permutations of 5 children.
- Permutation: order matters, cannot reuse objects.
- Phone numbers 123-456-7890 and 789-012-3456 are different. These are two permutations of the set of digits.
- Example: How many ways to seat 5 children in 5 chairs?
- Both criteria for permutations are satisfied.
- Counting permutations of 5 children.
- By multiplication rule, there are

$$
5 \times 4 \times 3 \times 2 \times 1=120
$$

different seating arrangements.

- Permutation: order matters, cannot reuse objects.
- Phone numbers 123-456-7890 and 789-012-3456 are different. These are two permutations of the set of digits.
- Example: How many ways to seat 5 children in 5 chairs?
- Both criteria for permutations are satisfied.
- Counting permutations of 5 children.
- By multiplication rule, there are

$$
5 \times 4 \times 3 \times 2 \times 1=120
$$

different seating arrangements.

- Example: How many ways to seat 10 children in 5 chairs?
- Permutation: order matters, cannot reuse objects.
- Phone numbers 123-456-7890 and 789-012-3456 are different. These are two permutations of the set of digits.
- Example: How many ways to seat 5 children in 5 chairs?
- Both criteria for permutations are satisfied.
- Counting permutations of 5 children.
- By multiplication rule, there are

$$
5 \times 4 \times 3 \times 2 \times 1=120
$$

different seating arrangements.

- Example: How many ways to seat 10 children in 5 chairs?
- Both criteria for permutations are satisfied.
- Permutation: order matters, cannot reuse objects.
- Phone numbers 123-456-7890 and 789-012-3456 are different. These are two permutations of the set of digits.
- Example: How many ways to seat 5 children in 5 chairs?
- Both criteria for permutations are satisfied.
- Counting permutations of 5 children.
- By multiplication rule, there are

$$
5 \times 4 \times 3 \times 2 \times 1=120
$$

different seating arrangements.

- Example: How many ways to seat 10 children in 5 chairs?
- Both criteria for permutations are satisfied.
- Counting permutations of 10 children, chosen 5 at a time.
- Permutation: order matters, cannot reuse objects.
- Phone numbers 123-456-7890 and 789-012-3456 are different. These are two permutations of the set of digits.
- Example: How many ways to seat 5 children in 5 chairs?
- Both criteria for permutations are satisfied.
- Counting permutations of 5 children.
- By multiplication rule, there are

$$
5 \times 4 \times 3 \times 2 \times 1=120
$$

different seating arrangements.

- Example: How many ways to seat 10 children in 5 chairs?
- Both criteria for permutations are satisfied.
- Counting permutations of 10 children, chosen 5 at a time.
- By multiplication rule, there are

$$
10 \times 9 \times 8 \times 7 \times 6=30,240
$$

different seating arrangements.

Permutations (cont'd)

- Notation: $P(n, r)$ is the number of permutations of n objects, chosen r at a time.

Permutations (cont'd)

- Notation: $P(n, r)$ is the number of permutations of n objects, chosen r at a time.

Permutations (cont'd)

- Notation: $P(n, r)$ is the number of permutations of n objects, chosen r at a time.
- Formula for $P(n, r)$?

$$
P(n, r)=
$$

Permutations (cont'd)

- Notation: $P(n, r)$ is the number of permutations of n objects, chosen r at a time.
- Formula for $P(n, r)$?

$$
P(n, r)=
$$

Permutations (cont'd)

- Notation: $P(n, r)$ is the number of permutations of n objects, chosen r at a time.
- Formula for $P(n, r)$?

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1)
$$

Permutations (cont'd)

- Notation: $P(n, r)$ is the number of permutations of n objects, chosen r at a time.
- Formula for $P(n, r)$?

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1)
$$

- Excursus on factorials

Permutations (cont'd)

- Notation: $P(n, r)$ is the number of permutations of n objects, chosen r at a time.
- Formula for $P(n, r)$?

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1)
$$

- Excursus on factorials
- n ! is the product of the natural numbers $1,2, \ldots, n$.

Permutations (cont'd)

- Notation: $P(n, r)$ is the number of permutations of n objects, chosen r at a time.
- Formula for $P(n, r)$?

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1)
$$

- Excursus on factorials
- n ! is the product of the natural numbers $1,2, \ldots, n$.
- Semi-special case: $0!=1$.

Permutations (cont'd)

- Notation: $P(n, r)$ is the number of permutations of n objects, chosen r at a time.
- Formula for $P(n, r)$?

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1)
$$

- Excursus on factorials
- n ! is the product of the natural numbers $1,2, \ldots, n$.
- Semi-special case: $0!=1$.
- Table of factorials:

n	0	1	2	3	4	5	6	7	\ldots
$n!$	1	1	2	6	24	120	720	5,040	\ldots

n	\ldots	8	9	10	\ldots
$n!$	\ldots	40,320	362,880	$3,628,800$	\ldots

Permutations (cont'd)

- Notation: $P(n, r)$ is the number of permutations of n objects, chosen r at a time.
- Formula for $P(n, r)$?

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1)
$$

- Excursus on factorials
- n ! is the product of the natural numbers $1,2, \ldots, n$.
- Semi-special case: $0!=1$.
- Table of factorials:

n	0	1	2	3	4	5	6	7	\ldots
$n!$	1	1	2	6	24	120	720	5,040	\ldots

n	\ldots	8	9	10	\ldots
$n!$	\ldots	40,320	362,880	$3,628,800$	\ldots

- "Simplified" formula for $P(n, r)$?

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1)
$$

Permutations (cont'd)

- Notation: $P(n, r)$ is the number of permutations of n objects, chosen r at a time.
- Formula for $P(n, r)$?

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1)
$$

- Excursus on factorials
- n ! is the product of the natural numbers $1,2, \ldots, n$.
- Semi-special case: $0!=1$.
- Table of factorials:

n	0	1	2	3	4	5	6	7	\ldots
$n!$	1	1	2	6	24	120	720	5,040	\ldots

n	\ldots	8	9	10	\ldots
$n!$	\ldots	40,320	362,880	$3,628,800$	\ldots

- "Simplified" formula for $P(n, r)$?

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1)
$$

Permutations (cont'd)

- Notation: $P(n, r)$ is the number of permutations of n objects, chosen r at a time.
- Formula for $P(n, r)$?

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1)
$$

- Excursus on factorials
- n ! is the product of the natural numbers $1,2, \ldots, n$.
- Semi-special case: $0!=1$.
- Table of factorials:

n	0	1	2	3	4	5	6	7	\ldots
$n!$	1	1	2	6	24	120	720	5,040	\ldots

n	\ldots	8	9	10	\ldots
$n!$	\ldots	40,320	362,880	$3,628,800$	\ldots

- "Simplified" formula for $P(n, r)$?

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1)=\frac{n!}{(n-r)!}
$$

Permutations (cont'd)

- Example (cont'd): We have

$$
P(10,5)=10 \times 9 \times 8 \times 7 \times 6=30,240 .
$$

Permutations (cont'd)

- Example (cont'd): We have

$$
P(10,5)=10 \times 9 \times 8 \times 7 \times 6=30,240 .
$$

- We also have

$$
P(10,5)=\frac{10!}{(10-5)!}=\frac{10!}{5!} .
$$

Permutations (cont'd)

- Example (cont'd): We have

$$
P(10,5)=10 \times 9 \times 8 \times 7 \times 6=30,240 .
$$

- We also have

$$
P(10,5)=\frac{10!}{(10-5)!}=\frac{10!}{5!} .
$$

- Save some work: cancel common factors

$$
\begin{aligned}
P(10,5) & =\frac{10!}{(10-5)!}=\frac{10!}{5!} \\
& =\frac{10 \times 9 \times 8 \times 7 \times 6 \times \not 5 \times 4 \times \not \mathbf{0} \times 2 \mathbf{2} \times 1 \mathbf{1}}{5 \times 4 \times \not \mathbf{3} \times 2 \times 11} \\
& =10 \times 9 \times 8 \times 7 \times 6=30,240 .
\end{aligned}
$$

Permutations (cont'd)

- Example (cont'd): We have

$$
P(10,5)=10 \times 9 \times 8 \times 7 \times 6=30,240 .
$$

- We also have

$$
P(10,5)=\frac{10!}{(10-5)!}=\frac{10!}{5!} .
$$

- Save some work: cancel common factors

$$
\begin{aligned}
P(10,5) & =\frac{10!}{(10-5)!}=\frac{10!}{5!} \\
& =\frac{10 \times 9 \times 8 \times 7 \times 6 \times \not 5 \times 4 \times \not \mathbf{0} \times \not 2 \times 11}{5 \times 4 \times \not 0 \times 2 \times 1} \\
& =10 \times 9 \times 8 \times 7 \times 6=30,240 .
\end{aligned}
$$

- All our answers agree.

Permutations (cont'd)

- Sanity check:

Permutations (cont'd)

- Sanity check:
- $P(n, r)$ counts something.

Permutations (cont'd)

- Sanity check:
- $P(n, r)$ counts something.
- Thus $P(n, r)$ must be a non-negative integer.

Permutations (cont'd)

- Sanity check:
- $P(n, r)$ counts something.
- Thus $P(n, r)$ must be a non-negative integer.
- The formula

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

appears to involve division.

Permutations (cont'd)

- Sanity check:
- $P(n, r)$ counts something.
- Thus $P(n, r)$ must be a non-negative integer.
- The formula

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

appears to involve division.

- You will always be able to use the cancellation trick to get rid of divisions.

Permutations (cont'd)

- Sanity check:
- $P(n, r)$ counts something.
- Thus $P(n, r)$ must be a non-negative integer.
- The formula

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

appears to involve division.

- You will always be able to use the cancellation trick to get rid of divisions.
- Alternatively, use the formula

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1) .
$$

Permutations (cont'd)

- Sanity check:
- $P(n, r)$ counts something.
- Thus $P(n, r)$ must be a non-negative integer.
- The formula

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

appears to involve division.

- You will always be able to use the cancellation trick to get rid of divisions.
- Alternatively, use the formula

$$
P(n, r)=n(n-1)(n-2) \ldots(n-r+1) .
$$

- I
If the answer you get to a permutation problem is anything other than a non-negative integer, go back and check your work!

Permutations (cont'd)

- Example: In how many ways can we choose a 3-person slate of officers (president, vice-president, secretary) out of the 10 members in this class?

Permutations (cont'd)

- Example: In how many ways can we choose a 3-person slate of officers (president, vice-president, secretary) out of the 10 members in this class?
- Solution: We need to choose 3 distinct people out of 10 , with order mattering.

Permutations (cont'd)

- Example: In how many ways can we choose a 3-person slate of officers (president, vice-president, secretary) out of the 10 members in this class?
- Solution: We need to choose 3 distinct people out of 10 , with order mattering.
- So

$$
P(10,3)=
$$

Permutations (cont'd)

- Example: In how many ways can we choose a 3-person slate of officers (president, vice-president, secretary) out of the 10 members in this class?
- Solution: We need to choose 3 distinct people out of 10 , with order mattering.
- So

$$
P(10,3)=
$$

Permutations (cont'd)

- Example: In how many ways can we choose a 3-person slate of officers (president, vice-president, secretary) out of the 10 members in this class?
- Solution: We need to choose 3 distinct people out of 10 , with order mattering.
- So

$$
P(10,3)=10 \times 9 \times 8=
$$

Permutations (cont'd)

- Example: In how many ways can we choose a 3-person slate of officers (president, vice-president, secretary) out of the 10 members in this class?
- Solution: We need to choose 3 distinct people out of 10 , with order mattering.
- So

$$
P(10,3)=10 \times 9 \times 8=720
$$

Permutations (cont'd)

- Example: In major league baseball, each team has a 25 -player roster. How many possible batting orders are there for such a roster?

Permutations (cont'd)

- Example: In major league baseball, each team has a 25 -player roster. How many possible batting orders are there for such a roster?
- Solution: Check that this is a permutation.

Permutations (cont'd)

- Example: In major league baseball, each team has a 25 -player roster. How many possible batting orders are there for such a roster?
- Solution: Check that this is a permutation.
- Total number of batting orders is

$$
P(25,9)=\frac{25!}{16!}=25 \times 24 \times \cdots \times 17=741,354,768,000
$$

Combinations

- For some problems, order matters. (Baseball lineup problem.)

Combinations

- For some problems, order matters. (Baseball lineup problem.)
- For some problems, order does not matter.

Combinations

- For some problems, order matters. (Baseball lineup problem.)
- For some problems, order does not matter.
- Example: We need to choose a 12-person jury from a pool of 1000 people. The order does not matter here. We want the number of combinations of 1000 persons, chosen 12 at a time.

Combinations

- For some problems, order matters. (Baseball lineup problem.)
- For some problems, order does not matter.
- Example: We need to choose a 12-person jury from a pool of 1000 people. The order does not matter here. We want the number of combinations of 1000 persons, chosen 12 at a time.
- Notation: $C(n, r)$ denotes the number of combinations of n objects, chosen r at a time. Here the order does not matter, and we are not allowed to reuse objects. We often read this as " n choose r ".
- For some problems, order matters. (Baseball lineup problem.)
- For some problems, order does not matter.
- Example: We need to choose a 12-person jury from a pool of 1000 people. The order does not matter here. We want the number of combinations of 1000 persons, chosen 12 at a time.
- Notation: $C(n, r)$ denotes the number of combinations of n objects, chosen r at a time. Here the order does not matter, and we are not allowed to reuse objects. We often read this as " n choose r ".
- Formula for combinations:

$$
C(n, r)=\frac{n!}{(n-r)!r!}
$$

- For some problems, order matters. (Baseball lineup problem.)
- For some problems, order does not matter.
- Example: We need to choose a 12-person jury from a pool of 1000 people. The order does not matter here. We want the number of combinations of 1000 persons, chosen 12 at a time.
- Notation: $C(n, r)$ denotes the number of combinations of n objects, chosen r at a time. Here the order does not matter, and we are not allowed to reuse objects. We often read this as " n choose r ".
- Formula for combinations:

$$
C(n, r)=\frac{n!}{(n-r)!r!}
$$

- For some problems, order matters. (Baseball lineup problem.)
- For some problems, order does not matter.
- Example: We need to choose a 12-person jury from a pool of 1000 people. The order does not matter here. We want the number of combinations of 1000 persons, chosen 12 at a time.
- Notation: $C(n, r)$ denotes the number of combinations of n objects, chosen r at a time. Here the order does not matter, and we are not allowed to reuse objects. We often read this as " n choose r ".
- Formula for combinations:

$$
C(n, r)=\frac{n!}{(n-r)!r!}
$$

Why?

$$
C(n, r)=
$$

- For some problems, order matters. (Baseball lineup problem.)
- For some problems, order does not matter.
- Example: We need to choose a 12-person jury from a pool of 1000 people. The order does not matter here. We want the number of combinations of 1000 persons, chosen 12 at a time.
- Notation: $C(n, r)$ denotes the number of combinations of n objects, chosen r at a time. Here the order does not matter, and we are not allowed to reuse objects. We often read this as " n choose r ".
- Formula for combinations:

$$
C(n, r)=\frac{n!}{(n-r)!r!}
$$

Why?

$$
C(n, r)=\frac{P(n, r)}{P(r, r)}=
$$

- For some problems, order matters. (Baseball lineup problem.)
- For some problems, order does not matter.
- Example: We need to choose a 12-person jury from a pool of 1000 people. The order does not matter here. We want the number of combinations of 1000 persons, chosen 12 at a time.
- Notation: $C(n, r)$ denotes the number of combinations of n objects, chosen r at a time. Here the order does not matter, and we are not allowed to reuse objects. We often read this as " n choose r ".
- Formula for combinations:

$$
C(n, r)=\frac{n!}{(n-r)!r!}
$$

Why?

$$
C(n, r)=\frac{P(n, r)}{P(r, r)}=\frac{n!}{(n-r)!r!}
$$

Combinations (cont'd)

- Example: In how many ways can we choose a 3-person committee out of a 10 -member class?

Combinations (cont'd)

- Example: In how many ways can we choose a 3-person committee out of a 10 -member class?
- Solution: We need to choose 3 distinct people out of 10 , with order not mattering.

Combinations (cont'd)

- Example: In how many ways can we choose a 3-person committee out of a 10 -member class?
- Solution: We need to choose 3 distinct people out of 10 , with order not mattering.
- So

$$
C(10,3)=
$$

Combinations (cont'd)

- Example: In how many ways can we choose a 3-person committee out of a 10 -member class?
- Solution: We need to choose 3 distinct people out of 10 , with order not mattering.
- So

$$
C(10,3)=
$$

Combinations (cont'd)

- Example: In how many ways can we choose a 3-person committee out of a 10 -member class?
- Solution: We need to choose 3 distinct people out of 10 , with order not mattering.
- So

$$
\begin{aligned}
C(10,3) & =\frac{10!}{3!\cdot 7!} \\
& =
\end{aligned}
$$

Combinations (cont'd)

- Example: In how many ways can we choose a 3-person committee out of a 10 -member class?
- Solution: We need to choose 3 distinct people out of 10 , with order not mattering.
- So

$$
\begin{aligned}
C(10,3) & =\frac{10!}{3!\cdot 7!} \\
& =\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)} \\
& =
\end{aligned}
$$

Combinations (cont'd)

- Example: In how many ways can we choose a 3-person committee out of a 10 -member class?
- Solution: We need to choose 3 distinct people out of 10 , with order not mattering.
- So

$$
\begin{aligned}
& C(10,3)=\frac{10!}{3!\cdot 7!} \\
& =\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)}
\end{aligned}
$$

$$
\begin{aligned}
& =
\end{aligned}
$$

Combinations (cont'd)

- Example: In how many ways can we choose a 3-person committee out of a 10 -member class?
- Solution: We need to choose 3 distinct people out of 10 , with order not mattering.
- So

$$
\begin{aligned}
& C(10,3)=\frac{10!}{3!\cdot 7!} \\
& =\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)}
\end{aligned}
$$

$$
\begin{aligned}
& =10 \times 3 \times 4=120 \text {. }
\end{aligned}
$$

Combinations (cont'd)

- Sanity check:

Combinations (cont'd)

- Sanity check:
- $C(n, r)$ counts something.

Combinations (cont'd)

- Sanity check:
- $C(n, r)$ counts something.
- Thus $C(n, r)$ must be a non-negative integer.

Combinations (cont'd)

- Sanity check:
- $C(n, r)$ counts something.
- Thus $C(n, r)$ must be a non-negative integer.
- The formula

$$
C(n, r)=\frac{n!}{(n-r)!r!}
$$

involves division.

Combinations (cont'd)

- Sanity check:
- $C(n, r)$ counts something.
- Thus $C(n, r)$ must be a non-negative integer.
- The formula

$$
C(n, r)=\frac{n!}{(n-r)!r!}
$$

involves division.

- You will always be able to use the cancellation trick to get rid of divisions.

Combinations (cont'd)

- Sanity check:
- $C(n, r)$ counts something.
- Thus $C(n, r)$ must be a non-negative integer.
- The formula

$$
C(n, r)=\frac{n!}{(n-r)!r!}
$$

involves division.

- You will always be able to use the cancellation trick to get rid of divisions.
- II

If the answer you get to a combination problem is anything other than a non-negative integer, go back and check your work!

Additional Examples

Example: A typical telephone number has 10 digits (e.g., 555-817-4495), where the first three are known as the area code and the next three as the exchange.
(1) Assuming no restrictions, how many possible (three-digit) area codes are there?

Additional Examples

Example: A typical telephone number has 10 digits (e.g., 555-817-4495), where the first three are known as the area code and the next three as the exchange.
(1) Assuming no restrictions, how many possible (three-digit) area codes are there?
Solution: $10 \times 10 \times 10=1,000$ three-digit area codes.

Additional Examples

Example: A typical telephone number has 10 digits (e.g., 555-817-4495), where the first three are known as the area code and the next three as the exchange.
(1) Assuming no restrictions, how many possible (three-digit) area codes are there?
Solution: $10 \times 10 \times 10=1,000$ three-digit area codes.
(2) Assuming that the middle digit of the area code must be a 0 or a 1 (which was required until recently), how many possible (3 digits) area codes are there?

Additional Examples

Example: A typical telephone number has 10 digits (e.g., 555-817-4495), where the first three are known as the area code and the next three as the exchange.
(1) Assuming no restrictions, how many possible (three-digit) area codes are there?
Solution: $10 \times 10 \times 10=1,000$ three-digit area codes.
(2) Assuming that the middle digit of the area code must be a 0 or a 1 (which was required until recently), how many possible (3 digits) area codes are there?
Solution: $10 \times 2 \times 10=200$ area codes.

Additional Examples

Example: A typical telephone number has 10 digits (e.g., 555-817-4495), where the first three are known as the area code and the next three as the exchange.
(1) Assuming no restrictions, how many possible (three-digit) area codes are there?
Solution: $10 \times 10 \times 10=1,000$ three-digit area codes.
(2) Assuming that the middle digit of the area code must be a 0 or a 1 (which was required until recently), how many possible (3 digits) area codes are there?
Solution: $10 \times 2 \times 10=200$ area codes.
(3) Assuming no restrictions whatsoever, how many possible values are there for the full 10 -digit phone number?

Additional Examples

Example: A typical telephone number has 10 digits (e.g., 555-817-4495), where the first three are known as the area code and the next three as the exchange.
(1) Assuming no restrictions, how many possible (three-digit) area codes are there?
Solution: $10 \times 10 \times 10=1,000$ three-digit area codes.
(2) Assuming that the middle digit of the area code must be a 0 or a 1 (which was required until recently), how many possible (3 digits) area codes are there?
Solution: $10 \times 2 \times 10=200$ area codes.
(3) Assuming no restrictions whatsoever, how many possible values are there for the full 10 -digit phone number?
Solution: $10^{10}=10,000,000,000$ phone numbers

Additional Examples

Example: A typical telephone number has 10 digits (e.g., 555-817-4495), where the first three are known as the area code and the next three as the exchange.
(1) Assuming no restrictions, how many possible (three-digit) area codes are there?
Solution: $10 \times 10 \times 10=1,000$ three-digit area codes.
(2) Assuming that the middle digit of the area code must be a 0 or a 1 (which was required until recently), how many possible (3 digits) area codes are there?
Solution: $10 \times 2 \times 10=200$ area codes.
(3) Assuming no restrictions whatsoever, how many possible values are there for the full 10 -digit phone number?
Solution: $10^{10}=10,000,000,000$ phone numbers
(9) If the only restriction is that no digit may be used more than once, how many possible 10-digit phone numbers are there?

Additional Examples

Example: A typical telephone number has 10 digits (e.g., 555-817-4495), where the first three are known as the area code and the next three as the exchange.
(1) Assuming no restrictions, how many possible (three-digit) area codes are there?
Solution: $10 \times 10 \times 10=1,000$ three-digit area codes.
(2) Assuming that the middle digit of the area code must be a 0 or a 1 (which was required until recently), how many possible (3 digits) area codes are there?
Solution: $10 \times 2 \times 10=200$ area codes.
(3) Assuming no restrictions whatsoever, how many possible values are there for the full 10 -digit phone number?
Solution: $10^{10}=10,000,000,000$ phone numbers
(9) If the only restriction is that no digit may be used more than once, how many possible 10-digit phone numbers are there? Solution: $10 \times 9 \times \cdots \times 1=10!=3,628,800$ phone numbers.

Additional Examples

Example: A typical telephone number has 10 digits (e.g., 555-817-4495), where the first three are known as the area code and the next three as the exchange.
(1) Assuming no restrictions, how many possible (three-digit) area codes are there?
Solution: $10 \times 10 \times 10=1,000$ three-digit area codes.
(2) Assuming that the middle digit of the area code must be a 0 or a 1 (which was required until recently), how many possible (3 digits) area codes are there?
Solution: $10 \times 2 \times 10=200$ area codes.
(3) Assuming no restrictions whatsoever, how many possible values are there for the full 10 -digit phone number?
Solution: $10^{10}=10,000,000,000$ phone numbers
(9) If the only restriction is that no digit may be used more than once, how many possible 10-digit phone numbers are there? Solution: $10 \times 9 \times \cdots \times 1=10!=3,628,800$ phone numbers.

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt "two pairs"?

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt "two pairs"?

Solution:

- There are $C(13,2)$ ways to identify the two denominations.

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt "two pairs"?

Solution:

- There are $C(13,2)$ ways to identify the two denominations.
- For each denomination, there are $C(4,2)$ ways to choose two of the four cards. Do this twice.

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt "two pairs"?

Solution:

- There are $C(13,2)$ ways to identify the two denominations.
- For each denomination, there are $C(4,2)$ ways to choose two of the four cards. Do this twice.
- Pick the last card? 11 ways for each of 4 suits.

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt "two pairs"?

Solution:

- There are $C(13,2)$ ways to identify the two denominations.
- For each denomination, there are $C(4,2)$ ways to choose two of the four cards. Do this twice.
- Pick the last card? 11 ways for each of 4 suits.
- Final answer:

$$
C(13,2) \times C(4,2) \times C(4,2) \times 11 \times 4=123,552 \text { ways. }
$$

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt "three of a kind"?

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt "three of a kind"?

Solution:

- We can choose the denomination with 3 of a kind in 13 ways.

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt "three of a kind"?

Solution:

- We can choose the denomination with 3 of a kind in 13 ways.
- There are $C(4,3)$ ways to choose the three cards of said denomination.

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt "three of a kind"?

Solution:

- We can choose the denomination with 3 of a kind in 13 ways.
- There are $C(4,3)$ ways to choose the three cards of said denomination.
- The two remaining cards must come from the other 12 denominations. They can't be the same, since this would yield a full house. Since there are 4 suits, there are $C(12,2) \times 4 \times 4$ ways of choosing these two cards.

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt "three of a kind"?

Solution:

- We can choose the denomination with 3 of a kind in 13 ways.
- There are $C(4,3)$ ways to choose the three cards of said denomination.
- The two remaining cards must come from the other 12 denominations. They can't be the same, since this would yield a full house. Since there are 4 suits, there are $C(12,2) \times 4 \times 4$ ways of choosing these two cards.
- Final answer:

$$
13 \times C(4,3) \times C(12,2) \times 4 \times 4=54,912 \text { ways. }
$$

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt a "full house"?

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt a "full house"?

Solution:

- A full house requires 3 of a kind and also 2 of a different kind.

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt a "full house"?

Solution:

- A full house requires 3 of a kind and also 2 of a different kind.
- We can choose the denomination with 3 of a kind in 13 ways and then we can choose the 3 specific cards in $C(4,3)$ ways.

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt a "full house"?

Solution:

- A full house requires 3 of a kind and also 2 of a different kind.
- We can choose the denomination with 3 of a kind in 13 ways and then we can choose the 3 specific cards in $C(4,3)$ ways.
- Then we can choose the denomination with the 2 of a kind in 12 ways and choose the 2 specific cards in $C(4,2)$ ways.

Additional Examples (cont'd)

A poker player is dealt a hand of 5 cards from a freshly mixed deck. In how many ways can one be dealt a "full house"?

Solution:

- A full house requires 3 of a kind and also 2 of a different kind.
- We can choose the denomination with 3 of a kind in 13 ways and then we can choose the 3 specific cards in $C(4,3)$ ways.
- Then we can choose the denomination with the 2 of a kind in 12 ways and choose the 2 specific cards in $C(4,2)$ ways.
- Final answer:

$$
13 \times C(4,3) \times 12 \times C(4,2)=3,744 \text { ways. }
$$

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#1:

- Multiplication rule: 11! ways.

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#1:

- Multiplication rule: 11! ways.
- Since there are

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#1:

- Multiplication rule: 11! ways.
- Since there are
- 4 instances of S and I

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#1:

- Multiplication rule: 11! ways.
- Since there are
- 4 instances of S and I
- 2 instances of P

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#1:

- Multiplication rule: 11! ways.
- Since there are
- 4 instances of S and I
- 2 instances of P

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#1:

- Multiplication rule: 11! ways.
- Since there are
- 4 instances of S and I
- 2 instances of P
not all 11! ways are distinguishable.
- Since there are 4 instances of S, their appearance can be permuted in 4! different ways. So we need to divide the current answer by 4 !, getting 11 !/4!.

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#1:

- Multiplication rule: 11! ways.
- Since there are
- 4 instances of S and I
- 2 instances of P
not all 11! ways are distinguishable.
- Since there are 4 instances of S, their appearance can be permuted in 4! different ways. So we need to divide the current answer by 4 !, getting 11 !/4!.
- Since there are 4 instances of I, their appearance can be permuted in 4 ! different ways. So we need to divide the current answer by 4 !, getting $11!/(4!4!)$.

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#1 (contd):

- Answer so far (accounting for multiple S and I): 11!/(4!4!).

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#1 (contd):

- Answer so far (accounting for multiple S and I): $11!/(4!4!)$.
- Since there are 2 instances of P, their appearance can be permuted in 2 ! different ways. So we need to divide the current answer by 2 !, getting $11!/(4!4!2!)$.

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#1 (contd):

- Answer so far (accounting for multiple S and I): $11!/(4!4!)$.
- Since there are 2 instances of P, their appearance can be permuted in 2 ! different ways. So we need to divide the current answer by 2 !, getting $11!/(4!4!2!)$.
- Final answer:

$$
\frac{11!}{4!4!2!}=11 \times 10 \times 9 \times 7 \times 5=34,650 \text { ways. }
$$

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#2: Use a "fill-in-the-blank" approach, starting with 11 blanks

- Can assign the one M in $C(11,1)=11!/(10!\times 1!)=11$ ways.

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#2: Use a "fill-in-the-blank" approach, starting with 11 blanks

- Can assign the one M in $C(11,1)=11!/(10!\times 1!)=11$ ways.
- Can assign the two P's in $C(10,2)$ ways.

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#2: Use a "fill-in-the-blank" approach, starting with 11 blanks

- Can assign the one M in $C(11,1)=11!/(10!\times 1!)=11$ ways.
- Can assign the two P's in $C(10,2)$ ways.
- Can assign the four S 's in $C(8,4)$ ways.

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#2: Use a "fill-in-the-blank" approach, starting with 11 blanks

- Can assign the one M in $C(11,1)=11!/(10!\times 1!)=11$ ways.
- Can assign the two P's in $C(10,2)$ ways.
- Can assign the four S 's in $C(8,4)$ ways.
- Can assign the four I's in $C(4,4)=1$ way.

Additional Examples (cont'd)

How many distinguishable ways are there to arrange the letters in the word MISSISSIPPI?

Solution \#2: Use a "fill-in-the-blank" approach, starting with 11 blanks

- Can assign the one M in $C(11,1)=11!/(10!\times 1!)=11$ ways.
- Can assign the two P's in $C(10,2)$ ways.
- Can assign the four S's in $C(8,4)$ ways.
- Can assign the four I's in $C(4,4)=1$ way.
- Total number of ways is then

$$
C(11,1) \times C(10,2) \times C(8,4) \times C(4,4)=11 \times 45 \times 70 \times 1=34,650 .
$$

