## Sequence

## Outline

- Sequence: finding patterns
- Math notations
- Closed formula
- Recursive formula
- Two special types of sequences
- Conversion between closed formula and recursive formula
- Summations


## Let's play a game

What number comes next?

$$
\begin{aligned}
& 1,2,3,4,5, \ldots \\
& 2,6,10,14,18, \ldots \\
& 1,2,4,8,16, \ldots
\end{aligned}
$$

## What comes next?

$$
\begin{aligned}
& 2,5,10,17,26,37, \ldots 50 \\
& 1,2,6,24,120, \ldots \\
& 2,3,5,8,12, \ldots \\
& 1,1,2,3,5,8,13, \ldots
\end{aligned}
$$

The key to any sequence is to discover its pattern

- The pattern could be that each term is somehow related to previous terms
- The pattern could be described by its relationship to its position in the sequence ( 1 st $, 2^{\text {nd }}, 3^{\text {rd }}$ etc...)
- You might recognize the pattern as some well known sequence of integers (like the evens, or multiples of 10).
- You might be able to do all three of these ways!
$2,4,6,8,10 \ldots$
- Can we relate an term to previous terms?
- Second term is 2 more than the first term
- Third term is 2 more than the second term.
- In fact, each subsequent term is just two more than the previous one.
$2,4,6,8,10 \ldots$
- Can we describe each item in relation to its position in the sequence?
- The term at position 1 is 2
- The term at position 2 is 4
- The term at position 3 is 6
- The term at position $n$ is 2 * $n$
$2,4,6,8,10 \ldots$
- We have found two ways to describe the sequence
- each subsequent term is two more than the previous one
- the term at position $n$ is 2 * $n$
- It's also the sequence of all even numbers...
- To simplify our description of sequence, mathematicians introduce notations.


## Mathematical Notation

- To refer to a term in a sequence, we use lower case letters (a, b, ...) followed by a subscript indicating its position in the sequence
- Ex: 2, 4, 6, 8, $10 \ldots$
- $a_{1}=2$ first term in a sequence
$a_{2}=4$ second term in a sequence
v $\boldsymbol{a}_{\boldsymbol{n}} \quad \mathrm{n}$-th term in a sequence, n can be any positive integers
* $\boldsymbol{a}_{n+1}(\mathrm{n}+1)$-th term in a sequence
$2,4,6,8,10 \ldots$
-What is $a_{1}$ ?
- What is $\mathrm{a}_{3}$ ?
-What is $\mathrm{a}_{5}$ ?
-What is $\mathrm{a}_{\mathrm{n}}$ if $\mathrm{n}=4$ ?
- What is $\mathrm{a}_{\mathrm{n}-1}$ if $\mathrm{n}=4$ ?


## Recursive formula

- A recursive formula for a sequence is one where each term is described in relation to its previous term (or terms)
- For example:
- $\mathrm{a}_{4}=$ ? $\left\{\begin{array}{cc}a_{1}=1 \quad \text { initial conditions } \\ a_{n}=2 a_{n-1} & \text { recursive relation }\end{array}\right.$


## Fibonacci sequence

- $0,1,1,2,3,5,8,13, \ldots$

$$
\left\{\begin{aligned}
a_{1} & =0 \\
a_{2} & =1 \\
a_{n} & =a_{n-1}+a_{n-2}
\end{aligned}\right.
$$

, Starting from $a_{1}, a_{2}, \ldots$, until we get $a_{10}$

## Fibonacci in nature

- Suppose at 1 st month, a newly-born pair of rabbits, one male, one female, are put in a field.
- Rabbits start to mate when one month old: at the end of its second month, a female produce another pair of rabbits (one male, one female)

b i.e., 2 pair of rabbits at $2^{\text {nd }}$ month

- Suppose our rabbits never die
- Fibonacci asked: how many pairs will there be in $10^{\text {th }}$ month, $20^{\text {th }}$ month?


## Recursion*

- Recursive formula has a correspondence in programming language: recursive function calls:

$$
\left\{\begin{array}{l}
a_{1}=0 \\
a_{2}=1 \\
a_{n}=a_{n-1}+a_{n-2}
\end{array}\right.
$$

- Pseudo-code for function a(n)
- int a(n)
' \{
- If $\mathrm{n}==1$, return 0;
- If $\mathrm{n}==2$, return 1

Return ( $\mathrm{a}(\mathrm{n}-1)+\mathrm{a}(\mathrm{n}-2)$ );

- \}


## Exercises: find out recursive formula

$1,4,7,10,13, \ldots$

- $1,2,4,8,16,32, \ldots$
- $1,1,2,3,5,8,13, \ldots$


## Closed formula

- A closed formula for a sequence is a formula where each term is described only by an expression only involves its position.
- Examples:
- Can you write out the first few terms of a sequence described by ?
- Just plug in $\mathrm{n}=1,2,3, \ldots$ into the formula to calculate $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$,
- Other examples:

$$
a_{n}=2 n
$$

$$
c_{n}=n^{2} \quad b_{n}=3 n-2
$$

## To find closed formula

$2,4,6,8,10 \ldots$
Write each term in relation to its position (as a closed formula)

- $a_{1}=1^{*} 2$
- $\mathrm{a}_{3}=3$ * 2
- $\mathrm{a}_{5}=5$ * 2
- More generally, $a_{n}=n * 2$
* The n-th term of the sequence equals to $2 n$.


# Exercises: find closed formula 

- $1,3,5,7,9, \ldots$
- $3,6,9,12, \ldots$
- $1,4,7,10,13, \ldots$


## Closed formula vs. recursive formula

- Recursive formula
- Given the sequence, easier to find recursive formula
- Harder for evaluating a given term
- Closed formula
- Given the sequence, harder to find closed formula
- Easier for evaluating a given term

Two kinds of sequences:

* with constant increment
* exponential sequence


## $2,4,6,8,10 \ldots$

- Recursive formula:
- $a_{1}=2$
- $a_{n}=a_{n-1}+2$

Closed formula: $a_{n}=2 n$
$1,4,7,10,13,16 \ldots$

- Recursive formula:
- $a_{1}=1$
- $a_{n}=a_{n-1}+3$
- Closed formula: $a_{n}=3 n-2$

Any commonalities between them ?

## Sequence with equal increments

- Recursive formula:

$$
\begin{aligned}
& x_{1}=a \\
& x_{n}=x_{n-1}+b
\end{aligned}
$$

- Closed formula: $x_{n}=$ ?

$$
\begin{aligned}
& x_{2}= x_{1}+b=a+b \\
& x_{3}=x_{2}+b=(a+b)+b=a+2 b \\
& x_{4}= x_{3}+b=a+3 b \\
& \cdots \\
& x_{n}=a+(n-1) b
\end{aligned}
$$

## Now try your hand at these.

## $2,6,10,14,18$,

Recursive Formula

$$
\begin{aligned}
& b_{1}=2 \\
& b_{n}=b_{n-1}+4
\end{aligned}
$$

Closed Formula

$$
b_{n}=4 n-2
$$

## Exponential Sequence

## $1,2,4,8,16$,

Recursive Formula

$$
\left\{\begin{array}{l}
c_{1}=1 \\
c_{n}=2 c_{n-1}
\end{array}\right.
$$

Closed Formula: $\mathrm{C}_{\mathrm{n}}=$ ?

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=2 * c_{1}=2 \\
& c_{3}=2 * c_{2}=2 * 2 \\
& c_{4}=2 * c_{3}=2 * 2 * 2 \\
& c_{n}=2(n-1)
\end{aligned}
$$

## General Exponential Sequence

Recursive Formula

$$
\begin{aligned}
& c_{1}=a \\
& c_{n}=b c_{n-1}
\end{aligned}
$$

Closed Formula: $\mathrm{C}_{\mathrm{n}}=$ ?

$$
\begin{aligned}
& c_{1}=a \\
& c_{2}=b^{*} c_{1}=b^{*} a \\
& c_{3}=b^{*} c_{2}=b^{*} b^{*} a=b^{2} * a \\
& c_{4}=b^{*} c_{3}=b^{*} b^{2} * a=b^{3} * a \\
& c_{n}=b^{n-1} * a
\end{aligned}
$$

## Exponential Sequence: example 2

## $1,3,9,27,81$,

Recursive Formula

$$
\begin{aligned}
& c_{1}=1 \\
& c_{n}=3 c_{n-1}
\end{aligned}
$$

Closed Formula

$$
c_{n}=3^{(n-1)}
$$

## A fable about exponential sequence

- An India king wants to thank a man for inventing chess
- The wise man's choice
- 1 grain of rice on the first square
- 2 grain of rice on the second square
- Each time, double the amount of rice
- Total amount of rice?
- About 36.89 cubic kilometers
- 80 times what would be produced in one harvest, at modern yields, if all of Earth's arable land could be devoted to rice
- As reference, Manhantan Island is 58.8 square kilometers.


## Summations

## Common Mathematical Notion

- Summation: A summation is just the sum of some terms in a sequence.
- For example
b $1+2+3+4+5+6$ is the summation of first 6 terms of sequence: $1,2,3,4,5,6,7, \ldots$
- $1+4+9+16+25$ is the summation of the first 5 terms of sequence 1, 4, 9, 16, 25, 49, ...


## Summation is a very common Idea

- Because it is so common, mathematicians have developed a shorthand to represent summations (some people call this sigma notation)


This is what the shorthand looks like, on the next few slides we will dissect it a bit.

## Dissecting Sigma Notation



The giant Sigma just means that this represents a summation

## Dissecting Sigma Notation

The $n=1$ at the bottom just states where is the sequence we want to
 then we would start the
$n=1$ start. If the value was 1 sequence at the 1st position

## Dissecting Sigma Notation



The $\mathbf{7}$ at the top just says to which element in the sequence we want to get to. In this case we want to go up through the 7 -th item.

## Dissecting Sigma Notation

The part to the right of
 the sigma is the closed formula for the sequence you want to sum over.

## Dissecting Sigma Notation



## Dissecting Sigma Notation

Thus our summation is
$\sum_{n=1}^{7}(2 n+1)^{3+5+7 \ldots+15}$

## Let's try a few. Compute the following summations

$\sum_{i=1}^{5}(i+2)=3+4+5+6+7=25$
$\sum_{i=1}^{7}\left(i^{2}+1\right)=2+5+10+17+26+37+50=147$

# How would you write the following sums using sigma notation? 

$$
\begin{array}{ll}
5+10+15+20+25+30+35+40 & =\sum_{i=1}^{8}(5 i) \\
1+8+27+64+125+216 & =\sum_{i=1}^{6}\left(i^{3}\right)
\end{array}
$$

## Summary

- Sequence: finding patterns
- Recursive formula \& Closed formula
- Two special types of sequences:
- Recursive formula => closed formula*
- Summations

