CISC 1100: Structures of Computer Science Chapter 7 Probability

Arthur G. Werschulz

Fordham University Department of Computer and Information Sciences Copyright © Arthur G. Werschulz, 2015. All rights reserved.

Summer, 2015

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)
- Getting at least two "heads" when flipping a coin four times

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)
- Getting at least two "heads" when flipping a coin four times
- Getting 3 when rolling a six-sided die (should be $\frac{1}{6}$)

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)
- Getting at least two "heads" when flipping a coin four times
- Getting 3 when rolling a six-sided die (should be $\frac{1}{6}$)
- Getting a 7 when rolling two dice

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)
- Getting at least two "heads" when flipping a coin four times
- Getting 3 when rolling a six-sided die (should be $\frac{1}{6}$)
- Getting a 7 when rolling two dice
- Winning at poker

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)
- Getting at least two "heads" when flipping a coin four times
- Getting 3 when rolling a six-sided die (should be $\frac{1}{6}$)
- Getting a 7 when rolling two dice
- Winning at poker
- Getting a particular hand on the initial deal

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)
- Getting at least two "heads" when flipping a coin four times
- Getting 3 when rolling a six-sided die (should be $\frac{1}{6}$)
- Getting a 7 when rolling two dice
- Winning at poker
- Getting a particular hand on the initial deal
- Completing a hand in draw poker

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)
- Getting at least two "heads" when flipping a coin four times
- Getting 3 when rolling a six-sided die (should be $\frac{1}{6}$)
- Getting a 7 when rolling two dice
- Winning at poker
- Getting a particular hand on the initial deal
- Completing a hand in draw poker
- Winning PickSix, PowerBall, MegaMillions

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)
- Getting at least two "heads" when flipping a coin four times
- Getting 3 when rolling a six-sided die (should be $\frac{1}{6}$)
- Getting a 7 when rolling two dice
- Winning at poker
- Getting a particular hand on the initial deal
- Completing a hand in draw poker
- Winning PickSix, PowerBall, MegaMillions
- Rain (should I bring an umbrella)?

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)
- Getting at least two "heads" when flipping a coin four times
- Getting 3 when rolling a six-sided die (should be $\frac{1}{6}$)
- Getting a 7 when rolling two dice
- Winning at poker
- Getting a particular hand on the initial deal
- Completing a hand in draw poker
- Winning PickSix, PowerBall, MegaMillions
- Rain (should I bring an umbrella)?
- The economy improving

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)
- Getting at least two "heads" when flipping a coin four times
- Getting 3 when rolling a six-sided die (should be $\frac{1}{6}$)
- Getting a 7 when rolling two dice
- Winning at poker
- Getting a particular hand on the initial deal
- Completing a hand in draw poker
- Winning PickSix, PowerBall, MegaMillions
- Rain (should I bring an umbrella)?
- The economy improving
- A nuclear power plant failing

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)
- Getting at least two "heads" when flipping a coin four times
- Getting 3 when rolling a six-sided die (should be $\frac{1}{6}$)
- Getting a 7 when rolling two dice
- Winning at poker
- Getting a particular hand on the initial deal
- Completing a hand in draw poker
- Winning PickSix, PowerBall, MegaMillions
- Rain (should I bring an umbrella)?
- The economy improving
- A nuclear power plant failing

Why study probability?

Want to know the likelihood of some event:

- Getting a "head" when flipping a coin (should be $\frac{1}{2}$)
- Getting at least two "heads" when flipping a coin four times
- Getting 3 when rolling a six-sided die (should be $\frac{1}{6}$)
- Getting a 7 when rolling two dice
- Winning at poker
- Getting a particular hand on the initial deal
- Completing a hand in draw poker
- Winning PickSix, PowerBall, MegaMillions
- Rain (should I bring an umbrella)?
- The economy improving
- A nuclear power plant failing

Historical note: A gambler's dispute in 1654 led Blaise Pascal and Pierre de Fermat to create a mathematical theory of probability.

Outline

- Terminology and background
- Complement
- Elementary rules for probability
- General rules for probability
- Bernoulli trials and probability distributions
- Expected value

Terminology and background

- An experiment will have outcomes

Terminology and background

- An experiment will have outcomes
- Tossing a coin once: H, T

Terminology and background

- An experiment will have outcomes
- Tossing a coin once: H, T
- Tossing a coin four times: HHHH, HHHT, HHTH, ..., TTTT
- An experiment will have outcomes
- Tossing a coin once: H, T
- Tossing a coin four times: HHHH, HHHT, HHTH, ..., TTTT
- Drawing a card from a deck: $2 \boldsymbol{\$}, 2 \diamond, \ldots, A \oslash, A \bowtie$
- An experiment will have outcomes
- Tossing a coin once: H, T
- Tossing a coin four times: HHHH, HHHT, HHTH, TTTT
- Drawing a card from a deck: $2 \boldsymbol{\$}, 2 \diamond, \ldots, A \cap, A \bowtie$
- PickSix possibilities
- An experiment will have outcomes
- Tossing a coin once: H, T
- Tossing a coin four times: HHHH, HHHT, HHTH, TTTT
- Drawing a card from a deck: $2 \boldsymbol{\&}, 2 \diamond, \ldots, A \circlearrowleft, A \uparrow$
- PickSix possibilities
- Event: set E of desired outcomes

Terminology and background

- An experiment will have outcomes
- Tossing a coin once: H, T
- Tossing a coin four times: HHHH, HHHT, HHTH, TTTT
- Drawing a card from a deck: $2 \boldsymbol{\&}, 2 \diamond, \ldots, A \circlearrowleft, A \uparrow$
- PickSix possibilities
- Event: set E of desired outcomes
- Sample space: (finite) set S of all possible outcomes

Terminology and background

- An experiment will have outcomes
- Tossing a coin once: H, T
- Tossing a coin four times: HHHH, HHHT, HHTH, ..., TTTT
- Drawing a card from a deck: $2 \boldsymbol{\$}, 2 \diamond, \ldots, A \oslash, A \bowtie$
- PickSix possibilities
- Event: set E of desired outcomes
- Sample space: (finite) set S of all possible outcomes
- The probability $\operatorname{Prob}(E)$ of an event $E \subseteq S$ is given as

$$
\operatorname{Prob}(E)=\frac{|E|}{|S|}
$$

Terminology and background (cont'd)
Example: What is the probability of getting 7 when rolling two dice?

Terminology and background (cont'd)

Example: What is the probability of getting 7 when rolling two dice?

Solution:

- Our sample space S is

$$
\begin{aligned}
S=\{ & (1,1),(1,2), \ldots,(1,6), \\
& (2,1),(2,2), \ldots,(2,6) \\
& (3,1),(3,2), \ldots,(3,6), \\
& \vdots \\
& (6,1),(6,2), \ldots,(6,6)\} .
\end{aligned}
$$

Terminology and background (cont'd)

Example: What is the probability of getting 7 when rolling two dice?

Solution:

- Our sample space S is

$$
\begin{aligned}
S=\{ & (1,1),(1,2), \ldots,(1,6), \\
& (2,1),(2,2), \ldots,(2,6), \\
& (3,1),(3,2), \ldots,(3,6), \\
& \vdots \\
& (6,1),(6,2), \ldots,(6,6)\} .
\end{aligned}
$$

- The event E is given by

$$
E=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}
$$

Terminology and background (cont'd)

Example: What is the probability of getting 7 when rolling two dice?

Solution:

- Our sample space S is

$$
\begin{aligned}
S=\{ & (1,1),(1,2), \ldots,(1,6), \\
& (2,1),(2,2), \ldots,(2,6), \\
& (3,1),(3,2), \ldots,(3,6), \\
& \vdots \\
& (6,1),(6,2), \ldots,(6,6)\} .
\end{aligned}
$$

- The event E is given by

$$
E=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}
$$

- So

$$
\operatorname{Prob}(E)=\frac{|E|}{|S|}=\frac{6}{36}=\frac{1}{6}=0.1667 .
$$

Terminology and background (cont'd)

Example: What is the probability of getting 7 when rolling two dice (cont'd)?

Discussion:

- Since E and S are small, could solve by enumeration.

Terminology and background (cont'd)

Example: What is the probability of getting 7 when rolling two dice (cont'd)?

Discussion:

- Since E and S are small, could solve by enumeration.
- If either E or S is big, this is impractical.
(Poker problems, lottery problems, ...).

Terminology and background (cont'd)

Example: What is the probability of getting 7 when rolling two dice (cont'd)?

Discussion:

- Since E and S are small, could solve by enumeration.
- If either E or S is big, this is impractical. (Poker problems, lottery problems, ...).
- Can often use counting principles from previous chapter to determine $|S|$ and/or $|E|$.

Terminology and background (cont'd)

Example: What is the probability of getting 7 when rolling two dice (cont'd)?

Discussion:

- Since E and S are small, could solve by enumeration.
- If either E or S is big, this is impractical. (Poker problems, lottery problems, ...).
- Can often use counting principles from previous chapter to determine $|S|$ and/or $|E|$.
- In our case, there are 6 outcomes for the roll of each of the two dice.

Terminology and background (cont'd)

Example: What is the probability of getting 7 when rolling two dice (cont'd)?

Discussion:

- Since E and S are small, could solve by enumeration.
- If either E or S is big, this is impractical.
(Poker problems, lottery problems, ...).
- Can often use counting principles from previous chapter to determine $|S|$ and/or $|E|$.
- In our case, there are 6 outcomes for the roll of each of the two dice.
- So multiplication principle tells us that there are $6 \times 6=36$ outcomes for the roll of both dice, i.e., $|S|=36$.

Terminology and background (cont'd)

- Since $0 \leq|E| \leq|S|$ and $\operatorname{Prob}(E)=|E| /|S|$, we have

$$
0 \leq \operatorname{Prob}(E) \leq 1
$$

Terminology and background (cont'd)

- Since $0 \leq|E| \leq|S|$ and $\operatorname{Prob}(E)=|E| /|S|$, we have

$$
0 \leq \operatorname{Prob}(E) \leq 1
$$

- $\operatorname{Prob}(E)=0$: event will never happen

Terminology and background (cont'd)

- Since $0 \leq|E| \leq|S|$ and $\operatorname{Prob}(E)=|E| /|S|$, we have

$$
0 \leq \operatorname{Prob}(E) \leq 1
$$

- $\operatorname{Prob}(E)=0$: event will never happen
- $\operatorname{Prob}(E)=1$: event will certainly happen
- Since $0 \leq|E| \leq|S|$ and $\operatorname{Prob}(E)=|E| /|S|$, we have

$$
0 \leq \operatorname{Prob}(E) \leq 1
$$

- $\operatorname{Prob}(E)=0$: event will never happen
- $\operatorname{Prob}(E)=1$: event will certainly happen
- Example: For rolling two dice
$\operatorname{Prob}($ roll value is positive $)=1$
$\operatorname{Prob}($ roll value is negative $)=0$
- Since $0 \leq|E| \leq|S|$ and $\operatorname{Prob}(E)=|E| /|S|$, we have

$$
0 \leq \operatorname{Prob}(E) \leq 1
$$

- $\operatorname{Prob}(E)=0$: event will never happen
- $\operatorname{Prob}(E)=1$: event will certainly happen
- Example: For rolling two dice
$\operatorname{Prob}($ roll value is positive) $=1$
$\operatorname{Prob}($ roll value is negative $)=0$
- If If you ever calculate a probability as being negative or being greater than 1 , you've made a mistake.
- IUr definition

$$
\operatorname{Prob}(E)=\frac{|E|}{|S|}
$$

relies on two assumptions:

- IIOur definition

$$
\operatorname{Prob}(E)=\frac{|E|}{|S|}
$$

relies on two assumptions:

- $|S|$ is finite.
- IIOur definition

$$
\operatorname{Prob}(E)=\frac{|E|}{|S|}
$$

relies on two assumptions:

- $|S|$ is finite.
- All observations are equally likely.
- II Our definition

$$
\operatorname{Prob}(E)=\frac{|E|}{|S|}
$$

relies on two assumptions:

- $|S|$ is finite.
- All observations are equally likely.
- If these don't hold, the formula is incorrect.
- II Our definition

$$
\operatorname{Prob}(E)=\frac{|E|}{|S|}
$$

relies on two assumptions:

- $|S|$ is finite.
- All observations are equally likely.
- If these don't hold, the formula is incorrect.
- Example: Throwing a loaded die.

Terminology and background (cont'd)

- IUr definition

$$
\operatorname{Prob}(E)=\frac{|E|}{|S|}
$$

relies on two assumptions:

- $|S|$ is finite.
- All observations are equally likely.
- If these don't hold, the formula is incorrect.
- Example: Throwing a loaded die.
- Example: Choosing a ball out of a bag, where some balls are larger than others.

Terminology and background (cont'd)

Determine the probability that you flip a coin three times and that you get all heads.

Terminology and background (cont'd)

Determine the probability that you flip a coin three times and that you get all heads.

Solution: We can directly enumerate S and E :

Terminology and background (cont'd)

Determine the probability that you flip a coin three times and that you get all heads.

Solution: We can directly enumerate S and E :

$$
\begin{aligned}
S=\{ & (\mathrm{H}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{H}, \mathrm{~T}),(\mathrm{H}, \mathrm{~T}, \mathrm{H}),(\mathrm{H}, \mathrm{~T}, \mathrm{~T}),(\mathrm{T}, \mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{~T}), \\
& (\mathrm{T}, \mathrm{~T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T}, \mathrm{~T})\}
\end{aligned}
$$

Terminology and background (cont'd)

Determine the probability that you flip a coin three times and that you get all heads.

Solution: We can directly enumerate S and E :

$$
\begin{aligned}
S= & \{(\mathrm{H}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{H}, \mathrm{~T}),(\mathrm{H}, \mathrm{~T}, \mathrm{H}),(\mathrm{H}, \mathrm{~T}, \mathrm{~T}),(\mathrm{T}, \mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{~T}), \\
& (\mathrm{T}, \mathrm{~T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T}, \mathrm{~T})\} \\
E= & \{(\mathrm{H}, \mathrm{H}, \mathrm{H})\}
\end{aligned}
$$

Terminology and background (cont'd)

Determine the probability that you flip a coin three times and that you get all heads.

Solution: We can directly enumerate S and E :

$$
\begin{aligned}
S= & \{(\mathrm{H}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{H}, \mathrm{~T}),(\mathrm{H}, \mathrm{~T}, \mathrm{H}),(\mathrm{H}, \mathrm{~T}, \mathrm{~T}),(\mathrm{T}, \mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{~T}), \\
& (\mathrm{T}, \mathrm{~T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T}, \mathrm{~T})\} \\
E= & \{(\mathrm{H}, \mathrm{H}, \mathrm{H})\} \\
\operatorname{Prob}(E)= & \frac{|E|}{|S|}=\frac{1}{8}=0.125 .
\end{aligned}
$$

Terminology and background (cont'd)

Determine the probability that you flip a coin 10 times and that you get all heads.

Terminology and background (cont'd)

Determine the probability that you flip a coin 10 times and that you get all heads.

Solution:

- S is too big to enumerate.

Terminology and background (cont'd)

Determine the probability that you flip a coin 10 times and that you get all heads.

Solution:

- S is too big to enumerate.
- Use the multiplication rule:

$$
\begin{aligned}
|S| & =2 \times 2 \times 2=2^{10}=1,024 \\
|E| & =1 \times 1 \times 1=1^{10}=1 \\
\operatorname{Prob}(E) & =\frac{|E|}{|S|}=\frac{1}{1,024}=0.00098 .
\end{aligned}
$$

Terminology and background (cont'd)

Determine the probability that you flip a coin 10 times and that you get all heads.

Solution:

- S is too big to enumerate.
- Use the multiplication rule:

$$
\begin{aligned}
& |S|=2 \times 2 \times 2=2^{10}=1,024 \\
& |E|=1 \times 1 \times 1=1^{10}=1
\end{aligned}
$$

$$
\operatorname{Prob}(E)=\frac{|E|}{|S|}=\frac{1}{1,024}=0.00098
$$

- Of course, we really know $|E|=1$ directly, since

$$
E=\{(\mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{H})\}
$$

Terminology and background (cont'd)

Determine the probability that you flip a coin three times and that you get exactly two heads.

Terminology and background (cont'd)

Determine the probability that you flip a coin three times and that you get exactly two heads.

Solution:

$$
\begin{aligned}
S=\{ & \{\mathrm{H}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{H}, \mathrm{~T}),(\mathrm{H}, \mathrm{~T}, \mathrm{H}),(\mathrm{H}, \mathrm{~T}, \mathrm{~T}),(\mathrm{T}, \mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{~T}), \\
& (\mathrm{T}, \mathrm{~T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T}, \mathrm{~T})\}
\end{aligned}
$$

Terminology and background (cont'd)

Determine the probability that you flip a coin three times and that you get exactly two heads.

Solution:

$$
\begin{aligned}
S= & \{(\mathrm{H}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{H}, \mathrm{~T}),(\mathrm{H}, \mathrm{~T}, \mathrm{H}),(\mathrm{H}, \mathrm{~T}, \mathrm{~T}),(\mathrm{T}, \mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{~T}), \\
& (\mathrm{T}, \mathrm{~T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T}, \mathrm{~T})\} \\
E= & \{(\mathrm{H}, \mathrm{H}, \mathrm{~T}),(\mathrm{H}, \mathrm{~T}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{H})\}
\end{aligned}
$$

Terminology and background (cont'd)

Determine the probability that you flip a coin three times and that you get exactly two heads.

Solution:

$$
\begin{aligned}
S= & \{(\mathrm{H}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{H}, \mathrm{~T}),(\mathrm{H}, \mathrm{~T}, \mathrm{H}),(\mathrm{H}, \mathrm{~T}, \mathrm{~T}),(\mathrm{T}, \mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{~T}), \\
& (\mathrm{T}, \mathrm{~T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T}, \mathrm{~T})\} \\
E= & \{(\mathrm{H}, \mathrm{H}, \mathrm{~T}),(\mathrm{H}, \mathrm{~T}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{H})\} \\
\operatorname{Prob}(E)= & \frac{|E|}{|S|}=\frac{3}{8}=0.375 .
\end{aligned}
$$

Terminology and background (cont'd)

Determine the probability that you flip a coin ten times and that you get exactly two heads.

Terminology and background (cont'd)

Determine the probability that you flip a coin ten times and that you get exactly two heads.

This is an example of a Bernoulli trial. We'll look at this later.

Terminology and background (cont'd)

Given a standard deck of cards, which is the probability of drawing one card and that card being a 2 or a 3 ?

Terminology and background (cont'd)

Given a standard deck of cards, which is the probability of drawing one card and that card being a 2 or a 3 ?

Solution:

$$
|S|=52
$$

Terminology and background (cont'd)

Given a standard deck of cards, which is the probability of drawing one card and that card being a 2 or a 3 ?

Solution:

$$
\begin{aligned}
|S| & =52, \\
E & =\{2 \boldsymbol{\leftrightarrow}, 2 \diamond, 2 \circlearrowleft, 2 \boldsymbol{\wedge}, 3 \boldsymbol{\mathbf { p }}, 3 \diamond, 3 \diamond, 3 \mathbf{\wedge}\}, \text { so that }|E|=8,
\end{aligned}
$$

Terminology and background (cont'd)

Given a standard deck of cards, which is the probability of drawing one card and that card being a 2 or a 3?

Solution:

$$
\begin{aligned}
|S| & =52, \\
E & =\{2 \boldsymbol{\psi}, 2 \diamond, 2 \circlearrowleft, 2 \boldsymbol{4}, 3 \uparrow, 3 \diamond, 3 \circlearrowleft, 3 \uparrow\}, \text { so that }|E|=8, \\
\operatorname{Prob}(E) & =\frac{8}{52}=\frac{2}{13}=0.154 .
\end{aligned}
$$

Complement

- If E is an event in S, then its complement is given by

$$
E^{\prime}=S-E
$$

Complement

- If E is an event in S, then its complement is given by

$$
E^{\prime}=S-E
$$

- Note that

$$
E^{\prime} \cup E=S \quad \text { and } \quad E^{\prime} \cap E=\emptyset
$$

Complement

- If E is an event in S, then its complement is given by

$$
E^{\prime}=S-E
$$

- Note that

$$
E^{\prime} \cup E=S \quad \text { and } \quad E^{\prime} \cap E=\emptyset
$$

- Probability of a complement?

$$
\operatorname{Prob}\left(E^{\prime}\right)=1-\operatorname{Prob}(E)
$$

Complement

- If E is an event in S, then its complement is given by

$$
E^{\prime}=S-E
$$

- Note that

$$
E^{\prime} \cup E=S \quad \text { and } \quad E^{\prime} \cap E=\emptyset
$$

- Probability of a complement?

$$
\operatorname{Prob}\left(E^{\prime}\right)=1-\operatorname{Prob}(E)
$$

- Why? Since

$$
\left|E^{\prime}\right|=|S|-|E|
$$

it follows that

$$
\operatorname{Prob}\left(E^{\prime}\right)=\frac{\left|E^{\prime}\right|}{|S|}=\frac{|S|-|E|}{|S|}=\frac{|S|}{|S|}-\frac{|E|}{|S|}=1-\operatorname{Prob}(E) .
$$

Complement (cont'd)

- Probability of a complement is

$$
\operatorname{Prob}\left(E^{\prime}\right)=1-\operatorname{Prob}(E)
$$

Complement (cont'd)

- Probability of a complement is

$$
\operatorname{Prob}\left(E^{\prime}\right)=1-\operatorname{Prob}(E)
$$

- Why is this important?

Complement (cont'd)

- Probability of a complement is

$$
\operatorname{Prob}\left(E^{\prime}\right)=1-\operatorname{Prob}(E)
$$

- Why is this important?
- Sometimes it's easier to find the probability of some event E by

Complement (cont'd)

- Probability of a complement is

$$
\operatorname{Prob}\left(E^{\prime}\right)=1-\operatorname{Prob}(E)
$$

- Why is this important?
- Sometimes it's easier to find the probability of some event E by
- computing the probability of its complementary event E^{\prime}, and then

Complement (cont'd)

- Probability of a complement is

$$
\operatorname{Prob}\left(E^{\prime}\right)=1-\operatorname{Prob}(E)
$$

- Why is this important?
- Sometimes it's easier to find the probability of some event E by
- computing the probability of its complementary event E^{\prime}, and then
- computing $\operatorname{Prob}(E)=1-\operatorname{Prob}\left(E^{\prime}\right)$.

Complement (cont'd)

- The birthday "paradox": Given a class with 9 students, what is the probability that at least two students will share the same birth month?

Complement (cont'd)

- The birthday "paradox": Given a class with 9 students, what is the probability that at least two students will share the same birth month?
- Solution: Let
$S=$ "all possible assignments of months to the 9 students",
$E=$ "all such assignments, at least one month is repeated".

Complement (cont'd)

- The birthday "paradox": Given a class with 9 students, what is the probability that at least two students will share the same birth month?
- Solution: Let
$S=$ "all possible assignments of months to the 9 students",
$E=$ "all such assignments, at least one month is repeated".
- Easy to see that $|S|=12^{9}=515,978,035,235$.

Complement (cont'd)

- The birthday "paradox": Given a class with 9 students, what is the probability that at least two students will share the same birth month?
- Solution: Let
$S=$ "all possible assignments of months to the 9 students",
$E=$ "all such assignments, at least one month is repeated".
- Easy to see that $|S|=12^{9}=515,978,035,235$.
- Calculating $|E|$: seems hard, so calculate $\left|E^{\prime}\right|$ instead:

$$
\left|E^{\prime}\right|=P(12,9)=12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4=79,833,600
$$

Thus

$$
\operatorname{Prob}\left(E^{\prime}\right)=\frac{\left|E^{\prime}\right|}{|S|}=\frac{79,833,600}{515,978,035,235}=0.01547=15.47 \%
$$

So

$$
\operatorname{Prob}(E)=1-\operatorname{Prob}\left(E^{\prime}\right)=1-0.01547=0.98453=98.453 \%
$$

Elementary rules for probability

- Recall addition and multiplication rules for counting.

Elementary rules for probability

- Recall addition and multiplication rules for counting.
- Similarly, there are addition and multiplication rules for probability.

Elementary rules for probability

- Recall addition and multiplication rules for counting.
- Similarly, there are addition and multiplication rules for probability.
- To properly state these rules, we need two new concepts: disjointness and independence:

Elementary rules for probability

- Recall addition and multiplication rules for counting.
- Similarly, there are addition and multiplication rules for probability.
- To properly state these rules, we need two new concepts: disjointness and independence:
- Two or more events are disjoint if the outcomes associated with one event are not present in the outcomes of any of the other events (i.e., if the events form non-overlapping sets). More formally, two events E_{1} and E_{2} are disjoint if $E_{1} \cap E_{2}=\emptyset$.

Elementary rules for probability

- Recall addition and multiplication rules for counting.
- Similarly, there are addition and multiplication rules for probability.
- To properly state these rules, we need two new concepts: disjointness and independence:
- Two or more events are disjoint if the outcomes associated with one event are not present in the outcomes of any of the other events (i.e., if the events form non-overlapping sets). More formally, two events E_{1} and E_{2} are disjoint if $E_{1} \cap E_{2}=\emptyset$.
- Two events E_{1} and E_{2} are independent if the outcome of any one of these events does not in any way impact or influence the outcome of the other event.
More formally, two events E_{1} and E_{2} are independent if

$$
\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)
$$

Elementary rules for probability (cont'd)

- Example: A six-sided die is rolled. Are the events "roll an odd number" and "roll an even number" disjoint?

Elementary rules for probability (cont'd)

- Example: A six-sided die is rolled. Are the events "roll an odd number" and "roll an even number" disjoint?
- Solution: Let

$$
E_{1}=\text { "roll an odd number" }=\{1,3,5\}
$$

and

$$
E_{2}=\text { "roll an even number" }=\{2,4,6\}
$$

Since $E_{1} \cap E_{2}=\emptyset$ contains no elements, the events are disjoint.

Elementary rules for probability (cont'd)

- Example: A six-sided die is rolled. Are the events "roll an odd number" and "roll an even number" independent?

Elementary rules for probability (cont'd)

- Example: A six-sided die is rolled. Are the events "roll an odd number" and "roll an even number" independent?
- Solution: The events are not independent.

Elementary rules for probability (cont'd)

- Example: A six-sided die is rolled. Are the events "roll an odd number" and "roll an even number" independent?
- Solution: The events are not independent.
- Using the informal criterion: If we know that event E_{1} has occurred, then event E_{2} can never occur. Moreover, if E_{1} has not occurred, then E_{2} must occur. Since the outcome of E_{1} influences the outcome of E_{2}, the events E_{1} and E_{2} are not independent.

Elementary rules for probability (cont'd)

- Example: A six-sided die is rolled. Are the events "roll an odd number" and "roll an even number" independent?
- Solution: The events are not independent.
- Using the informal criterion: If we know that event E_{1} has occurred, then event E_{2} can never occur. Moreover, if E_{1} has not occurred, then E_{2} must occur. Since the outcome of E_{1} influences the outcome of E_{2}, the events E_{1} and E_{2} are not independent.
- Using the formal criterion:

Elementary rules for probability (cont'd)

- Example: A six-sided die is rolled. Are the events "roll an odd number" and "roll an even number" independent?
- Solution: The events are not independent.
- Using the informal criterion: If we know that event E_{1} has occurred, then event E_{2} can never occur. Moreover, if E_{1} has not occurred, then E_{2} must occur. Since the outcome of E_{1} influences the outcome of E_{2}, the events E_{1} and E_{2} are not independent.
- Using the formal criterion:
- We know that $\operatorname{Prob}\left(E_{1}\right)=\frac{3}{6}=\frac{1}{2}$ and $\operatorname{Prob}\left(E_{2}\right)=\frac{3}{6}=\frac{1}{2}$. Hence $\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)=\frac{1}{4}$.

Elementary rules for probability (cont'd)

- Example: A six-sided die is rolled. Are the events "roll an odd number" and "roll an even number" independent?
- Solution: The events are not independent.
- Using the informal criterion: If we know that event E_{1} has occurred, then event E_{2} can never occur. Moreover, if E_{1} has not occurred, then E_{2} must occur. Since the outcome of E_{1} influences the outcome of E_{2}, the events E_{1} and E_{2} are not independent.
- Using the formal criterion:
- We know that $\operatorname{Prob}\left(E_{1}\right)=\frac{3}{6}=\frac{1}{2}$ and $\operatorname{Prob}\left(E_{2}\right)=\frac{3}{6}=\frac{1}{2}$. Hence $\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)=\frac{1}{4}$.
- Since $E_{1} \cap E_{2}=\emptyset$, we find that $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=0$.

Elementary rules for probability (cont'd)

- Example: A six-sided die is rolled. Are the events "roll an odd number" and "roll an even number" independent?
- Solution: The events are not independent.
- Using the informal criterion: If we know that event E_{1} has occurred, then event E_{2} can never occur. Moreover, if E_{1} has not occurred, then E_{2} must occur. Since the outcome of E_{1} influences the outcome of E_{2}, the events E_{1} and E_{2} are not independent.
- Using the formal criterion:
- We know that $\operatorname{Prob}\left(E_{1}\right)=\frac{3}{6}=\frac{1}{2}$ and $\operatorname{Prob}\left(E_{2}\right)=\frac{3}{6}=\frac{1}{2}$. Hence $\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)=\frac{1}{4}$.
- Since $E_{1} \cap E_{2}=\emptyset$, we find that $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=0$.
- So $\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right) \neq \operatorname{Prob}\left(E_{1} \cap E_{2}\right)$.

Elementary rules for probability (cont'd)

- Example: A six-sided die is rolled. Are the events "roll an odd number" and "roll an even number" independent?
- Solution: The events are not independent.
- Using the informal criterion: If we know that event E_{1} has occurred, then event E_{2} can never occur. Moreover, if E_{1} has not occurred, then E_{2} must occur. Since the outcome of E_{1} influences the outcome of E_{2}, the events E_{1} and E_{2} are not independent.
- Using the formal criterion:
- We know that $\operatorname{Prob}\left(E_{1}\right)=\frac{3}{6}=\frac{1}{2}$ and $\operatorname{Prob}\left(E_{2}\right)=\frac{3}{6}=\frac{1}{2}$. Hence $\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)=\frac{1}{4}$.
- Since $E_{1} \cap E_{2}=\emptyset$, we find that $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=0$.
- So $\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right) \neq \operatorname{Prob}\left(E_{1} \cap E_{2}\right)$.

Elementary rules for probability (cont'd)

- Example: A six-sided die is rolled. Are the events "roll an odd number" and "roll an even number" independent?
- Solution: The events are not independent.
- Using the informal criterion: If we know that event E_{1} has occurred, then event E_{2} can never occur. Moreover, if E_{1} has not occurred, then E_{2} must occur. Since the outcome of E_{1} influences the outcome of E_{2}, the events E_{1} and E_{2} are not independent.
- Using the formal criterion:
- We know that $\operatorname{Prob}\left(E_{1}\right)=\frac{3}{6}=\frac{1}{2}$ and $\operatorname{Prob}\left(E_{2}\right)=\frac{3}{6}=\frac{1}{2}$. Hence $\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)=\frac{1}{4}$.
- Since $E_{1} \cap E_{2}=\emptyset$, we find that $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=0$.
- So $\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right) \neq \operatorname{Prob}\left(E_{1} \cap E_{2}\right)$.

Second part establishes a useful general result: disjoint events (having non-zero probabilities) are never independent.

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw disjoint?

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw disjoint?
- Solution: Let E_{1} and E_{2} denote the events of drawing the first and second cards from the deck. Clearly $E_{1} \cap E_{2}$ consists of 51 possibilities. Thus $E_{1} \cap E_{2} \neq \emptyset$, and so the outcomes are not disjoint.

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw independent?

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw independent?
- Solution: The events are not independent.

Informal criterion:

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw independent?
- Solution: The events are not independent.

Informal criterion:

- The outcome of E_{1} has some influence on E_{2}.

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw independent?
- Solution: The events are not independent.

Informal criterion:

- The outcome of E_{1} has some influence on E_{2}.
- For example, if A is drawn on the first draw then it cannot be drawn on the second draw.

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw independent?

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw independent?
- Solution: The events are not independent.

Formal criterion:

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw independent?
- Solution: The events are not independent.

Formal criterion:

- Choose a specific outcome, such as $E_{1}=$ "drawing A ${ }^{\text {" }}$ " and $E_{2}=$ "drawing K \mathbf{Q}^{\prime} ".

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw independent?
- Solution: The events are not independent.

Formal criterion:

- Choose a specific outcome, such as $E_{1}=$ "drawing A ${ }^{\text {" }}$ " and $E_{2}=$ "drawing K $\mathbf{\phi}^{\prime}$ ".
- We know that $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\frac{1}{52} \cdot \frac{1}{51}=\frac{1}{2,652}$.

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw independent?
- Solution: The events are not independent.

Formal criterion:

- Choose a specific outcome, such as $E_{1}=$ "drawing A ${ }^{\boldsymbol{\phi}}$ " and $E_{2}=$ "drawing K $\mathbf{\phi}^{\prime}$ ".
- We know that $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\frac{1}{52} \cdot \frac{1}{51}=\frac{1}{2,652}$.
- Clearly, $\operatorname{Prob}\left(E_{1}\right)=\frac{1}{52}$.

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw independent?
- Solution: The events are not independent.

Formal criterion:

- Choose a specific outcome, such as $E_{1}=$ "drawing A ${ }^{\wedge}$ " and $E_{2}=$ "drawing K $\boldsymbol{\phi}^{\prime}$ ".
- We know that $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\frac{1}{52} \cdot \frac{1}{51}=\frac{1}{2,652}$.
- Clearly, $\operatorname{Prob}\left(E_{1}\right)=\frac{1}{52}$.
- With no knowledge of E_{2}, we have $\operatorname{Prob}\left(E_{2}\right)=\frac{1}{52}$.

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw independent?
- Solution: The events are not independent.

Formal criterion:

- Choose a specific outcome, such as $E_{1}=$ "drawing A ${ }^{\wedge}$ " and $E_{2}=$ "drawing K $\boldsymbol{\phi}^{\prime}$ ".
- We know that $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\frac{1}{52} \cdot \frac{1}{51}=\frac{1}{2,652}$.
- Clearly, $\operatorname{Prob}\left(E_{1}\right)=\frac{1}{52}$.
- With no knowledge of E_{2}, we have $\operatorname{Prob}\left(E_{2}\right)=\frac{1}{52}$.
- So $\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)=\frac{1}{52} \cdot \frac{1}{52}=\frac{1}{2,704}$.

Elementary rules for probability (cont'd)

- Example: Two cards are drawn from a fresh deck without replacement. Are the outcomes associated with each draw independent?
- Solution: The events are not independent.

Formal criterion:

- Choose a specific outcome, such as $E_{1}=$ "drawing A ${ }^{\phi}$ " and $E_{2}=$ "drawing K $\boldsymbol{\phi}^{\prime}$ ".
- We know that $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\frac{1}{52} \cdot \frac{1}{51}=\frac{1}{2,652}$.
- Clearly, $\operatorname{Prob}\left(E_{1}\right)=\frac{1}{52}$.
- With no knowledge of E_{2}, we have $\operatorname{Prob}\left(E_{2}\right)=\frac{1}{52}$.
- So $\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)=\frac{1}{52} \cdot \frac{1}{52}=\frac{1}{2,704}$.
- Since $\operatorname{Prob}\left(E_{1} \cap E_{2}\right) \neq \operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)$, the events are not independent.

Addition rule for probability

- Let E_{1} and E_{2} be disjoint events. Then

$$
\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right)
$$

Addition rule for probability

- Let E_{1} and E_{2} be disjoint events. Then

$$
\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right)
$$

- Why?

Addition rule for probability

- Let E_{1} and E_{2} be disjoint events. Then

$$
\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right)
$$

- Why?
- Since E_{1} and E_{2} are disjoint,

$$
\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|
$$

(recall from chapter on sets).

Addition rule for probability

- Let E_{1} and E_{2} be disjoint events. Then

$$
\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right)
$$

- Why?
- Since E_{1} and E_{2} are disjoint,

$$
\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|
$$

(recall from chapter on sets).

- So

$$
\begin{aligned}
\operatorname{Prob}\left(E_{1} \cup E_{2}\right) & =\frac{\left|E_{1} \cup E_{2}\right|}{|S|}=\frac{\left|E_{1}\right|}{|S|}+\frac{\left|E_{2}\right|}{|S|} \\
& =\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right) .
\end{aligned}
$$

Addition rule for probability (cont'd)

- Example: What is the probability of drawing a blackjack in the initial deal from a fresh deck?

Addition rule for probability (cont'd)

- Example: What is the probability of drawing a blackjack in the initial deal from a fresh deck?
- Solution: Since they are disjoint events, we have

$$
\begin{aligned}
\operatorname{Prob}(\text { blackjack })= & \text { Prob }(\text { ace }, \text { then value }=10) \\
& +\operatorname{Prob}(\text { value }=10, \text { then ace }) .
\end{aligned}
$$

Addition rule for probability (cont'd)

- Example: What is the probability of drawing a blackjack in the initial deal from a fresh deck?
- Solution: Since they are disjoint events, we have

$$
\begin{aligned}
\operatorname{Prob}(\text { blackjack })= & \operatorname{Prob}(\text { ace }, \text { then value }=10) \\
& +\operatorname{Prob}(\text { value }=10, \text { then ace }) .
\end{aligned}
$$

- We have
$\operatorname{Prob}($ ace, then value $=10)=\operatorname{Prob}($ ace on first draw $)$

$$
\begin{aligned}
& \quad \times \operatorname{Prob}(\text { value }=10 \text { on second draw }) \\
& =\frac{4}{52} \times \frac{16}{51}=0.024
\end{aligned}
$$

$\operatorname{Prob}($ value $=10$, then ace $)=\operatorname{Prob}($ value $=10$ on first draw $)$

$$
\begin{aligned}
& \times \operatorname{Prob}(\text { ace on second draw }) \\
= & \frac{16}{52} \times \frac{4}{51}=0.024 .
\end{aligned}
$$

Addition rule for probability (cont'd)

- Example: What is the probability of drawing a blackjack in the initial deal from a fresh deck?
- Solution: Since they are disjoint events, we have

$$
\begin{aligned}
\operatorname{Prob}(\text { blackjack })= & \operatorname{Prob}(\text { ace }, \text { then value }=10) \\
& +\operatorname{Prob}(\text { value }=10, \text { then ace }) .
\end{aligned}
$$

- We have
$\operatorname{Prob}($ ace, then value $=10)=\operatorname{Prob}($ ace on first draw $)$

$$
\begin{aligned}
& \quad \times \operatorname{Prob}(\text { value }=10 \text { on second draw }) \\
& =\frac{4}{52} \times \frac{16}{51}=0.024
\end{aligned}
$$

$\operatorname{Prob}($ value $=10$, then ace $)=\operatorname{Prob}($ value $=10$ on first draw $)$
$\times \operatorname{Prob}($ ace on second draw)

$$
=\frac{16}{52} \times \frac{4}{51}=0.024
$$

- Thus Prob(blackjack) $=0.024+0.024=0.048$ (or $4.8 \%)$.

Addition rule for probability (cont'd)

- Example: A person rolls a die and wins a prize if the roll is a 1 or a 2 . What is the probability of winning?

Addition rule for probability (cont'd)

- Example: A person rolls a die and wins a prize if the roll is a 1 or a 2 . What is the probability of winning?
- Solution: The events $E_{1}=\{1\}$ and $E_{2}=\{2\}$ are disjoint. So

$$
\begin{aligned}
\operatorname{Prob}(1 \text { or } 2) & =\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right) \\
& =\frac{1}{6}+\frac{1}{6}=\frac{1}{3}=0.333
\end{aligned}
$$

Addition rule for probability (cont'd)

- Example: A person rolls a die and wins a prize if the roll is a 1 or a 2 . What is the probability of winning?
- Solution: The events $E_{1}=\{1\}$ and $E_{2}=\{2\}$ are disjoint. So

$$
\begin{aligned}
\operatorname{Prob}(1 \text { or } 2) & =\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right) \\
& =\frac{1}{6}+\frac{1}{6}=\frac{1}{3}=0.333
\end{aligned}
$$

- This was easy enough to do directly, since we're interested in $\operatorname{Prob}(E)$ for $E=\{1,2\}$. So

$$
\operatorname{Prob}(E)=\frac{|E|}{|S|}=\frac{2}{6}=\frac{1}{3}=0.333 .
$$

Multiplication rule for probability

- If E_{1} and E_{2} are independent events, then

$$
\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)
$$

Multiplication rule for probability

- If E_{1} and E_{2} are independent events, then

$$
\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)
$$

- Why? This is simply the formal definition of independence.

Multiplication rule for probability (cont'd)

- Example: Determine the probability that you flip a coin three times and that you get exactly three heads.

Multiplication rule for probability (cont'd)

- Example: Determine the probability that you flip a coin three times and that you get exactly three heads.
- Solution: Let
$E=$ "flip coin three times and get all heads"

Multiplication rule for probability (cont'd)

- Example: Determine the probability that you flip a coin three times and that you get exactly three heads.
- Solution: Let

$$
E=\text { "flip coin three times and get all heads" }
$$

- Constituent events

$$
E_{i}=\text { "toss } \# i \text { is a head" } \quad(i=1,2,3)
$$

are intuitively independent, and so

$$
\begin{aligned}
\operatorname{Prob}(E) & =\operatorname{Prob}\left(E_{1} \cap E_{2} \cap E_{3}\right) \\
& =\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right) \cdot \operatorname{Prob}\left(E_{3}\right) .
\end{aligned}
$$

Multiplication rule for probability (cont'd)

- Example: Determine the probability that you flip a coin three times and that you get exactly three heads.
- Solution: Let

$$
E=\text { "flip coin three times and get all heads" }
$$

- Constituent events

$$
E_{i}=\text { "toss } \# i \text { is a head" } \quad(i=1,2,3)
$$

are intuitively independent, and so

$$
\begin{aligned}
\operatorname{Prob}(E) & =\operatorname{Prob}\left(E_{1} \cap E_{2} \cap E_{3}\right) \\
& =\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right) \cdot \operatorname{Prob}\left(E_{3}\right) .
\end{aligned}
$$

- Clearly

$$
\operatorname{Prob}\left(E_{1}\right)=\operatorname{Prob}\left(E_{2}\right)=\operatorname{Prob}\left(E_{3}\right)=\frac{1}{2} .
$$

Multiplication rule for probability (cont'd)

- Example: Determine the probability that you flip a coin three times and that you get exactly three heads.
- Solution: Let

$$
E=\text { "flip coin three times and get all heads" }
$$

- Constituent events

$$
E_{i}=\text { "toss } \# i \text { is a head" } \quad(i=1,2,3)
$$

are intuitively independent, and so

$$
\begin{aligned}
\operatorname{Prob}(E) & =\operatorname{Prob}\left(E_{1} \cap E_{2} \cap E_{3}\right) \\
& =\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right) \cdot \operatorname{Prob}\left(E_{3}\right) .
\end{aligned}
$$

- Clearly

$$
\operatorname{Prob}\left(E_{1}\right)=\operatorname{Prob}\left(E_{2}\right)=\operatorname{Prob}\left(E_{3}\right)=\frac{1}{2} .
$$

- So

$$
\operatorname{Prob}(E)=\frac{1}{8}=0.125
$$

Multiplication rule for probability (cont'd)

- Example: Buying a car, with the following options:

Multiplication rule for probability (cont'd)

- Example: Buying a car, with the following options:
- color (8 choices, including red)

Multiplication rule for probability (cont'd)

- Example: Buying a car, with the following options:
- color (8 choices, including red)
- A/C (yes or no)

Multiplication rule for probability (cont'd)

- Example: Buying a car, with the following options:
- color (8 choices, including red)
- A/C (yes or no)
- 4WD (yes or no)

Multiplication rule for probability (cont'd)

- Example: Buying a car, with the following options:
- color (8 choices, including red)
- A/C (yes or no)
- 4WD (yes or no)

Multiplication rule for probability (cont'd)

- Example: Buying a car, with the following options:
- color (8 choices, including red)
- A/C (yes or no)
- 4WD (yes or no)

Can't decide, so choose randomly. What is the probability that you will wind up with a red car, with air-conditioning, but without the 4 -wheel drive option?

Multiplication rule for probability (cont'd)

- Solution: Let E denote the event of interest (red car, A/C, no 4WD). Constituent events are

$$
\begin{aligned}
& E_{1}=\text { "choose red color" } \\
& E_{2}=\text { "choose } A / C \text { option" } \\
& E_{3}=\text { "don't choose } 4 W D \text { option" }
\end{aligned}
$$

with corresponding sample spaces of sizes

$$
\left|S_{1}\right|=8,\left|S_{2}\right|=2,\left|S_{3}\right|=2
$$

Multiplication rule for probability (cont'd)

- Solution: Let E denote the event of interest (red car, A/C, no 4WD). Constituent events are

$$
\begin{aligned}
& E_{1}=\text { "choose red color" } \\
& E_{2}=\text { "choose } A / C \text { option" } \\
& E_{3}=\text { "don't choose } 4 W D \text { option" }
\end{aligned}
$$

with corresponding sample spaces of sizes

$$
\left|S_{1}\right|=8,\left|S_{2}\right|=2,\left|S_{3}\right|=2
$$

- Since $\left|E_{1}\right|=\left|E_{2}\right|=\left|E_{3}\right|=1$, we have

$$
\operatorname{Prob}\left(E_{1}\right)=\frac{1}{8}, \operatorname{Prob}\left(E_{2}\right)=\frac{1}{2}, \operatorname{Prob}\left(E_{3}\right)=\frac{1}{2} .
$$

Multiplication rule for probability (cont'd)

- Solution: Let E denote the event of interest (red car, A/C, no 4WD). Constituent events are

$$
\begin{aligned}
& E_{1}=\text { "choose red color" } \\
& E_{2}=\text { "choose } A / C \text { option" } \\
& E_{3}=\text { "don't choose } 4 W D \text { option". }
\end{aligned}
$$

with corresponding sample spaces of sizes

$$
\left|S_{1}\right|=8,\left|S_{2}\right|=2,\left|S_{3}\right|=2
$$

- Since $\left|E_{1}\right|=\left|E_{2}\right|=\left|E_{3}\right|=1$, we have

$$
\operatorname{Prob}\left(E_{1}\right)=\frac{1}{8}, \operatorname{Prob}\left(E_{2}\right)=\frac{1}{2}, \operatorname{Prob}\left(E_{3}\right)=\frac{1}{2} .
$$

- Since the events are intuitively independent, we have

$$
\begin{aligned}
\operatorname{Prob}(E) & =\operatorname{Prob}\left(E_{1} \cap E_{2} \cap E_{3}\right) \\
& =\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right) \cdot \operatorname{Prob}\left(E_{3}\right) \\
& =\frac{1}{8} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{32}=0.031
\end{aligned}
$$

General rules for probability

- Elementary rules hold only in special cases:

General rules for probability

- Elementary rules hold only in special cases:
- Addition rule: events must be disjoint

General rules for probability

- Elementary rules hold only in special cases:
- Addition rule: events must be disjoint
- Multiplication rule: events must be independent

General rules for probability

- Elementary rules hold only in special cases:
- Addition rule: events must be disjoint
- Multiplication rule: events must be independent
- What to do if these don't hold?

General rules for probability

- Elementary rules hold only in special cases:
- Addition rule: events must be disjoint
- Multiplication rule: events must be independent
- What to do if these don't hold?
- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2 ?

General rules for probability

- Elementary rules hold only in special cases:
- Addition rule: events must be disjoint
- Multiplication rule: events must be independent
- What to do if these don't hold?
- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2?
- Solution:

General rules for probability

- Elementary rules hold only in special cases:
- Addition rule: events must be disjoint
- Multiplication rule: events must be independent
- What to do if these don't hold?
- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2?
- Solution:
- Let S be the sample space. Then $|S|=52$.

General rules for probability

- Elementary rules hold only in special cases:
- Addition rule: events must be disjoint
- Multiplication rule: events must be independent
- What to do if these don't hold?
- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2?
- Solution:
- Let S be the sample space. Then $|S|=52$.
- Let E_{1} be the event "pick a red card". Then $\left|E_{1}\right|=26$.

General rules for probability

- Elementary rules hold only in special cases:
- Addition rule: events must be disjoint
- Multiplication rule: events must be independent
- What to do if these don't hold?
- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2?
- Solution:
- Let S be the sample space. Then $|S|=52$.
- Let E_{1} be the event "pick a red card". Then $\left|E_{1}\right|=26$.
- Let E_{2} be the event "pick a two". Then $\left|E_{2}\right|=4$.

General rules for probability

- Elementary rules hold only in special cases:
- Addition rule: events must be disjoint
- Multiplication rule: events must be independent
- What to do if these don't hold?
- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2 ?
- Solution:
- Let S be the sample space. Then $|S|=52$.
- Let E_{1} be the event "pick a red card". Then $\left|E_{1}\right|=26$.
- Let E_{2} be the event "pick a two". Then $\left|E_{2}\right|=4$.
- Note that $\left|E_{1} \cup E_{2}\right| \neq\left|E_{1}\right|+\left|E_{2}\right|=30$. Since there are two black 2's and two red 2's, we don't want to double-count the red 2's! So $\left|E_{1} \cup E_{2}\right|=28$.

General rules for probability

- Elementary rules hold only in special cases:
- Addition rule: events must be disjoint
- Multiplication rule: events must be independent
- What to do if these don't hold?
- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2?
- Solution:
- Let S be the sample space. Then $|S|=52$.
- Let E_{1} be the event "pick a red card". Then $\left|E_{1}\right|=26$.
- Let E_{2} be the event "pick a two". Then $\left|E_{2}\right|=4$.
- Note that $\left|E_{1} \cup E_{2}\right| \neq\left|E_{1}\right|+\left|E_{2}\right|=30$. Since there are two black 2's and two red 2's, we don't want to double-count the red 2's! So $\left|E_{1} \cup E_{2}\right|=28$.
- So

$$
\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\frac{\left|E_{1} \cup E_{2}\right|}{|S|}=\frac{28}{52}=0.538 .
$$

General addition rule for probability

- For any two events E_{1} and E_{2},

$$
\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right)-\operatorname{Prob}\left(E_{1} \cap E_{2}\right)
$$

General addition rule for probability

- For any two events E_{1} and E_{2},

$$
\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right)-\operatorname{Prob}\left(E_{1} \cap E_{2}\right)
$$

- Why? Simple consequence of the inclusion/exclusion rule

$$
\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|
$$

General addition rule for probability

- For any two events E_{1} and E_{2},

$$
\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right)-\operatorname{Prob}\left(E_{1} \cap E_{2}\right)
$$

- Why? Simple consequence of the inclusion/exclusion rule

$$
\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|
$$

- Note that this reduces to the earlier rule

$$
\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right) \quad \text { for disjoint } E_{1}, E_{2}
$$

General addition rule for probability (cont'd)

- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2 ?

General addition rule for probability (cont'd)

- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2 ?
- Solution:

General addition rule for probability (cont'd)

- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2 ?
- Solution:
- $|S|=52$, as before.

General addition rule for probability (cont'd)

- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2 ?
- Solution:
- $|S|=52$, as before.
- Let $E_{1}=$ "pick a red card". Then $\left|E_{1}\right|=26$, and so $\operatorname{Prob}\left(E_{1}\right)=\frac{26}{52}=\frac{1}{2}$.

General addition rule for probability (cont'd)

- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2 ?
- Solution:
- $|S|=52$, as before.
- Let $E_{1}=$ "pick a red card". Then $\left|E_{1}\right|=26$, and so $\operatorname{Prob}\left(E_{1}\right)=\frac{26}{52}=\frac{1}{2}$.
- Let $E_{2}=$ "pick a 2 ". Then $\left|E_{2}\right|=4$, and so $\operatorname{Prob}\left(E_{2}\right)=\frac{4}{52}=\frac{1}{13}$.

General addition rule for probability (cont'd)

- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2 ?
- Solution:
- $|S|=52$, as before.
- Let $E_{1}=$ "pick a red card". Then $\left|E_{1}\right|=26$, and so $\operatorname{Prob}\left(E_{1}\right)=\frac{26}{52}=\frac{1}{2}$.
- Let $E_{2}=$ "pick a 2 ". Then $\left|E_{2}\right|=4$, and so $\operatorname{Prob}\left(E_{2}\right)=\frac{4}{52}=\frac{1}{13}$.
- Since there are two red 2's, $\left|E_{1} \cap E_{2}\right|=2$, and so $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\frac{2}{52}=\frac{1}{26}$.

General addition rule for probability (cont'd)

- Example: Given a standard deck of cards, what is the probability of drawing a red card or a 2 ?
- Solution:
- $|S|=52$, as before.
- Let $E_{1}=$ "pick a red card". Then $\left|E_{1}\right|=26$, and so $\operatorname{Prob}\left(E_{1}\right)=\frac{26}{52}=\frac{1}{2}$.
- Let $E_{2}=$ "pick a 2". Then $\left|E_{2}\right|=4$, and so $\operatorname{Prob}\left(E_{2}\right)=\frac{4}{52}=\frac{1}{13}$.
- Since there are two red 2's, $\left|E_{1} \cap E_{2}\right|=2$, and so $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\frac{2}{52}=\frac{1}{26}$.
- Thus

$$
\begin{aligned}
\operatorname{Prob}\left(E_{1} \cup E_{2}\right) & =\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right)-\operatorname{Prob}\left(E_{1} \cap E_{2}\right) \\
& =\frac{1}{2}+\frac{1}{13}-\frac{1}{26}=\frac{7}{13} \\
& =0.538
\end{aligned}
$$

General addition rule for probability (cont'd)

- Example: I flip a coin and roll a six-sided die. What is the probability that I get a head or roll either a 1 or a 2 ?

General addition rule for probability (cont'd)

- Example: I flip a coin and roll a six-sided die. What is the probability that I get a head or roll either a 1 or a 2 ?
- Solution:

General addition rule for probability (cont'd)

- Example: I flip a coin and roll a six-sided die. What is the probability that I get a head or roll either a 1 or a 2 ?
- Solution:
- We have

$$
\begin{aligned}
& S_{1}=\{\text { head, tails }\}, \text { and so }\left|S_{1}\right|=2, \\
& S_{2}=\{1,2,3,4,5,6\}, \text { and so }\left|S_{2}\right|=6, \\
& E_{1}=\text { "flip coin and get head", and so }\left|E_{1}\right|=1, \\
& E_{2}=\text { "roll die and get } 1 \text { or } 2 \text { ", and so }\left|E_{2}\right|=2 .
\end{aligned}
$$

General addition rule for probability (cont'd)

- Example: I flip a coin and roll a six-sided die. What is the probability that I get a head or roll either a 1 or a 2 ?
- Solution:
- We have

$$
\begin{aligned}
& S_{1}=\{\text { head, tails }\}, \text { and so }\left|S_{1}\right|=2, \\
& S_{2}=\{1,2,3,4,5,6\}, \text { and so }\left|S_{2}\right|=6, \\
& E_{1}=\text { "flip coin and get head", and so }\left|E_{1}\right|=1, \\
& E_{2}=\text { "roll die and get } 1 \text { or } 2 \text { ", and so }\left|E_{2}\right|=2 .
\end{aligned}
$$

- Thus

$$
\begin{aligned}
& \operatorname{Prob}\left(E_{1}\right)=\frac{\left|E_{1}\right|}{\left|S_{1}\right|}=\frac{1}{2} \\
& \operatorname{Prob}\left(E_{2}\right)=\frac{\left|E_{2}\right|}{\left|S_{2}\right|}=\frac{2}{6}=\frac{1}{3} .
\end{aligned}
$$

General addition rule for probability (cont'd)

- Example: I flip a coin and roll a six-sided die. What is the probability that I get a head or roll either a 1 or a 2 ?

General addition rule for probability (cont'd)

- Example: I flip a coin and roll a six-sided die. What is the probability that I get a head or roll either a 1 or a 2 ?
- Solution (cont'd):

General addition rule for probability (cont'd)

- Example: I flip a coin and roll a six-sided die. What is the probability that I get a head or roll either a 1 or a 2 ?
- Solution (cont'd):
- So far:

$$
\begin{aligned}
& \operatorname{Prob}\left(E_{1}\right)=\frac{1}{2} \\
& \operatorname{Prob}\left(E_{2}\right)=\frac{1}{3} .
\end{aligned}
$$

General addition rule for probability (cont'd)

- Example: I flip a coin and roll a six-sided die. What is the probability that I get a head or roll either a 1 or a 2 ?
- Solution (cont'd):
- So far:

$$
\begin{aligned}
& \operatorname{Prob}\left(E_{1}\right)=\frac{1}{2} \\
& \operatorname{Prob}\left(E_{2}\right)=\frac{1}{3} .
\end{aligned}
$$

- To compute $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)$, note that E_{1} and E_{2} are independent. So

$$
\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)=\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6} .
$$

General addition rule for probability (cont'd)

- Example: I flip a coin and roll a six-sided die. What is the probability that I get a head or roll either a 1 or a 2 ?
- Solution (cont'd):
- So far:

$$
\begin{aligned}
& \operatorname{Prob}\left(E_{1}\right)=\frac{1}{2} \\
& \operatorname{Prob}\left(E_{2}\right)=\frac{1}{3} .
\end{aligned}
$$

- To compute $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)$, note that E_{1} and E_{2} are independent. So

$$
\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)=\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6} .
$$

- Hence

$$
\begin{aligned}
\operatorname{Prob}\left(E_{1} \cup E_{2}\right) & =\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right)-\operatorname{Prob}\left(E_{1} \cap E_{2}\right) \\
& =\frac{1}{2}+\frac{1}{3}-\frac{1}{6}=\frac{2}{3}=0.667 .
\end{aligned}
$$

General multiplication rule for probability

- Recall that

$$
\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)
$$

when E_{1}, E_{2} are independent.

General multiplication rule for probability

- Recall that

$$
\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)
$$

when E_{1}, E_{2} are independent.

- Want to compute $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)$ when E_{1}, E_{2} not necessarily independent.

General multiplication rule for probability

- Recall that

$$
\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)
$$

when E_{1}, E_{2} are independent.

- Want to compute $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)$ when E_{1}, E_{2} not necessarily independent.
- Need one additional concept: The conditional probability of E_{1} occurring, given that E_{2} occurs, is denoted $\operatorname{Prob}\left(E_{1} \mid E_{2}\right)$.

General multiplication rule for probability

- Recall that

$$
\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)
$$

when E_{1}, E_{2} are independent.

- Want to compute $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)$ when E_{1}, E_{2} not necessarily independent.
- Need one additional concept: The conditional probability of E_{1} occurring, given that E_{2} occurs, is denoted $\operatorname{Prob}\left(E_{1} \mid E_{2}\right)$.
- If E_{1}, E_{2} are independent, then $\operatorname{Prob}\left(E_{1} \mid E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)$.

General multiplication rule for probability (cont'd)

- Example: A standard six-sided die is rolled by your friend, but in such a way that you cannot see what value comes up. Your friend tells you that the value that comes up is odd, but does not tell you what specific value was rolled. What is the probability that she rolled a 3 ?

General multiplication rule for probability (cont'd)

- Example: A standard six-sided die is rolled by your friend, but in such a way that you cannot see what value comes up. Your friend tells you that the value that comes up is odd, but does not tell you what specific value was rolled. What is the probability that she rolled a 3 ?
- Solution:

General multiplication rule for probability (cont'd)

- Example: A standard six-sided die is rolled by your friend, but in such a way that you cannot see what value comes up. Your friend tells you that the value that comes up is odd, but does not tell you what specific value was rolled. What is the probability that she rolled a 3 ?
- Solution:
- Let $E_{1}=$ "a 3 is rolled" and $E_{2}=$ "the roll is odd". Then

$$
\operatorname{Prob}\left(E_{1}\right)=\frac{1}{6} .
$$

General multiplication rule for probability (cont'd)

- Example: A standard six-sided die is rolled by your friend, but in such a way that you cannot see what value comes up. Your friend tells you that the value that comes up is odd, but does not tell you what specific value was rolled. What is the probability that she rolled a 3 ?
- Solution:
- Let $E_{1}=$ "a 3 is rolled" and $E_{2}=$ "the roll is odd". Then

$$
\operatorname{Prob}\left(E_{1}\right)=\frac{1}{6} .
$$

- Since the roll was odd, $E_{2}=\{1,3,5\}$.

General multiplication rule for probability (cont'd)

- Example: A standard six-sided die is rolled by your friend, but in such a way that you cannot see what value comes up. Your friend tells you that the value that comes up is odd, but does not tell you what specific value was rolled. What is the probability that she rolled a 3 ?
- Solution:
- Let $E_{1}=$ "a 3 is rolled" and $E_{2}=$ "the roll is odd". Then

$$
\operatorname{Prob}\left(E_{1}\right)=\frac{1}{6} .
$$

- Since the roll was odd, $E_{2}=\{1,3,5\}$.
- Since $\left|E_{2}\right|=3$ and one of the three elements of E_{2} is 3,

$$
\operatorname{Prob}\left(E_{1} \mid E_{2}\right)=\frac{1}{3} .
$$

General multiplication rule for probability (cont'd)

- Rule for computing conditional probability:

$$
\operatorname{Prob}\left(E_{1} \mid E_{2}\right)=\frac{\operatorname{Prob}\left(E_{1} \cap E_{2}\right)}{\operatorname{Prob}\left(E_{2}\right)}
$$

General multiplication rule for probability (cont'd)

- Rule for computing conditional probability:

$$
\operatorname{Prob}\left(E_{1} \mid E_{2}\right)=\frac{\operatorname{Prob}\left(E_{1} \cap E_{2}\right)}{\operatorname{Prob}\left(E_{2}\right)}
$$

- Why?

General multiplication rule for probability (cont'd)

- Rule for computing conditional probability:

$$
\operatorname{Prob}\left(E_{1} \mid E_{2}\right)=\frac{\operatorname{Prob}\left(E_{1} \cap E_{2}\right)}{\operatorname{Prob}\left(E_{2}\right)}
$$

- Why?
- Since the event E_{2} has happened, think of E_{2} as a new sample space.

General multiplication rule for probability (cont'd)

- Rule for computing conditional probability:

$$
\operatorname{Prob}\left(E_{1} \mid E_{2}\right)=\frac{\operatorname{Prob}\left(E_{1} \cap E_{2}\right)}{\operatorname{Prob}\left(E_{2}\right)}
$$

- Why?
- Since the event E_{2} has happened, think of E_{2} as a new sample space.
- $\operatorname{Prob}\left(E_{1} \mid E_{2}\right)$ may be interpreted as the fraction of E_{2} that is covered by E_{1} elements.

General multiplication rule for probability (cont'd)

- Rule for computing conditional probability:

$$
\operatorname{Prob}\left(E_{1} \mid E_{2}\right)=\frac{\operatorname{Prob}\left(E_{1} \cap E_{2}\right)}{\operatorname{Prob}\left(E_{2}\right)}
$$

- Why?
- Since the event E_{2} has happened, think of E_{2} as a new sample space.
- $\operatorname{Prob}\left(E_{1} \mid E_{2}\right)$ may be interpreted as the fraction of E_{2} that is covered by E_{1} elements.
- But these E_{1} elements must really be elements of $E_{1} \cap E_{2}$.

General multiplication rule for probability (cont'd)

- The general multiplication rule is now given by

$$
\begin{aligned}
\operatorname{Prob}\left(E_{1} \cap E_{2}\right) & =\operatorname{Prob}\left(E_{2}\right) \cdot \operatorname{Prob}\left(E_{1} \mid E_{2}\right) \\
& =\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2} \mid E_{1}\right)
\end{aligned}
$$

General multiplication rule for probability (cont'd)

- The general multiplication rule is now given by

$$
\begin{aligned}
\operatorname{Prob}\left(E_{1} \cap E_{2}\right) & =\operatorname{Prob}\left(E_{2}\right) \cdot \operatorname{Prob}\left(E_{1} \mid E_{2}\right) \\
& =\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2} \mid E_{1}\right)
\end{aligned}
$$

- Why?

General multiplication rule for probability (cont'd)

- The general multiplication rule is now given by

$$
\begin{aligned}
\operatorname{Prob}\left(E_{1} \cap E_{2}\right) & =\operatorname{Prob}\left(E_{2}\right) \cdot \operatorname{Prob}\left(E_{1} \mid E_{2}\right) \\
& =\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2} \mid E_{1}\right)
\end{aligned}
$$

- Why?
- First line follows from definition

$$
\operatorname{Prob}\left(E_{1} \mid E_{2}\right)=\frac{\operatorname{Prob}\left(E_{1} \cap E_{2}\right)}{\operatorname{Prob}\left(E_{2}\right)}
$$

of conditional probability.

General multiplication rule for probability (cont'd)

- The general multiplication rule is now given by

$$
\begin{aligned}
\operatorname{Prob}\left(E_{1} \cap E_{2}\right) & =\operatorname{Prob}\left(E_{2}\right) \cdot \operatorname{Prob}\left(E_{1} \mid E_{2}\right) \\
& =\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2} \mid E_{1}\right)
\end{aligned}
$$

- Why?

- First line follows from definition

$$
\operatorname{Prob}\left(E_{1} \mid E_{2}\right)=\frac{\operatorname{Prob}\left(E_{1} \cap E_{2}\right)}{\operatorname{Prob}\left(E_{2}\right)}
$$

of conditional probability.

- Second line:

$$
\begin{aligned}
\operatorname{Prob}\left(E_{1} \cap E_{2}\right) & =\operatorname{Prob}\left(E_{2} \cap E_{1}\right) \\
& =\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2} \mid E_{1}\right)
\end{aligned}
$$

General multiplication rule for probability (cont'd)

- Example: What is the probability of picking 2 aces from a deck of cards?

General multiplication rule for probability (cont'd)

- Example: What is the probability of picking 2 aces from a deck of cards?
- Solution:

General multiplication rule for probability (cont'd)

- Example: What is the probability of picking 2 aces from a deck of cards?
- Solution:
- Let $E_{1}=$ "pick Ace on first draw" and $E_{2}=$ "pick Ace on second draw".

General multiplication rule for probability (cont'd)

- Example: What is the probability of picking 2 aces from a deck of cards?
- Solution:
- Let $E_{1}=$ "pick Ace on first draw" and $E_{2}=$ "pick Ace on second draw".
- $\operatorname{Prob}\left(E_{1}\right)=\frac{4}{52}$.

General multiplication rule for probability (cont'd)

- Example: What is the probability of picking 2 aces from a deck of cards?
- Solution:
- Let $E_{1}=$ "pick Ace on first draw" and $E_{2}=$ "pick Ace on second draw".
- $\operatorname{Prob}\left(E_{1}\right)=\frac{4}{52}$.
- E_{1} and E_{2} are not independent: drawing the first card changes the deck.

General multiplication rule for probability (cont'd)

- Example: What is the probability of picking 2 aces from a deck of cards?
- Solution:
- Let $E_{1}=$ "pick Ace on first draw" and $E_{2}=$ "pick Ace on second draw".
- $\operatorname{Prob}\left(E_{1}\right)=\frac{4}{52}$.
- E_{1} and E_{2} are not independent: drawing the first card changes the deck.
- $\operatorname{Prob}\left(E_{2} \mid E_{1}\right)=\frac{3}{51}$.

General multiplication rule for probability (cont'd)

- Example: What is the probability of picking 2 aces from a deck of cards?
- Solution:
- Let $E_{1}=$ "pick Ace on first draw" and $E_{2}=$ "pick Ace on second draw".
- $\operatorname{Prob}\left(E_{1}\right)=\frac{4}{52}$.
- E_{1} and E_{2} are not independent: drawing the first card changes the deck.
- $\operatorname{Prob}\left(E_{2} \mid E_{1}\right)=\frac{3}{51}$.
- So

$$
\begin{aligned}
\operatorname{Prob}\left(E_{1} \cap E_{2}\right) & =\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2} \mid E_{1}\right) \\
& =\frac{4}{52} \times \frac{3}{51}=0.0045 .
\end{aligned}
$$

Bernoulli trials and probability distributions

- What is the probability of flipping a coin ten times and getting three heads?

Bernoulli trials and probability distributions

- What is the probability of flipping a coin ten times and getting three heads?
- What is the probability of rolling a pair of dice ten times and getting three 7 's?

Bernoulli trials and probability distributions

- What is the probability of flipping a coin ten times and getting three heads?
- What is the probability of rolling a pair of dice ten times and getting three 7's?
- Heart of such problems? We're repeating an experiment having two outcomes, say O_{1} and O_{2}.

Bernoulli trials and probability distributions

- What is the probability of flipping a coin ten times and getting three heads?
- What is the probability of rolling a pair of dice ten times and getting three 7's?
- Heart of such problems? We're repeating an experiment having two outcomes, say O_{1} and O_{2}.
- Let $p=\operatorname{Prob}\left(O_{1}\right)$.

Bernoulli trials and probability distributions

- What is the probability of flipping a coin ten times and getting three heads?
- What is the probability of rolling a pair of dice ten times and getting three 7's?
- Heart of such problems? We're repeating an experiment having two outcomes, say O_{1} and O_{2}.
- Let $p=\operatorname{Prob}\left(O_{1}\right)$.
- Then $\operatorname{Prob}\left(O_{2}\right)=1-p$.

Bernoulli trials and probability distributions

- What is the probability of flipping a coin ten times and getting three heads?
- What is the probability of rolling a pair of dice ten times and getting three 7's?
- Heart of such problems? We're repeating an experiment having two outcomes, say O_{1} and O_{2}.
- Let $p=\operatorname{Prob}\left(O_{1}\right)$.
- Then $\operatorname{Prob}\left(O_{2}\right)=1-p$.
- Out of n repetitions, we want to know the probability that the first outcome happens k times.

Bernoulli trials and probability distributions (cont'd)

- We have n slots to fill, with k instances of O_{1} and $n-k$ of O_{2}.

Bernoulli trials and probability distributions (cont'd)

- We have n slots to fill, with k instances of O_{1} and $n-k$ of O_{2}.
- We label each O_{1}-slot by p, and each O_{2}-slot by $1-p$.

Bernoulli trials and probability distributions (cont'd)

- We have n slots to fill, with k instances of O_{1} and $n-k$ of O_{2}.
- We label each O_{1}-slot by p, and each O_{2}-slot by $1-p$.
- The probability of any given choice is $p^{k}(1-p)^{n-k}$.

Bernoulli trials and probability distributions (cont'd)

- We have n slots to fill, with k instances of O_{1} and $n-k$ of O_{2}.
- We label each O_{1}-slot by p, and each O_{2}-slot by $1-p$.
- The probability of any given choice is $p^{k}(1-p)^{n-k}$.
- But we have $C(n, k)$ different ways to fill the slots with k instances of O_{1} and $n-k$ of O_{2}.

Bernoulli trials and probability distributions (cont'd)

- We have n slots to fill, with k instances of O_{1} and $n-k$ of O_{2}.
- We label each O_{1}-slot by p, and each O_{2}-slot by $1-p$.
- The probability of any given choice is $p^{k}(1-p)^{n-k}$.
- But we have $C(n, k)$ different ways to fill the slots with k instances of O_{1} and $n-k$ of O_{2}.
- So

$$
\operatorname{Prob}\left(O_{1} \text { happens } k \text { times }\right)=C(n, k) p^{k}(1-p)^{n-k}
$$

Bernoulli trials and probability distributions (cont'd)

- We have n slots to fill, with k instances of O_{1} and $n-k$ of O_{2}.
- We label each O_{1}-slot by p, and each O_{2}-slot by $1-p$.
- The probability of any given choice is $p^{k}(1-p)^{n-k}$.
- But we have $C(n, k)$ different ways to fill the slots with k instances of O_{1} and $n-k$ of O_{2}.
- So

$$
\operatorname{Prob}\left(O_{1} \text { happens } k \text { times }\right)=C(n, k) p^{k}(1-p)^{n-k}
$$

- This equation is called the binomial distribution.

Bernoulli trials and probability distributions (cont'd)

- We have n slots to fill, with k instances of O_{1} and $n-k$ of O_{2}.
- We label each O_{1}-slot by p, and each O_{2}-slot by $1-p$.
- The probability of any given choice is $p^{k}(1-p)^{n-k}$.
- But we have $C(n, k)$ different ways to fill the slots with k instances of O_{1} and $n-k$ of O_{2}.
- So

$$
\operatorname{Prob}\left(O_{1} \text { happens } k \text { times }\right)=C(n, k) p^{k}(1-p)^{n-k}
$$

- This equation is called the binomial distribution.
- Symmetric about its average value (its mean).

Bernoulli trials and probability distributions (cont'd)

- We have n slots to fill, with k instances of O_{1} and $n-k$ of O_{2}.
- We label each O_{1}-slot by p, and each O_{2}-slot by $1-p$.
- The probability of any given choice is $p^{k}(1-p)^{n-k}$.
- But we have $C(n, k)$ different ways to fill the slots with k instances of O_{1} and $n-k$ of O_{2}.
- So

$$
\operatorname{Prob}\left(O_{1} \text { happens } k \text { times }\right)=C(n, k) p^{k}(1-p)^{n-k}
$$

- This equation is called the binomial distribution.
- Symmetric about its average value (its mean).
- Mean value is $n p$.

Bernoulli trials and probability distributions (cont'd)

- We have n slots to fill, with k instances of O_{1} and $n-k$ of O_{2}.
- We label each O_{1}-slot by p, and each O_{2}-slot by $1-p$.
- The probability of any given choice is $p^{k}(1-p)^{n-k}$.
- But we have $C(n, k)$ different ways to fill the slots with k instances of O_{1} and $n-k$ of O_{2}.
- So

$$
\operatorname{Prob}\left(O_{1} \text { happens } k \text { times }\right)=C(n, k) p^{k}(1-p)^{n-k}
$$

- This equation is called the binomial distribution.
- Symmetric about its average value (its mean).
- Mean value is $n p$.
- Variance (a measure of spread) is $n p(1-p)$.

Bernoulli trials and probability distributions (cont'd)

- Example: What is the probability of flipping a coin 10 times and getting heads exactly twice?

Bernoulli trials and probability distributions (cont'd)

- Example: What is the probability of flipping a coin 10 times and getting heads exactly twice?
- Solution:

Bernoulli trials and probability distributions (cont'd)

- Example: What is the probability of flipping a coin 10 times and getting heads exactly twice?
- Solution:
- This is a Bernoulli trial with

$$
p=\frac{1}{2}, n=10, k=2 .
$$

Bernoulli trials and probability distributions (cont'd)

- Example: What is the probability of flipping a coin 10 times and getting heads exactly twice?
- Solution:
- This is a Bernoulli trial with

$$
p=\frac{1}{2}, n=10, k=2 .
$$

- So the probability is given by

$$
C(10,2) \cdot\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{8}=45 \cdot\left(\frac{1}{2}\right)^{10}=\frac{45}{1024}=0.0439 .
$$

Bernoulli trials and probability distributions (cont'd)

- Example: What is the probability of rolling a pair of dice ten times and getting three 7's?

Bernoulli trials and probability distributions (cont'd)

- Example: What is the probability of rolling a pair of dice ten times and getting three 7's?
- Solution:

Bernoulli trials and probability distributions (cont'd)

- Example: What is the probability of rolling a pair of dice ten times and getting three 7's?
- Solution:
- This is a Bernoulli trial with

$$
p=\frac{1}{6}, n=10, k=3 .
$$

Bernoulli trials and probability distributions (cont'd)

- Example: What is the probability of rolling a pair of dice ten times and getting three 7's?
- Solution:
- This is a Bernoulli trial with

$$
p=\frac{1}{6}, n=10, k=3 .
$$

- So the probability is given by

$$
C(10,3) \cdot\left(\frac{1}{6}\right)^{3} \cdot\left(\frac{5}{6}\right)^{7}=120 \cdot\left(\frac{1}{6}\right)^{3} \cdot\left(\frac{5}{6}\right)^{7}=\frac{390,625}{2,519,424}=0.1550 .
$$

Expected Value

- How much can you expect to win (or lose) on a New York State Pick 6 lottery ticket?

Expected Value

- How much can you expect to win (or lose) on a New York State Pick 6 lottery ticket?
- Need the notion of expected value of an event.

Expected Value

- How much can you expect to win (or lose) on a New York State Pick 6 lottery ticket?
- Need the notion of expected value of an event.
- Let E be an event with outcomes $O_{1}, O_{2}, \ldots O_{n}$. Then

Expected value of $E=\sum_{j=1}^{n} O_{j} \cdot \operatorname{Prob}\left(O_{j}\right)=$

$$
O_{1} \cdot \operatorname{Prob}\left(O_{1}\right)+O_{2} \cdot \operatorname{Prob}\left(O_{2}\right)+\cdots+O_{n} \cdot \operatorname{Prob}\left(O_{n}\right)
$$

Expected Value

- How much can you expect to win (or lose) on a New York State Pick 6 lottery ticket?
- Need the notion of expected value of an event.
- Let E be an event with outcomes $O_{1}, O_{2}, \ldots O_{n}$. Then

$$
\begin{aligned}
& \text { Expected value of } E=\sum_{j=1}^{n} O_{j} \cdot \operatorname{Prob}\left(O_{j}\right)= \\
& \qquad O_{1} \cdot \operatorname{Prob}\left(O_{1}\right)+O_{2} \cdot \operatorname{Prob}\left(O_{2}\right)+\cdots+O_{n} \cdot \operatorname{Prob}\left(O_{n}\right)
\end{aligned}
$$

- Takes into account the fact that different outcomes may have different probabilities.

Expected Value (cont'd)

- Example: What's the expected value when one tosses a fair six-sided die once?

Expected Value (cont'd)

- Example: What's the expected value when one tosses a fair six-sided die once?
- Solution: The outcomes are

$$
O_{1}=1, O_{2}=2, \ldots, O_{6}=6
$$

Expected Value (cont'd)

- Example: What's the expected value when one tosses a fair six-sided die once?
- Solution: The outcomes are

$$
O_{1}=1, O_{2}=2, \ldots, O_{6}=6
$$

- Since the die is fair, each outcome is equally-likely. Thus

$$
\operatorname{Prob}\left(O_{1}\right)=\operatorname{Prob}\left(O_{2}\right)=\ldots \operatorname{Prob}\left(O_{6}\right)=\frac{1}{6} .
$$

Expected Value (cont'd)

- Example: What's the expected value when one tosses a fair six-sided die once?
- Solution: The outcomes are

$$
O_{1}=1, O_{2}=2, \ldots, O_{6}=6
$$

- Since the die is fair, each outcome is equally-likely. Thus

$$
\operatorname{Prob}\left(O_{1}\right)=\operatorname{Prob}\left(O_{2}\right)=\ldots \operatorname{Prob}\left(O_{6}\right)=\frac{1}{6} .
$$

- So

$$
\begin{aligned}
\text { Expected value } & =\frac{1}{6} \times 1+\frac{1}{6} \times 2+\frac{1}{6} \times 3+\frac{1}{6} \times 4+\frac{1}{6} \times 5+\frac{1}{6} \times 6 \\
& =\frac{1}{6}+\frac{2}{6}+\frac{3}{6}+\frac{4}{6}+\frac{5}{6}+\frac{6}{6} \\
& =\frac{21}{6}=3.5
\end{aligned}
$$

Expected Value (cont'd)

- Example: What's the expected value when one tosses a fair six-sided die once?

Expected Value (cont'd)

- Example: What's the expected value when one tosses a fair six-sided die once?
- Solution (cont'd): Note that in this case, the expected value is also the average of the outcomes $1,2,3,4,5,6$.

Expected Value (cont'd)

- Example: What's the expected value when one tosses a fair six-sided die once?
- Solution (cont'd): Note that in this case, the expected value is also the average of the outcomes $1,2,3,4,5,6$.
- That's because the outcomes were equally likely.

Expected Value (cont'd)

- Example: What's the expected value when one tosses a fair six-sided die once?
- Solution (cont'd): Note that in this case, the expected value is also the average of the outcomes $1,2,3,4,5,6$.
- That's because the outcomes were equally likely.
- This is true in general: if an event E has outcomes O_{1}, \ldots, O_{n} that are equally likely, then the

$$
\text { Expected value of } E=\frac{1}{n} \sum_{j=1}^{n} O_{j}
$$

Expected Value (cont'd)

- Example: What's the expected value when one tosses a fair six-sided die once?
- Solution (cont'd): Note that in this case, the expected value is also the average of the outcomes $1,2,3,4,5,6$.
- That's because the outcomes were equally likely.
- This is true in general: if an event E has outcomes O_{1}, \ldots, O_{n} that are equally likely, then the

$$
\text { Expected value of } E=\frac{1}{n} \sum_{j=1}^{n} O_{j}
$$

- Why? Since the n events are equally likely, they each have probability $1 / n$.

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Rules?

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Rules?
- Pay $\$ 1$ to play two games.

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Rules?
- Pay $\$ 1$ to play two games.
- For each game, you choose 6 numbers out of 59 .

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Rules?
- Pay $\$ 1$ to play two games.
- For each game, you choose 6 numbers out of 59 .
- Winning numbers are chosen by drawing 6 ping-pong balls from a rotating drum.

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Rules?
- Pay $\$ 1$ to play two games.
- For each game, you choose 6 numbers out of 59 .
- Winning numbers are chosen by drawing 6 ping-pong balls from a rotating drum.
- Simplify analysis by only considering the jackpot prize.

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Rules?
- Pay $\$ 1$ to play two games.
- For each game, you choose 6 numbers out of 59 .
- Winning numbers are chosen by drawing 6 ping-pong balls from a rotating drum.
- Simplify analysis by only considering the jackpot prize.
- Let's see how this depends on the jackpot amount a.

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Rules?
- Pay $\$ 1$ to play two games.
- For each game, you choose 6 numbers out of 59 .
- Winning numbers are chosen by drawing 6 ping-pong balls from a rotating drum.
- Simplify analysis by only considering the jackpot prize.
- Let's see how this depends on the jackpot amount a.
- Further simplification: only one winning ticket.

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Solution:

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Solution:
- The total number of ways 6 balls can be chosen out of 59 is

$$
\begin{aligned}
C(59,6) & =\frac{59!}{6!53!}=\frac{59 \times 58 \times 57 \times 56 \times 55 \times 54}{6 \times 5 \times 4 \times 3 \times 2} \\
& =59 \times 58 \times 57 \times 7 \times 11 \times 3 \\
& =45,057,474
\end{aligned}
$$

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Solution:
- The total number of ways 6 balls can be chosen out of 59 is

$$
\begin{aligned}
C(59,6) & =\frac{59!}{6!53!}=\frac{59 \times 58 \times 57 \times 56 \times 55 \times 54}{6 \times 5 \times 4 \times 3 \times 2} \\
& =59 \times 58 \times 57 \times 7 \times 11 \times 3 \\
& =45,057,474
\end{aligned}
$$

- Since two games per ticket, the probability of one ticket winning the jackpot is $\frac{2}{45,057,474}=\frac{1}{22,528,737}=4.4 \times 10^{-9}$.

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Solution:
- The total number of ways 6 balls can be chosen out of 59 is

$$
\begin{aligned}
C(59,6) & =\frac{59!}{6!53!}=\frac{59 \times 58 \times 57 \times 56 \times 55 \times 54}{6 \times 5 \times 4 \times 3 \times 2} \\
& =59 \times 58 \times 57 \times 7 \times 11 \times 3 \\
& =45,057,474
\end{aligned}
$$

- Since two games per ticket, the probability of one ticket winning the jackpot is $\frac{2}{45,057,474}=\frac{1}{22,528,737}=4.4 \times 10^{-9}$.
- The expected amount you would win if the ticket were free would be

$$
\operatorname{Prob}(\text { win }) \times a+\operatorname{Prob}(\text { lose }) \times 0=\frac{a}{22,528,737}
$$

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Solution:
- The total number of ways 6 balls can be chosen out of 59 is

$$
\begin{aligned}
C(59,6) & =\frac{59!}{6!53!}=\frac{59 \times 58 \times 57 \times 56 \times 55 \times 54}{6 \times 5 \times 4 \times 3 \times 2} \\
& =59 \times 58 \times 57 \times 7 \times 11 \times 3 \\
& =45,057,474
\end{aligned}
$$

- Since two games per ticket, the probability of one ticket winning the jackpot is $\frac{2}{45,057,474}=\frac{1}{22,528,737}=4.4 \times 10^{-9}$.
- The expected amount you would win if the ticket were free would be

$$
\operatorname{Prob}(\text { win }) \times a+\operatorname{Prob}(\text { lose }) \times 0=\frac{a}{22,528,737}
$$

- Since the ticket costs $\$ 1$, the expected winnings/loss for one ticket is

$$
\frac{a}{22,528,737}-1
$$

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Solution (cont'd):

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Solution (cont'd):
- If the jackpot amount is a, then the expected winnings/loss for one ticket is

$$
\frac{a}{22,528,737}-1
$$

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Solution (cont'd):
- If the jackpot amount is a, then the expected winnings/loss for one ticket is

$$
\frac{a}{22,528,737}-1
$$

- What are the expected payoffs for one ticket for certain amounts of the grand jackpot?

Jackpot amount	Expected payoff
$\$ 1,000,000$	$-\$ 0.955612$
$\$ 10,000,000$	$-\$ 0.556221$
$\$ 20,000,000$	$-\$ 0.112245$
$\$ 100,000,000$	$\$ 3.43878$

Expected Value (cont'd)

- Example: How much can you expect to win (or lose) playing New York State Pick Six?
- Solution (cont'd):
- If the jackpot amount is a, then the expected winnings/loss for one ticket is

$$
\frac{a}{22,528,737}-1
$$

- What are the expected payoffs for one ticket for certain amounts of the grand jackpot?

Jackpot amount	Expected payoff
$\$ 1,000,000$	$-\$ 0.955612$
$\$ 10,000,000$	$-\$ 0.556221$
$\$ 20,000,000$	$-\$ 0.112245$
$\$ 100,000,000$	$\$ 3.43878$

- Break-even point: $\$ 22,528,737$

