Sequence

1

Dr Zhang

Fordham University

Outline

- Sequence: finding patterns
- Math notations
 - Closed formula
 - Recursive formula
- Two special types of sequences
- Conversion between closed formula and recursive formula
- Summations

Let's play a game

What number comes next?

- 2, 6, 10, 14, 18, <u>2</u>2
- 1, 2, 4, 8, 16, _____32

What comes next?

50 2, 5, 10, 17, 26, 37, ____ 1. 2. 6, 24, 120, _ 720 2, 3, 5, 8, 12, ____ 17 1, 1, 2, 3, 5, 8, 13, ____21

The key to any sequence is to discover its pattern

- The pattern could be that each term is somehow related to previous terms
- The pattern could be described by its relationship to its position in the sequence (1st, 2nd, 3rd etc...)
- You might recognize the pattern as some well known sequence of integers (like the evens, or multiples of 10).
- > You might be able to do all three of these ways!

- Can we relate an term to previous terms ?
 - Second term is 2 more than the first term
 - Third term is 2 more than the second term.
 - In fact, each subsequent term is just two more than the previous one.

. . .

- Can we describe each item in relation to its position in the sequence?
 - The term at position 1 is 2
 - The term at position 2 is 4
 - The term at position 3 is 6

<u>...</u>

The term at position n is 2 * n

- We have found two ways to describe the sequence
 - each subsequent term is two more than the previous one
 - the term at position n is 2 * n
 - It's also the sequence of all even numbers...
- To simplify our description of sequence, mathematicians introduce notations.

Mathematical Notation

- To refer to a term in a sequence, we use lower case letters (a, b, ...) followed by a subscript indicating its position in the sequence
- **Ex:** 2, 4, 6, 8, 10 ...
 - ► *a*₁ =2 first term in a sequence
 - ▶ *a*₂ =4 second term in a sequence
 - a_n n-th term in a sequence, n can be any positive integers
 - a_{n+1} (n+1)-th term in a sequence

- What is a_1 ?
- What is a_3 ?
- ▶ What is a₅?
- What is a_n if n = 4?
- What is a_{n-1} if n = 4?

Recursive formula

- A recursive formula for a sequence is one where each term is described in relation to its previous term (or terms)
- For example:

 $a_1 = 1$ initial conditions $a_n = 2a_{n-1}$ recursive relation $a_4 = ?$

Fibonacci sequence

• 0, 1, 1, 2, 3, 5, 8, 13, ... $a_1 = 0$ $a_2 = 1$ $a_n = a_{n-1} + a_{n-2}$ • What's a_{10} ?

Starting from $a_1, a_2, ..., until we get a_{10}$

Fibonacci in nature

- Suppose at 1st month, a newly-born pair of rabbits, one male, one female, are put in a field.
- Rabbits start to mate when one month old: at the end of its second month, a female produce another pair of rabbits (one male, one female)
 - ▶ i.e., 2 pair of rabbits at 2nd month
- Suppose our rabbits never die
- Fibonacci asked: how many pairs will there be in 10th month, 20th month?

Recursion*

Recursive formula has a correspondence in programming language: recursive function calls:

 $\begin{array}{c}
 a_1 = 0 \\
 a_2 = 1 \\
 a_n = a_{n-1} + a_{n-2}
\end{array}$

- Pseudo-code for function a(n)
 - int a(n)
 - ▶ {
 - If n==1, return 0;
 - □ If n==2, return 1
 - Return (a(n-1)+a(n-2));

• }

Exercises: find out recursive formula

▶ 1, 4, 7, 10, 13, …

▶ 1, 2, 4, 8, 16, 32, ...

▶ 1, 1, 2, 3, 5, 8, 13, …

Closed formula

- A closed formula for a sequence is a formula where each term is described only by an expression only involves its position.
- Examples:
 - Can you write out the first few terms of a sequence described by ?

> Just plug in n=1, 2, 3, ... into the formula to calculate a_1 , a_2 , a_3 ,

• Other examples: $a_n = 2n$

$$c_n = n^2 \qquad b_n = 3n - 2$$

To find closed formula

2, 4, 6, 8, 10 ...

Write each term in relation to its position (as a closed formula)

- ▶ a₁=1* 2
- ▶ a₃= 3 * 2
- ▶ a₅= 5 * 2
- More generally, a_n= n * 2

The n-th term of the sequence equals to 2n.

Exercises: find closed formula

▶ 1, 3, 5, 7, 9, …

▶ 3, 6, 9, 12, ...

▶ 1, 4, 7, 10, 13, …

D

Closed formula vs. recursive formula

- Recursive formula
 - Given the sequence, easier to find recursive formula
 - Harder for evaluating a given term
- Closed formula
 - Given the sequence, harder to find closed formula
 - Easier for evaluating a given term

Two kinds of sequences: * with constant increment * exponential sequence

D

2, 4, 6, 8, 10 ...

- Recursive formula:
 - ▶ a₁=2
 - $a_n = a_{n-1} + 2$
- Closed formula: a_n= 2n
- 1, 4, 7, 10, 13, 16...
 - Recursive formula:
 - ∘ a₁=1
 - $\circ a_n = a_{n-1} + 3$
 - Closed formula: a_n= 3n-2

Any commonalities between them ?

Sequence with equal increments

- Recursive formula:
- $\begin{cases} x_1 = a \\ x_n = x_{n-1} + b \end{cases}$
- Closed formula: $x_n = ?$
 - $x_2 = x_1 + b = a + b$ $x_3 = x_2 + b = (a+b) + b = a + 2b$ $x_3 = x_2 + b = a + 3b$
 - $x_4 = x_3 + b = a + 3b$

Now try your hand at these.

Recursive Formula

$$b_1 = 2$$

 $b_n = b_{n-1} + 4$

Closed Formula

$$b_n = 4n - 2$$

Exponential Sequence 1, 2, 4, 8, 16, ____

Recursive Formula

$$\begin{bmatrix} c_1 = 1 \\ c_n = 2c_{n-1} \end{bmatrix}$$

Closed Formula: C_n=?

$$c_{1} = 1$$

$$c_{2} = 2 * c_{1} = 2$$

$$c_{3} = 2 * c_{2} = 2 * 2$$

$$c_{4} = 2 * c_{3} = 2 * 2 * 2$$

$$c_{n} = 2^{(n-1)}$$

General Exponential Sequence

Recursive Formula

$$\begin{array}{c}
c_1 = a \\
c_n = bc_{n-1}
\end{array}$$

Closed Formula: C_n=?

$$c_{1} = a$$

$$c_{2} = b^{*}c_{1} = b^{*}a$$

$$c_{3} = b^{*}c_{2} = b^{*}b^{*}a = b^{2}*a$$

$$c_{4} = b^{*}c_{3} = b^{*}b^{2}*a = b^{3}*a$$

$$c_{n} = b^{n-1}*a$$

Exponential Sequence: example 2

Recursive Formula

$$c_1 = 1$$
$$c_n = 3c_{n-1}$$

Closed Formula

$$c_n = 3^{(n-1)}$$

A fable about exponential sequence

- An India king wants to thank a man for inventing chess
- The wise man's choice
 - 1 grain of rice on the first square
 - 2 grain of rice on the second square
 - Each time, double the amount of rice
- Total amount of rice?
 - About 36.89 cubic kilometers
 - 80 times what would be produced in one harvest, at modern yields, if all of Earth's arable land could be devoted to rice
 - As reference, Manhantan Island is 58.8 square kilometers.

Summations

Common Mathematical Notion

- Summation: A summation is just the sum of some terms in a sequence.
- For example
 - 1+2+3+4+5+6 is the summation of first 6 terms of sequence: 1, 2, 3, 4, 5, 6, 7,
 - 1+4+9+16+25 is the summation of the first 5 terms of sequence 1, 4, 9, 16, 25, 49, ...

Summation is a very common Idea

 Because it is so common, mathematicians have developed a shorthand to represent summations (some people call this sigma notation)

This is what the shorthand looks like, on the next few slides we will dissect it a bit.

 $\sum_{n=1}^{7} (2n+1)$

The giant Sigma just means that this represents a summation

n = 1

The *n=1* at the bottom just states where is the sequence we want to (2n+1) start. If the value was 1 then we would start the sequence at the 1st position

 $\sum_{n=1}^{7} (2n+1)$

The 7 at the top just says to which element in the sequence we want to get to. In this case we want to go up through the 7-th item.

The part to the right of the sigma is the closed formula for the sequence you want to sum over.

So this states that we want to compute summation of 1st, 2nd, ...,7th term of the sequence given by closed formula, (a_n=2n

Thus our summation is $\sum_{n=1}^{7} (2n+1)^{3+5+7} \dots + 15$

Let's try a few. Compute the following summations

$\sum_{i=1}^{5} (i+2) = 3+4+5+6+7 = 25$

$\sum_{i=1}^{7} (i^2 + 1) = 2 + 5 + 10 + 17 + 26 + 37 + 50 = 147$

How would you write the following sums using sigma notation?

$5+10+15+20+25+30+35+40 = \sum_{i=1}^{8} (5i)$

1+8+27+64+125+216

Summary

- Sequence: finding patterns
- Recursive formula & Closed formula
- Two special types of sequences:
 - Recursive formula => closed formula*
- Summations