#### Counting (Enumerative Combinatorics)

1

X. Zhang, Fordham Univ.

## Chance of winning ?

- What's the chances of winning New York Megamillion Jackpot
  - "just pick 5 numbers from 1 to 56, plus a mega ball number from 1 to 46, then you could win biggest potential Jackpot ever !"
    - If your 6-number combination matches winning 6-number combination (5 winning numbers plus the Mega Ball), then you win First prize jackpot.
  - There are many possible ways to choose 6-number
  - Only one of them is the winning combination...
  - If each 6-number combination is equally likely to be the winning combination ...
    - Then the prob. of winning for any 6-number is 1/X

#### Counting

- How many bits are need to represent 26 different letters?
- How many different paths are there from a city to another, giving the road map?

# Counting rule #1: just count it

- If you can count directly the number of outcomes, just count them.
- For example:
  - How many ways are there to select an English letter ?
    - 26 as there are 26 English letters
  - How many three digits integers are there ?
    - These are integers that have value ranging from 100 to 999.
    - How many integers are there from 100 to 999 ?
      - 999-100+1=900

#### Example of first rule

- How many integers lies within the range of 1 and 782 inclusive ?
  - 782, we just know this !
- How many integers lies within the range of 12 and 782 inclusive ?
  - Well, from 1 to 782, there are 782 integers
  - Among them, there are 11 number within range from 1 to 11.
  - So, we have 782-(12-1)=782-12+1 numbers between 12 and 782

#### Quick Exercise

- So the number of integers between two integers, S (smaller number) and L (larger number) is: L-S+1
- How many integers are there in the range 123 to 928 inclusive ?
- How many ways are there to choose a number within the range of 12 to 23, inclusive ?

## A little more complex problems

- How many possible license plates are available for NY state ?
  - 3 letters followed by 4 digits (repetition allowed)
- How many 5 digits odd numbers if no digits can be repeated ?
- How many ways are there to seat 10 guests in a table?
- How many possible outcomes are there if draw 2 cards from a deck of cards ?
- Key: all above problems ask about # of combinations/ arrangements of people/digits/letters/...

#### How to count ?

- Count in a systematical way to avoid double-counting or miss counting
- Ex: to count num. of students present ...
  - First count students on first row, second row, ...
  - First count girls, then count boys

## How to count (2)?

- Count in a systematical way to avoid double-counting or miss counting
- Ex: to buy a pair of jeans ...
  - Styles available: standard fit, loose fit, boot fit and slim fit
  - Colors available: blue, black
  - How many ways can you select a pair of jeans ?

Use Table to organize counting

#### Fix color first, and vary styles

Table is a nature solution

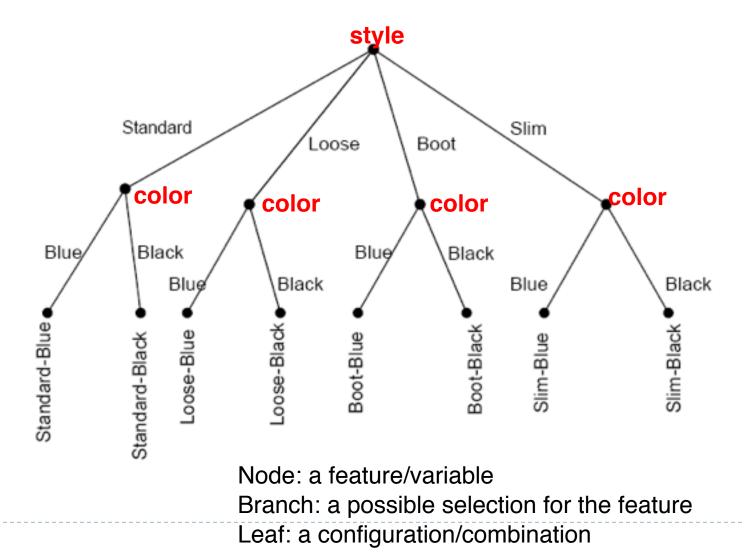
|       | Jean Style     |             |            |            |
|-------|----------------|-------------|------------|------------|
| Color | Standard       | Loose       | Boot       | Slim       |
| Blue  | Standard-Blue  | Loose-Blue  | Boot-Blue  | Slim-Blue  |
| Black | Standard-Black | Loose-Black | Boot-Black | Slim-Black |

Table 1-1: Enumeration of Jean Configurations using a Table

What if we can also choose size, Medium, Small or Large?

> 3D table ?

#### Selection/Decision tree



## Let's try an example

- Enumerate all 3-letter words formed using letters from word "cat"
  - assuming each letter is used once.
- How would you do that ?
  - Choose a letter to put in 1<sup>st</sup> position, 2<sup>nd</sup> and 3<sup>rd</sup> position

#### Exercises

- Use a tree to find all possible ways to buy a car
  - Color can be any from {Red, Blue, Silver, Black}
  - Interior can be either leather or fiber
  - Engine can be either 4 cylinder or 6 cylinder
- How many different outcomes are there for a "best of 3" tennis match between player A and B?
  - Whoever wins 2 games win the match...

## Terminology

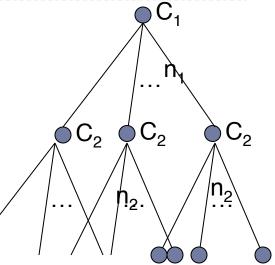
- When buying a pair of jean, one can choose style and color
- We call style and color features/variables
- For each feature, there is a set of possible choices/options
  - For "style", the set of options is {standard, loose, boot, slim}
  - For "color", the set of options is {blue,black}
- Each configuration, i.e., standard-blue, is called an outcome/possibility

## Outline on Counting

- Just count it
- Organize counting: table, trees
- Multiplication rule
- Permutation
- Combination
- Addition rule, Generalized addition rule
- Exercises

# Counting rule #2: multiplication rule

- If we have two features/decisions C<sub>1</sub> and C<sub>2</sub>
  - $\circ$  C<sub>1</sub> has n<sub>1</sub> possible outcomes/options
  - $\circ$  C<sub>2</sub> has n<sub>2</sub> possible outcomes/options
- Then total number of outcomes is n<sub>1</sub>\*n<sub>2</sub>
- In general, if we have k decisions to make:
  - $C_1$  has  $n_1$  possible options
  - $C_k$  has  $n_k$  possible options
  - then the total number of outcomes is n<sub>1</sub>\*n<sub>2</sub>\*...\*n<sub>k</sub>.
- "AND rule":
  - You must make all the decisions...
  - i.e.,  $C_1$ ,  $C_2$ , ...,  $C_k$  must all occur



### Jean Example

- Problem Statement
  - Two decisions to make: C<sub>1</sub>=Chossing style, C<sub>2</sub>=choosing color
  - Options for  $C_1$  are {standard fit, loose fit, boot fit, slim fit},  $n_1=4$
  - Options for  $C_2$  are {black, blue},  $n_2=2$
- To choose a jean, one must choose a style and choose a color
  - $\circ$  C<sub>1</sub> and C<sub>2</sub> must both occur, use multiplication rule
- So the total # of outcomes is  $n_1 n_2 = 4 + 2 = 8$ .

## Coin flipping

- Flip a coin twice and record the outcome (head or tail) for each flip. How many possible outcomes are there ?
- Problem statement:
  - **Two steps for the experiment,**  $C_1$  = "first flip",

C<sub>2</sub>="second flip"

- Possible outcomes for  $C_1$  is {H, T},  $n_1=2$
- Possible outcomes for  $C_2$  is {H,T},  $n_2=2$
- $C_1$  occurs and  $C_2$  occurs: total # of outcomes is  $n_1^*n_2=4$

## License Plates

- Suppose license plates starts with two different letters, followed by 4 letters or numbers (which can be the same). How many possible license plates ?
- Steps to choose a license plage:
  - Pick two different letters AND pick 4 letters/numbers.
  - C<sub>1</sub>: Pick a letter
  - C<sub>2</sub>: Pick a letter different from the first
  - C3,C4,C5,C6: Repeat for 4 times: pick a number or letter
- Total # of possibilities:
  - 26\*25\*36\*36\*36\*36 = 1091750400
- Note: the num. of options for a feature/variable might be affected by previous features

#### Exercises:

- In a car racing game, you can choose from 4 difficulty level, 3 different terrains, and 5 different cars, how many different ways can you choose to play the game ?
- How many ways can you arrange 10 different numbers (i.e., put them in a sequence)?

## Relation to other topics

- It might feel like that we are topics-hopping
  - Set, logic, function, relation ...
- Counting:
  - What is being counted ?
    - A finite set, i.e., we are evaluate some set's cardinality when we tackle a counting problem
  - How to count ?
    - So rules about set cardinality apply !
    - Inclusion/exclusion principle
    - Power set cardinality
    - Cartisian set cardinality

Learn new things by reviewing old...

#### Sets cardinality: number of elements in set

- $|AxB| = |A| \times |B|$
- The number of diff. ways to pair elements in A with elements in B, i.e., IAxBI, equals to IAI x IBI

#### Example

- A={standard, loose, boot}, the set of styles
- B={blue, black}, the set of colors
- AxB= {(standard, blue), (standard, black), (loose, blue), (loose, black), (boot, blue), (boot, black)}, the set of different jeans
- IAxBI: # of different jeans we can form by choosing from A the style, and from B the color

#### Let's look at more examples...

## Seating problem

- How many different ways are there to seat 5 children in a row of 5 seats?
  - Pick a child to sit on first chair
  - Pick a child to sit on second chair
  - Pick a child to sit on third chair
    - The outcome can be represented as an ordered list: e.g. Alice, Peter, Bob, Cathy, Kim
  - By multiplication rule: there are 5\*4\*3\*2\*1=120 different ways to sit them.
  - Note, "Pick a chair for 1<sup>st</sup> child" etc. also works

• ...

## Job assignment problem

- How many ways to assign 5 diff. jobs to 10 volunteers, assuming each person takes at most one job, and one job assigned to one person ?
  - Pick one person to assign to first job: 10 options
  - Pick one person to assign to second job: 9 options
  - Pick one person to assign to third job: 8 options
  - •
  - In total, there are 10\*9\*8\*7\*6 different ways to go about the job assignments.

#### Some counting problems are similar

- How many ways are there to arrange 6 kids in a line ?
- How many ways to assign 5 jobs to 10 volunteers, assuming each person takes at most one job, and one job assigned to one person ?
- How many different poker hands are possible, i.e. drawing five cards from a deck of card where order matters ?

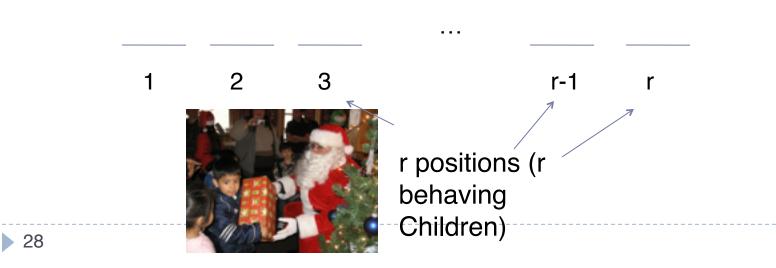
#### Permutation

- A permutation of objects is an arrangement where order/position matters.
  - Note: "arrangement" implies each object cannot be picked more than once.
  - Seating of children
    - Positions matters: Alice, Peter, Bob, Cathy, Kim is different from Peter, Bob, Cathy, Kim, Alice
  - Job assignment: choose 5 people out of 10 and arrange them (to 5 jobs)
  - Select a president, VP and secretary from a club

#### Permutations

Generally, consider choosing r objects out of a total of n objects, and arrange them in r positions.





#### **Counting Permutations**

- Let P(n,r) be the number of permutations of r items chosen from a total of n items, where r≤n
  - n objects and r positions
    - Pick an object to put in 1<sup>st</sup> position, # of ways:
    - Pick an object to put in 2<sup>nd</sup> position, # of ways: n-1
    - Pick an object to put in 3<sup>rd</sup> position, # of ways:

n-2

n-(r-1)

n

- •
- Pick an object to put in r-th position, # of ways:
- By multiplication rule,

$$P(n,r) = n \cdot (n-1) \cdot (n-2) \dots (n-r+1)$$

#### Note: factorial

n! stands for "n factorial", where n is positive integers, is defined as

▶ Now 
$$n! = n \cdot (n-1) \cdot ... 3 \cdot 2 \cdot 1$$

$$P(n,r) = n \cdot (n-1)...(n-r+1)$$
  
= 
$$\frac{n \cdot (n-1)...(n-r+1) \cdot (n-r)...2 \cdot 1}{(n-r)...2 \cdot 1}$$
  
= 
$$\frac{n!}{(n-r)!}$$

### Examples

- How many five letter words can we form using distinct letters from set {a,b,c,d,e,f,g,h} ?
  - It's a permutation problem, as the order matters and each object (letter) can be used at most once.
  - ► P(8,5)

#### Examples

- How many ways can one select a president, vice president and a secretary from a class of 28 people, assuming each student takes at most one position ?
  - A permutation of 3 people selecting from 28 people: P(28,3)=28\*27\*26

#### Exercises

- What does P(10,2) stand for ? Calculate P(10,2).
- How about P(12,12)?
- How many 5 digits numbers are there where no digits are repeated and 0 is not used ?

## Examples: die rolling

- If we roll a six-sided die three times and record results as an ordered list of length 3
  - How many possible outcomes are there ?
    - ▶ 6\*6\*6=216
  - How many possible outcomes have different results for each roll ?
    - ► 6\*5\*4
  - How many possible outcomes do not contain 1 ?
    5\*5\*5=125

### Combinations

- Many selection problems do not care about position/order
  - from a committee of 3 from a club of 24 people
  - Santa select 8 million toys from store
  - Buy three different fruits
- Combination problem: select r objects from a set of n distinct objects, where order does not matter.



## Combination formula

- C(n,r): number of combinations of r objects chosen from n distinct objects (n>=r)
  - Ex: ways to buy 3 different fruits, choosing from apple, orange, banana, grape, kiwi: C(5,3)
  - Ex: ways to form a committee of two people from a group of 24 people: C(24,2)
  - Ex: Number of subsets of {1,2,3,4} that has two elements: C(4,2)
- Next: derive formula for C(n,r)

## Deriving Combination formula

- How many ways are there to form a committee of 2 for a group of 24 people ?
  - Order of selection doesn't matter
- Let's try to count:
  - There are 24 ways to select a first member
  - And 23 ways to select the second member
  - So there are 24\*23=P(24,2) ways to select two peoples in sequence
- In above counting, each two people combination is counted twice
  - e.g., For combination of Alice and Bob, we counted twice: (Alice, Bob) and (Bob, Alice).
- To delete overcounting
  - ► P(24,2)/2

#### General formula

- when selecting r items out of n distinct items
  - If order of selection matters, there are P(n,r) ways
  - For each combination (set) of r items, they have been counted many times, as they can be selected in different orders:
    - For r items, there are P(r,r) different possible selection order
      - e.g., {Alice, Bob} can be counted twice: (Alice, Bob) and (Bob, Alice).
        (if r=2)
    - Therefore, each set of r items are counted P(r,r) times.
  - The # of combinations is:

$$C(n,r) = \frac{P(n,r)}{P(r,r)} = \frac{n!/(n-r)!}{r!/(r-r)!} = \frac{n!}{r!(n-r)!}$$

#### A few exercise with C(n,r)

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

Calculate C(7,3)

- What is (1, n)? How about C(n, 0)? = 35 (7-3)!3! 4.3.2.1.3.2.1 = 35
- Show C(n,r)=C(n,n-r).

## **Committee Forming**

- How many different committees of size 7 can be formed out of 20-person office ?
  - C(20,7)
  - Three members (Mary, Sue and Tom) are carpooling. How many committees meet following requirement ?
    - All three of them are on committee:C(20-7,4)
    - ▶ None of them are on the committee:C(20-7,7)

## Outline on Counting

- Just count it
- Organize counting: table, trees
- Multiplication rule
- Permutation
- Combination
- Addition rule, Generalized addition rule
- Exercises

## Set Related Example

- How many subsets of {1,2,3,4,5,6} have 3 elements ?
  C(6,3)
- How many subsets of {1,2,3,4,5,6} have an odd number of elements ?
  - Either the subset has 1, or 3, or 5 elements.
  - ► C(6,1)+C(6,3)+C(6,5)

Knapsack Problem

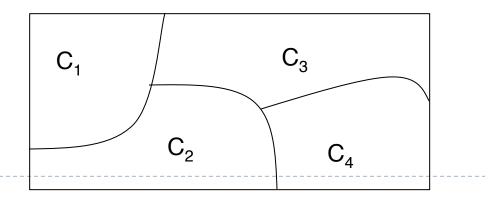
- There are n objects
  The i-th object has weight w<sub>i</sub>, and value v<sub>i</sub>
- You want to choose objects to take away, how many possible ways are possible ?
  - 2\*2\*...\*2=2<sup>n</sup>
  - C(n,0)+C(n,1)+...+C(n,n)
- Knapsack problem:
  - You can only carry W pound stuff
- What shall you choose to maximize the value ?





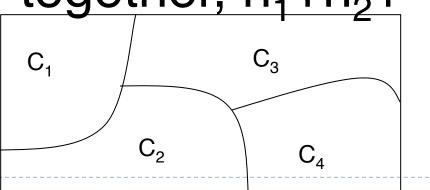
# Addition Rule

- If the events/outcomes that we count can be decomposed into k cases C<sub>1</sub>, C<sub>2</sub>, ..., C<sub>k</sub>, each having n<sub>1</sub>, n<sub>2</sub>, ... n<sub>k</sub>, possible outcomes respectively,
  - (either C<sub>1</sub> occurs, or C<sub>2</sub> occurs, or C<sub>3</sub> occurs, .... or C<sub>k</sub> occurs)
- Then the total number of outcomes is  $n_1 + n_2 + ... + n_k$ .



# Key to Addition Rule

- Decompose what you are counting into simpler, easier to count scenarios, C<sub>1</sub>, C<sub>2</sub>, ..., C<sub>k</sub>
- Count each scenario separately, n<sub>1</sub>,n<sub>2</sub>,...,n<sub>k</sub>
- Add the number together,  $n_1 + n_2 + n_3$ 
  - ...+n<sub>k</sub>



## Examples: die rolling

- If we roll a six-sided die three times and record results as an ordered list of length 3
  - How many of the possible outcomes contain exactly one 1, e.g. 1,3,2 or, 3,2,1, or 5,1,3 ?
    - Let's try multiplication rule by analyzing what kind of outcomes satisfy this ?
    - First roll: 6 possible outcomes
    - Second roll: # of outcomes ?
      - □ If first roll is 1, second roll can be any number but 1
      - □ If first roll is not 1, second roll can be any number
    - Third roll: # of outcomes ??

## Examples: die rolling

- If we roll a six-sided die three times and record results as an ordered list of length 3
  - how many of the possible outcomes contain exactly one 1 ?
  - Let's try to consider three different possibilities:
    - The only 1 appears in first roll, C<sub>1</sub>
    - The only1 appears in second roll, C<sub>2</sub>
    - ▶ The only1 appears in third roll, C<sub>3</sub>
  - We get exactly one 1 if C<sub>1</sub> occurs, or C<sub>2</sub> occurs, or C<sub>3</sub> occurs
  - Result: 5\*5+5\*5+5\*5=75

## Examples: die rolling

- If we roll a six-sided die three times, how many of the possible outcomes contain exactly one 1 ? Let's try another approach :
  - First we select where 1 appears in the list
    - 3 possible ways
  - Then we select outcome for the first of remaining positions
    - 5 possible ways
  - Then we select outcome for the second of remaining positions
    - ▶ 5 possible ways

## Example: Number counting

- How many positive integers less than 1,000 consists only of distinct digits from {1,3,7,9}?
- To make such integers, we either
  - Pick a digit from set {1,3,7,9} and get an one-digit integer
  - Take 2 digits from set {1,3,7,9} and arrange them to form a two-digit integer
    - permutation of length 2 with digits from {1,3,7,9}.
  - Take 3 digits from set {1,3,7,9} and arrange them to form a 3-digit integer
    - a permutation of length 3 with digits from {1,3,7,9}.

#### **Example: Number Counting**

- Use permutation formula for each scenario (event)
  - # of one digit number: P(4,1)=3
  - # of 2 digit number: P(4,2)=4\*3=12
  - # of 3 digit number: P(4,3)=4\*3\*2=24
- Use addition rule, i.e., "OR" rule
  - Total # of integers less than 1000 that consists of {1,3,7,9}: 3+12+24=39

## Example: computer shipment

- Suppose a shipment of 100 computers contains 4 defective ones, and we choose a sample of 6 computers to test.
  - How many different samples are possible ?
    - ► C(100,6)
  - How many ways are there to choose 6 computers if all four defective computers are chosen?
    - ► C(4,4)\*C(96,2)
  - How many ways are there to choose 6 computers if one or more defective computers are chosen?
    - C(4,4)\*C(96,2)+C(4,3)\*C(96,3)+C(4,2)\*C(96,4)+C(4,1)\*C(96,5)
    - C(100,6)-C(96,6)

## Generalized addition rule

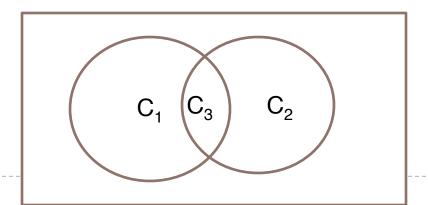
- If we roll a six-sided die three times how many outcomes have exactly one 1 or exactly one 6 ?
  - How many have exactly one 1 ?

▶ 3\*5\*5

- How many have exactly one 6 ?
  - ► 3\*5\*5
- Just add them together ?
  - Those have exactly one 1 and one 6 have been counted twice
  - How many outcomes have exactly one 1 and one 6 ?
    C(4,1)P(3,3)=4\*3\*2

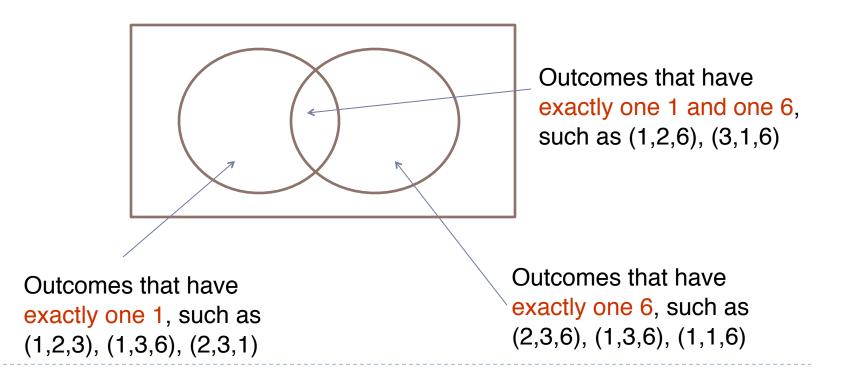
#### Generalized addition rule

- If we have two choices C<sub>1</sub> and C<sub>2</sub>,
  - C<sub>1</sub> has n<sub>1</sub> possible outcomes,
  - C<sub>2</sub> has n<sub>2</sub> possible outcomes,
  - C<sub>1</sub> and C<sub>2</sub> both occurs has n<sub>3</sub> possible outcomes
- then total number of outcomes for C<sub>1</sub> or C<sub>2</sub> occurring is n<sub>1</sub>+n<sub>2</sub>-n<sub>3</sub>.



### Generalized addition rule

- If we roll a six-sided die three times how many outcomes have exactly one 1 or exactly one 6 ?
  - 3\*5\*5+3\*5\*5-3\*2\*4



#### Example

A class of 15 people are choosing 3 representatives, how many possible ways to choose the representatives such that Alice or Bob is one of the three being chosen? Note that they can be both chosen.

## Summary: Counting

- How to tackle a counting problem?
  - 1. Some problems are easy enough to just count it, by enumerating all possibilities.
  - 2. Otherwise, does multiplication rule apply, i.e., a sequence of decisions is involved, each with a certain number of options?

#### Summary: Counting

#### How to tackle a counting problem?

3. Otherwise, is it a permutation problem ?

Summary: Counting (cont'd)

- How to tackle a counting problem?
  - 4. Is it a combination problem ?

## Summary: Counting (cont'd)

- How to tackle a counting problem?
  - 5. Can we break up all possibilities into different situations/cases, and count each of them more easily?

## Summary: Counting (cont'd)

- How to tackle a counting problem?
  - Often you use multiple rules when solving a particular problem.
    - First step is hardest.
  - Practice makes perfect.

#### Exercise

- A class has 15 women and 10 men. How many ways are there to:
  - choose one class member to take attendance?
  - choose 2 people to clean the board?
  - choose one person to take attendance and one to clean the board?
  - choose one to take attendance and one to clean the board if both jobs cannot be filled with people of same gender?
  - choose one to take attendance and one to clean the board if both jobs must be filled with people of same gender?

#### Exercise

- A Fordham Univ. club has 25 members of which 5 are freshman, 5 are sophomores, 10 are juniors and 5 are seniors. How many ways are there to
  - Select a president if freshman is illegible to be president?
  - Select two seniors to serve on College Council?
  - Select 8 members to form a team so that each class is represented by 2 team members?

### Cards problems

- A deck of cards contains 52 cards.
  - four suits: clubs, diamonds, hearts and spades
  - thirteen denominations: 2, 3, 4, 5, 6, 7, 8, 9, 10, J(ack), Q(ueen), K(ing), A(ce).
  - begin with a complete deck, cards dealt are not put back into the deck
  - abbreviate a card using denomination and then suit, such that 2H represents a 2 of Hearts.

## How many different flush hands?

- A poker player is dealt a hand of 5 cards from a freshly mixed deck (order doesn't matter).
  - How many ways can you draw a flush? Note: a flush means that all five cards are of the same suit.

#### More Exercises

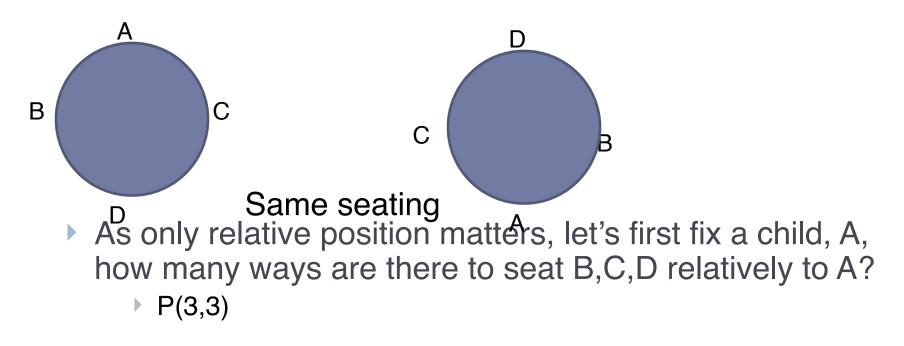
- A poker player is dealt a hand of 5 cards from a freshly mixed deck (order doesn't matter).
  - How many different hands have 4 aces in them?
  - How many different hands have 4 of a kind, i.e., you have four cards that are the same denomination?
  - How many different hands have a royal flush (i.e., contains an Ace, King, Queen, Jack and 10, all of the same suit)?

## Shirt-buying Example\*

- A shopper is buying three shirts from a store that stocks 9 different types of shirts. How many ways are there to do this, assuming the shopper is willing to buy more than one of the same shirt?
  - There are only the following possibilities,
    - She buys three of the same type:
    - Or, she buys three different type of shirts:
    - Or, she buy two of the same type shirts, and one shift of another type:
  - Total number of ways: 9+C(9,3)+9\*8 C(9,3)

# Round table seating

How many ways are there to arrange four children (A,B,C,D) to sit along a round table, suppose only relative position matters ?



## Some challenges

- In how many ways can four boys and four girls sit around a round table if they must alternate boygirl-boy-girl?
  - Hints:
    - 1. fix a boy to stand at a position
    - 2. Arrange 3 other boys
    - 3. Arrange 4 girls

#### Some challenges

- A bag has 32 balls 8 each of orange, white, red and yellow. All balls of the same color are indistinguishable. A juggler randomly picks three balls from the bag to juggle. How many possible groupings of balls are there?
  - Hint: cannot use combination formula, as balls are not all distinct as balls of same color are indistinguishable