Probability

Dr. Zhang
Fordham Univ.

Probability: outline

- Introduction
- Experiment, event, sample space
- Probability of events
- Calculate Probability
- Through counting
- Sum rule and general sum rule
- Product rule and general product rule
- Conditional probability
- Probability distribution function
- Bernoulli process

Start with our intuition

- What's the probability/odd/chance of
" getting "head" when tossing a coin?
- 0.5 if it's a fair coin.
- getting a number larger than 4 with a roll of a die ?
v $2 / 6=1 / 3$, if the die is fair one
- drawing either the ace of clubs or the queen of diamonds from a deck of cards (52) ?
- 2/52

Our approach

- Divide \# of outcomes of interests by total \# of possible outcomes
- Hidden assumptions: different outcomes are equally likely to happen
- Fair coin (head and tail)
- Fair dice
- Each card is equally likely to be drawn

Another example

- In your history class, there are 24 people. Professor randomly picks 2 students to quiz them. What's the probability that you will be picked?
- Total \# of outcomes?
- \# of outcomes with you being picked?

Terminology: Experiment, Sample Space

- Experiment: action that have a measurable outcome, e.g., :
- Toss coins, draw cards, roll dices, pick a student from the class
- Outcome: result of the experiment
- For tossing a coin, outcomes are getting a head, H, or getting a tail, T.
- For tossing a coin twice, outcomes are HH, HT, TH, or TT.
- When picking two students to quiz, outcomes are subsets of size two
- Sample space of an experiment: the set that contains all possible outcomes of the experiment, denoted by S .
- Tossing a coin once: sample space is $\{\mathrm{H}, \mathrm{T}\}$
- Rolling a dice: sample space is $\{1,2,3,4,5,6\}$.
- S is universe set as it includes all possible outcomes

Example

- When the professor picks 2 students (to quiz) from a class of 24 students...
- What's the sample space?
- All the different outcomes of picking 2 students out of 24
- How many possible outcomes are there?
- That is same as asking "How many different outcomes are possible when picking 2 students from a class of 24 students?"
- It's a counting problem!
- $\mathrm{C}(24,2)$: order does not matter

Events

- Event : a subset of sample space S
- "getting number larger than 4" is an event for rolling a die experiment
- "you are picked to take quiz" is an event for picking two students to quiz
- An event is said to occur if an outcome in the subset occurs
- Some special events:
- Elementary event: event that contains exactly one outcome
- \{ \}: null event
- S: sure event

Rolling a die experiment
"Getting a number larger than 4" occurs if 5 or 6 occurs

(Discrete) Probability

- If sample space S is a finite set of equally likely outcomes, then the probability of event E occurs, $\operatorname{Pr}(\mathrm{E})$ is defined as:

$$
\operatorname{Pr}(E)=\frac{|E|}{|S|}
$$

- Likelihood or chance that the event occurs, e.g., if one repeats experiment for many times, frequency that the event happens
- Note: sometimes we write $P(E)$. It should be clear from context whether P stands for "probability" or "power set"
- This captures our intuition of probability.

Example

- When the professor picks 2 students (to quiz) from a class of 24 students...
- What's the sample space?
- All the different outcomes of picking 2 students out of 24
- How many possible outcomes are there?
- $\mathrm{ISI}=\mathrm{C}(24,2)$
- Event of interest: you are one of the two being picked
- How many outcomes in the event? i.e., how many outcomes have you as one of the two picked?
- $\mathrm{IEI}=\mathrm{C}(1,1) \mathrm{C}(23,1)$
- Prob. of you being picked:

$$
\operatorname{Pr}(E)=\frac{|E|}{|S|}=\frac{23}{C(24,2)}=\frac{1}{12}
$$

Probability: outline

- Introduction
- Experiment, event, sample space
- Probability of events
- Calculate Probability
- through counting
- Sum rule and general sum rule
- Product rule and general product rule

Calculate probability by counting

- If sample space S is a finite set of equally likely outcomes, then the probability of event E occurs is:

$$
\operatorname{Pr}(E)=\frac{|E|}{|S|}
$$

To calculate probability of an event for an experiment,

* Identify sample space of the experiment, S, i.e., what are the possible outcomes ?
- Count number of all possible outcomes, i.e., cardinality of sample space, ISI
- Count number of outcomes in the event, i.e., cardinality of event, I El
- Obtain prob. of event as $\operatorname{Pr}(\mathrm{E})=|E| / I S \mid$

Example: Toss a coin

- if we toss a coin once, we either get a tail or get u head.
- sample space can be represented as \{Head, Tail\} or simply $\{\mathrm{H}, \mathrm{T}\}$.
- The event of getting a head is the set $\{\mathrm{H}\}$.
- Prob ($\{H\}$)=|\{H\}| / $\{H, T\} \mid=1 / 2$
- The event of getting a tail is the set $\{T\}$
- The event of getting a head or tail is the set $\{\mathrm{H}, \mathrm{T}\}$, i.e., the whole sample space

Example: coin tossing

- If we toss a coin 3 times, what's the probability of getting three heads?
- Sample space, S: \{HHH, HHT, ..., TTT\}
- There are $2 \times 2 \times 2=8$ possible outcomes, $\mid S I=8$
- There is one outcome that has three heads, $\mathrm{HHH} . \mid E I=1$
- So probability of getting three head is: $|E| / / S \mid=1 / 8$
- What's the probability of getting same results on last two tosses, E ?
- Outcomes in E are HHH, THH, HTT, TTT, so IEI=4
- Or how many outcomes have same results on last two tosses? + 2*2=4
- Prob. of getting same results on last two tosses: 4/8=1/2.

Example: poke cards

- When we draw a card from a standa cards (52 cards, 13 cards for each suits).
- Sample space is:
- All 52 cards
- Num. of outcomes that getting an ace is:
- $|E|=4$
- Probability of getting an ace is:
- |EI/ISI=4/52
- Probability of getting a red card or an ace is:
- |El=26 red cards+2 black ace cards=28
- $\operatorname{Pr}(E)=28 / 52$

Example: dice rolling

If we roll a pair of dice and record sum of face-up numbers, what's the probability of getting a 10 ?

- The sum of face-up numbers can be any of the following: 2,3,4,5,6,7,8,9,10,11,12.
- $S=\{2,3,4,5,6,7,8,9,10,11,12\}$
- So the prob. of getting a 10 is $1 / 11$
- $\operatorname{Pr}(\mid E I)=|E| / / S \mid=1 / 11$
- Any problem in above calculation?
- Are all outcomes in sample space equally like to happen ?
- No, there are two ways to get 10 (by getting 4 and 6 , or getting 5 and 5), there are just one way to get 2 (by getting 1 and 1),...

Example: dice rolling (cont'd)

- If we roll a pair of dice and record sum of face-up numbers, what's the probability of getting a 10 ?
- Represent outcomes as ordered pair of numbers, i.e. $(1,5)$ means getting a 1 and then a 5
- How many outcomes are there ? i.e., $|S|=$?
- 6*6
- Event of getting a 10 is: $\{(4,6),(5,5),(6,4)\}$
- Prob. of getting 10 is: $3 /\left(6^{*} 6\right)$

Example: counting outcomes

- Drawing two cards from the top of a deck of 52 cards, the probability that two cards having same suit?
- Sample space S:
- $|S|=52^{*} 51,52$ choices for first draw, 51 for second
- Event that two cards have same value, E:
- IEl=52*12, 52 choices for first draw, 12 for second (from remaining 12 cards of same suit as first card)
- $\operatorname{Pr}(E)=|E| / I S I=\left(52^{*} 12\right) /\left(52^{*} 51\right)=12 / 51$

Example: card game

- At a party, each card in a standard deck is torn in half and both haves are placed in a box. Two guests each draw a half-card from the box. What's the probability that they draw two halves of the same card?
- Size of sample space, i.e., how many ways are there to draw two from the $52^{*} 2$ half-cards?
- 104*103
- How many ways to draw two halves of same card?
- 104*1
- Prob. that they draw two halves of same ca
- 104/(104*103)=1/103.

NY Jackpot Lottery

" "pick 5 numbers from 1 to 56 , plus a mega ball number from 1 to 46 ,"
> If your 5-number combination matches winning 5number combination, and mega ball number matches the winning Mega Ball, then you win!

- Order for the 5 numbers does not matter.

Sample space: all different ways one can choose 5number combination, and a mega ball number | $\operatorname{ISI}=$?

- Winning event contains the single outcome in sample space, i.e., the winning comb. and mega ball number - $|E|=1, \operatorname{Pr}(E)=1 / I S \mid=$

Probability of Winning Lottery Game

In one lottery game, you pick 7 distinct numbers from $\{1,2, \ldots, 80\}$.
On Wednesday nights, someone's grandmother draws 11 numbered balls from a set of balls numbered from $\{1,2, \ldots$ 80\}.
If the 7 numbers you picked appear among the 11 drawn numbers, you win.
What is your probability of winning?
Questions:
What is the experiment, sample space ?
What is the winning event?

Probability: outline

- Introduction
- Experiment, event, sample space
- Probability of events
- Calculate Probability through counting
- Examples, exercises
- Sum rule and general sum rule

Examples and exercises

- Product rule and general product rule

Conditional probability

Events are sets

- Event of an experiment: any subset of sample space S , e.g.
- Events are sets, therefore all set operations apply to events
- Union: $\quad E_{1} \cup E_{2}$
- E_{1} or E_{2} occurs
- Intersection: $\quad E_{1} \cap E_{2}$
- E_{1} and E_{2} both occurs

Die rolling experiment

- Complements:

$$
E^{c}=U-E=S-E
$$

E_{1} : getting a number greater than 3
E_{2} : getting a number smaller than 5

- E does not occur

Properties of probability

- Recall: For an experiment, if its sample space S is a finite set of equally likely outcomes, then the probability of event E occurs, $\operatorname{Pr}(E)$ is given by :

$$
\operatorname{Pr}(E)=\frac{|E|}{|S|}
$$

- For any event E, we have $0 \leq|E| \leq \mid S I$, so $0 \leq \operatorname{Pr}(E) \leq 1$
Extreme cases: $\mathrm{P}(\mathrm{S})=1, \mathrm{P}(\{ \})=0$
- Sometimes, counting IEI (\# of outcomes in event E) is hard
- And it's easier to count number of outcomes that are not in E, i.e

$$
\operatorname{Pr}(E)=\frac{\mid E \dagger}{|S|}=\frac{|S|-\left|E^{c}\right|}{|S|}=\frac{|S|}{|S|}-\frac{\left|E^{c}\right|}{|S|}=1-\operatorname{Pr}\left(E^{c}\right)
$$

Tossing a coin 3 times

- What's the probability of getting at least one head ?
- How large is our sample space ?
- $2^{* 2 * 2=8 ~}$
- How many outcomes have at lelast one head ???
- How many outcomes has no head?
\# of outcomes that have at least one head is:

$$
2^{*} 2^{*} 2-1=7
$$

- Prob. of getting at least one head is $7 / 8$
- Alternatively,

$$
\operatorname{Pr}(E)=1-\operatorname{Pr}\left(E^{c}\right)=1-1 / 8
$$

Example: Birthday problem

What is the probability that in one class of 8 students, there are at least two students having birthdays in the same month (E), assuming each student is equally likely to have a birthday in the 12 months ?

- Sample space: 12^{8}
- Consider E^{c} :all students were born in different months
- Outcomes that all students were born in diff. months is a permutation of 12 months to 8 students, therefore total \# of outcomes in E^{c} : P(12,8)
- $\operatorname{Pr}\left(E^{c}\right)=P(12,8) / 12^{8}$
* Answer: $\operatorname{Pr}(E)=1-\operatorname{Pr}\left(E^{c}\right)=1-P(12,8) / 12^{8}$

Exercise:

- A class with 14 women and 16 men are choosing 6 people randomly to take part in an event
- What's the probability that at least one woman is selected?
- What's the probability that at least 3 women are selected?

Disjoint event

- Two events E_{1}, E_{2} for an experiment are said to be disjoint (or mutually exclusive) if they cannot occur simultaneously, i.e $E_{1} \cap E_{2}=\phi$
- tossing a die once
" "getting a 3 " and "getting a 4"

- disjoint
" "getting a 3 " and "not getting a 6 "
- not disjoint
- tosses of a die twice
" "getting a 3 on the first roll" and "getting a 4 on the second roll"
- not disjoint.

Addition rule of probability

- if E_{1} are E_{2} are disjoint,

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)
$$

Applying addition Rule

- When you toss a coin 5 times, what's the probability of getting an even number of heads?
* Getting an even number of heads = "getting 0 heads" or "getting 2 heads" or "getting 4 heads"
- i.e., $E=E_{0} \cup E_{2} \cup E_{4}$
- It's like addition rule for counting. We decompose the event into smaller events which are easier to count, and each smaller events have no overlap.
- So $\operatorname{Pr}(\mathrm{E})=\operatorname{Pr}\left(\mathrm{E}_{0}\right)+\operatorname{Pr}\left(\mathrm{E}_{2}\right)+\operatorname{Pr}\left(\mathrm{E}_{4}\right)$
, Try to find $\operatorname{Pr}\left(\mathrm{E}_{0}\right), \operatorname{Pr}\left(\mathrm{E}_{2}\right)$, and $\operatorname{Pr}\left(\mathrm{E}_{4}\right) \ldots$

Example of applying rules

- The professor is randomly picking 3 students from a class of 24 students to quiz. What's the prob. that you or your best friend (or both) is selected?
- Calculate it directly:
- IEI: how many ways are there to pick 3 students so that either you or your best friend or both of you are selected.
- Or: Let E1 be the event that you are selected, E2: your best friend is selest $\left(E_{2}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)$

$$
E_{1} \cap E_{2}
$$

Exercise: addition rule

- You draw 2 cards randomly from a deck of 52 cards, what's the probability that the 2 cards have the same value or are of the same color?
- You draw 2 cards randomly from a deck of 52 cards, what's the probability that the 2 cards have the same value or are of the same suit?

Probability: outline

- Introduction
- Experiment, event, sample space
- Probability of events
- Calculate Probability through counting
- Examples, exercises
- Sum rule and general sum rule
- Examples and exercises
- Product rule and general product rule

Conditional probability

Independent event

- Two events, E_{1} and E_{2}, are said to be independent if occurrence of E_{1} event is not influenced by occurrence (or non-occurrence) of E_{2}, and vice versa Tossing of a coin for 10 times
- "getting a head on first toss", and "getting a head on second toss"
- "getting 9 heads on first 9 tosses", "getting a tail on $10^{\text {th }}$ toss"

Independent event

A drawer contains 3 red paperclips, 4 green paperclips, and 5 blue paperclips. One paperclip is taken from the drawer and then replaced. Another paperclip is taken from the drawer.

- E1: the first paperclip is red
- E2: the second paperclip is blue
- E1 and E2 are independent
- Typically, independent events refer to
* Different and independent aspects of experiment outcome

A drawer contains 3 red paperclips, 4 green paperclips, and 5 blue paperclips. One paperclip is taken from the drawer and not put back in the drawer. Another paperclip is taken from the drawer.
, E1: the first paperclip is red

- E2: the second paperclip is blue
- Are E1 and E2 independent?
- If E1 happens,

Independent event: example

- Choosing a committee of three people from a club with 8 men and 12 women, "the committee has a woman" $\left(\mathrm{E}_{1}\right)$ and "the committee has a man" $\left(\mathrm{E}_{2}\right)$
- If E_{1} occurs, ...
- If E_{1} does not occur (i.e., the committee has no woman), then E_{2} occurs for sure
- So, E_{1} and E_{2} are not independent

Product rule (Multiplication rule)

- If E_{1} and E_{2} are independent events in a given experiment, then the probability that both E_{1} and E_{2} occur is the product of $\mathrm{P}\left(\mathrm{E}_{1}\right)$ and $\mathrm{P}\left(\mathrm{E}_{2}\right)$:

$$
P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right)
$$

- Prob. of getting two heads in two coin flips
- E_{1} : getting head in first flip, $P\left(E_{1}\right)=1 / 2$
- E_{2} : getting head in second flip, $P\left(E_{2}\right)=1 / 2$
- E_{1} and E_{2} are independent $P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right)=1 / 4$

Independent event

- Pick 2 marbles one by one randomly from a bag of 10 black marbles and 10 blue marbles, with replacement (i.e., first marble drawn is put back to bag)
- Prob. of getting a black marble first time and getting a blue marble second time ?
- E_{1} : getting a black marble first time
- E_{2} : getting a blue marble second time
, E_{1} and E_{2} are independent (because of replacement)

$$
P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right)=\frac{10}{20} * \frac{10}{20}=0.25
$$

What if no replacement?

- Pick 2 marbles one by one randomly from a bag of 10 black marbles and 10 blue marbles, without replacement (i.e., first marble drawn is not put back)
- Prob. of getting a black marble first, and getting a blue marble second time ?
, E_{1} : getting a black marble in first draw
, E_{2} : getting a blue marble in second draw
- Are E_{1} and E_{2} independent?
- If E_{1} occurs, prob. of E_{2} occurs is $10 / 19$
- If E_{1} does not occurs, prob. of E_{2} occurs is: 9/19
- So, they are not independent

Conditional Probability

- Probability of E_{1} given that E_{2} occurs, $P\left(E_{1} \mid E_{2}\right)$, is gpy $\left(E_{1}\right.$ р $\left.E_{2}\right)=\frac{\left|E_{1} \cap E_{2}\right|}{\left|E_{2}\right|}=\frac{\left|E_{1} \cap E_{2}\right| /|S|}{\left|E_{2}\right| /|S|}=\frac{\operatorname{Pr}\left(E_{1} \cap E_{2}\right)}{\operatorname{Pr}\left(E_{2}\right)}$
- Given E_{2} occurs, our sample space is now E_{2}
- Prob. that E_{1} happens equals to \# of outcomes in E_{1} (and E_{2}) divided by sample space size, and hence above definition.

General Product Rule*

-Conditional probability $\operatorname{Pr}\left(E_{1} \mid E_{2}\right)=\frac{\operatorname{Pr}\left(E_{1} \cap E_{2}\right)}{\operatorname{Pr}\left(E_{2}\right)}$ leads to general product rule:

- If E_{1} and E_{2} are any events in a given experiment, the probability that both E_{1} and E_{2} occur is given by

$$
\begin{aligned}
& P\left(E_{1} \cap E_{2}\right)=P\left(E_{2}\right) * P\left(E_{1} \mid E_{2}\right) \\
& =P\left(E_{1}\right) * P\left(E_{2} \mid E_{1}\right)
\end{aligned}
$$

Using product rule

- Two marbles are chosen from a bag of 3 red, 5 white, and 8 green marbles, without replacement

What's the probability that both are red?

- $\operatorname{Pr}($ first one is red and second one is red) $=$?
- $\operatorname{Pr}($ First one is red) $=3 / 16$
- $\operatorname{Pr}($ second one is red I first one is red $)=2 / 15$
- Pr (first one is red and second one is red)

$=\operatorname{Pr}\left(\right.$ first one is red) ${ }^{*} \operatorname{Pr}($ second one is red I first one is, $=3 / 16 * 2 / 15$

Using product rule

- Two marbles are chosen from a bag of 3 red, 5 white, and 8 green marbles, without replacement
- What's the probability that one is white and one is green?
- Either the first is white, and second is green
- $(5 / 16)^{*}(8 / 15)$
- Or the first is green, and second is white $(8 / 16)^{*}(5 / 15)$
- So answer is $(5 / 16)^{*}(8 / 15)+(8 / 16)^{*}(5 / 15)$

Probability: outline

- Introduction
- Experiment, event, sample space
- Probability of events
- Calculate Probability through counting
- Sum rule and general sum rule
- Product rule and general product rule
- Conditional probability
- Probability distribution function*
- Bernoulli process

Probability Distribution*

- How to handle a biased coin?
- e.g. getting head is 3 times more likely than getting tail.
- Sample space is still $\{\mathrm{H}, \mathrm{T}\}$, but outcomes H and T are not equally likely.
- $\operatorname{Pr}($ getting head $)+\operatorname{Pr}($ getting tail $)=1$
- Pr (getting head)=3* Pr (getting tail)
- So we let $\operatorname{Pr}($ getting head $)=3 / 4$
$\operatorname{Pr}($ getting tail $)=1 / 4$
This is called a probability distribution

Probability Distribution*

- A discrete probability function, $p(x)$, is a function that satisfies the following properties. The probability that x can take a specific value is $p(x)$.

1. $p(x)$ is non-negative for all real x.
2. The sum of $p(x)$ over all possible values of x is 1 , that is
3. One consequence of properties 1 and 2 is:

$$
0 \leq p(x) \leq 1 .
$$

Bernoulli Trials*

- Bernoulli trial: an experiment whose outcome is random and can be either of two possible outcomes
- Toss a coin: $\{\mathrm{H}, \mathrm{T}\}$
- Gender of a new born: \{Girl, Boy\}
b Guess a number: \{Right, Wrong\}

Bernoulli Process*

- Consists of repeatedly performing independent but identical Bernoulli trials
- Example: Tossing a coin five times
vhat is the probability of getting exactly three heads?
- What's the probability of getting the first head in the fourth toss ?

Conditional probability, $\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{E}_{2}\right)$
So far we see example where E_{1} naturally depends on E_{2}.
We next see a different example.

Calculating conditional probability*

- Toss a fair coin twice, what's the probability of getting two heads $\left(\mathrm{E}_{1}\right)$ given that at least one of the tosses results in heads $\left(\mathrm{E}_{2}\right)$?
- First approach: guess ?

Conditional Prob. Example*

- Toss a fair coin twice, what's the probability of getting two heads $\left(\mathrm{E}_{1}\right)$ given that at least one of the tosses results in heads $\left(\mathrm{E}_{2}\right)$?
- Second approach
- Given that at least one result is head, our sample space is \{HH,HT,TH\}
- Among them event of interest is $\{\mathrm{HH}\}$
- So prob. of getting two heads given ... is $1 / 3$

$$
P\left(E_{1} \mid E_{2}\right)=\frac{\left|E_{1} \cap E_{2}\right|}{\left|E_{2}\right|}=\frac{1}{3}
$$

Conditional Prob. Example*

- Toss a fair coin twice, what's the probability of getting two heads $\left(\mathrm{E}_{1}\right)$ given that at least one of the tosses results in heads $\left(\mathrm{E}_{2}\right)$?
- Third approach

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)}=\frac{P\left(E_{1}\right)}{P\left(E_{2}\right)}=\frac{1 / 4}{3 / 4}=1 / 3
$$

Example 2*

- In a blackjack deal (first card face-down, second card face-up)
- T: face-down card has a value of 10
- A: face-up card is an ace
- Calculate P(TIA)
- $\operatorname{Pr}(\mathrm{T} \mid \mathrm{A})=4 / 51$
- Use $P(T I A)$ to calculate $P(T$ and $A)$ * $P(T$ and $A)=\operatorname{Pr}(A)^{*} \operatorname{Pr}(T \mid A)=4 / 52^{*} 4 / 51$
- Use $P(A I T)$ to calculate $P(T$ and $A)$ - $P(T$ and $A)=\operatorname{Pr}(T)^{*} \operatorname{Pr}(A I T)=4 / 52^{*} 4 / 51$

Monty Hall Problem***

- You are presented with three doors (door 1, door 2 , door 3). one door has a car behind it. the other two have goats behind them.
- You pick one door and announce it.
- Monty counters by showing you one of the doors with a goat behind it and asks you if you would like to keep the door you chose, or switch to the other unknown door.
- Should you switch?

Monty Hall Problem***

