
Dr. Xiaolan Zhang
Spring 2013

Dept. of Computer & Information Sciences
Fordham University

Introduction to Bash Programming

1

Outline
 Shell command line syntax
 Shell builtin commands
 Shell variables, arguments
 I/O redirection
 Shell tracing
 Shell initialization

2

Last class
 Shell:
 Interactive mode:
 Scripting mode

 Command line
 File system,
 Some commands

3

Command line
 Short options (-) and long options (--)
 in POSIX, use two dashes (– –) to signify end of options, i.e.,

remaining arguments on command line that look like options
are treated as arguments (for example, as filenames).
 To delete a file named “-l”, rm -- -l

 Semicolons separate multiple commands on same line. The
shell executes them sequentially.

 ampersand (&), tell shell to run preceding command in
background, which simply means that shell doesn’t wait for
command to finish before continuing to next command.

4

Shell built-in commands
 Shell recognizes three kinds of commands: built-in

commands, shell functions, and external commands
 Built-in commands: commands that shell itself executes
 some from necessity:
 cd to change current directory,
 read to get input from the user (or a file) into a shell variable.

 Other for efficiency:
 test command, heavily used in shell scripting,
 I/O commands such as echo or printf.

 man cd will show all other shell bulit-in commands

 Shell functions are self-contained chunks of code, written in
shell language

5

External commands
 Implemented by another program
 Shell runs by creating a separate process.

1. Create a new process.
2. In the new process, search directories listed in PATH variable

for given command
 /bin:/usr/bin:/usr/X11R6/bin:/usr/local/bin
 Note: if command name contains /, skip this step

3. In the new process, execute found program
4. When the program finishes, shell continues
 reading next command from terminal, or from the script.

6

echo
 echo: produce output, prompting or to generate data for

further processing.
 printed its arguments to standard output, with each one

separated from next by a space and terminated with a
newline
$ echo Now is the time for all good men
Now is the time for all good men
$ echo to come to the aid of their country.
to come to the aid of their country.

 Option: –n, omit trailing newline
 $ echo -n "Enter your name: " ##Print prompt

Enter your name: _ Enter data

7

Escape character
 To display special character, use –e option

echo –e ″Hello\tWorld″
 Code for special character

\a Alert character, usually the ASCII BEL character.
\b Backspace.
\c Suppress the final newline in the output. Furthermore, any characters left
in the argument, and any following arguments, are ignored
\f Formfeed.
\n Newline.
\r Carriage return.
\t Horizontal tab.
\v Vertical tab.
\\ A literal backslash character.
\0ddd Character represented as a 1- to 3-digit octal value. 8

Outline
 Shell command line syntax
 Shell builtin commands
 Shell variables, arguments
 I/O redirection
 Shell tracing
 Shell initialization

9

Variables
 A variable is a name that you give to a particular piece of

information.
 Shell variable names: start with a letter or underscore, and

may contain any number of following letters,digits,or
underscores.

 Shell variables hold string values, there is no limit on
length of string value
 variable values can be, and often are, empty—that is, they

contain no characters.
 Empty values are referred to as null

10

Variable assignment
 Assign value to variable: writing variable name, immediately

followed by an = character, and new value, without any
intervening spaces.
myvar=this_is_a_long_string_that_does_not_mean_much
first=isaac middle=bashevis last=singer ##Multiple assignments

allowed on one line

 Shell variable values are retrieved by prefixing the variable’s
name with a $ character.
echo $myvar ## display the value of myvar
this_is_a_long_string_that_does_not_mean_much

11

Variable assignment
 Use quotes when assigning a literal value that contains spaces:

fullname="isaac bashevis singer" #Use quotes for whitespace in value
oldname=$fullname #Quotes not needed to preserve spaces in value

 To concatenate variables:
 fullname="$first $middle $last" Double quotes required here

12

Command Substitution
 We can save output of a command into variable

$curr_dir=`pwd` ##save current directory in a var.
$Curr_time=`date`
$echo $curr_time
Tue Jan 22 09:39:22 EST 2013

 Command substitution
One can embed a command with a backquote (`) in another
command line
Shell will run embedded command, and use its output to replace
the quoted part of original command
echo Time is now `date`
echo There is `who | wc –l` users online.

13

Example CountFiles script
 Count files/directories in a directory
#!/bin/bash
List the number of files (including those hidden files) and

directories under the given directory

echo count the number of files under $1
ls –a –L $1 | wc –l

14

Positional/argument parameters
 positional parameters represent a shell script’s command-line

arguments, also represent a function’s arguments within shell
functions.
echo first arg is $1
echo tenth arg is ${10} ## For historical reasons,you have to

enclose number in braces if it’s greater than nine

 Other special argument variables:
 $#: the number of parameters
 $0: the command/script name
 $*,$@: the list of all parameters ($1, $2, …), not including $0

15

Outline
 Shell command line syntax
 Shell builtin commands
 Shell variables, arguments
 Standard I/O, I/O redirection, Pipeline
 Shell tracing
 Shell initialization

16

Standard I/O

17

 All programs should have a data source, a data sink (where data
goes),and a place to report problems. These are standard input,
standard output, standard error.

• Standard input, by default is linked to keyboard

• Standard output, by default is linked to terminal window

• Standard error, by default linked to terminal window

 A program should neither know, nor care, what kind of device lies
behind its input and outputs: disk files,terminals, tape
drives,network connections,or even another running program!

 A program can expect these standard places to be already open
and ready to use when it starts up.

18

Simple example
 A very simple C program

#include <stdio.h>
main() {
 char yourName[256];

 printf ("Your name ?\n"); // Similar to cout
 if (fgets (yourName,256,stdin)==NULL) //similar to cin
 fprintf (stderr,"No input");
 else
 printf("hello, %s\n", yourName);
 }

19

Input/Output Redirection
 On command line, one can redirect these three files
 To redirect standard output to a disk file:
 command [[-] option (s)] [option argument (s)] [

command argument (s)] > FILENAME
 Execute the command, sending its standard output to specified

file
 Existing content of the file is deleted

 E.g.: ls –lt > InfoFilelist.txt
 To append standard output to a file: use >> instead of >
 grep “tax reform” *.txt > output
 grep “fuel efficiency” *.txt >> output

20

Input/Output Redirection (cont’d)
 To redirect standard error to a file

$ command [[-] option (s)] [option argument (s)] [
command argument (s)] 2> ERRORMSGS

 Examples:
[zhang@storm ~]$ ls abc
ls: cannot access abc: No such file or directory
[zhang@storm ~]$ ls abc 2> error
[zhang@storm ~]$ more error
ls: cannot access abc: No such file or directory

21

User > and 2> together
 To split error messages from normal output

[zhang@storm ~]$ ls research.tex abc
ls: cannot access abc: No such file or directory
research.tex
[zhang@storm ~]$ ls research.tex abc 2> error > output
[zhang@storm ~]$ cat error
ls: cannot access abc: No such file or directory
[zhang@storm ~]$ cat output
research.tex

 This is useful for running a command that might take
long time to finish, or generates very long output …

22

More on redirection
 To redirect both output and error to same file:
 ./a.out > dd 2> dd : does not work. Error output is not

captured.
 sort file.txt > dd 2>&1
 2>&1: redirect error output to same place as standard output

 grep numOfStudents 2>dd >&2
 >&2: redirect standard output to same place as error output

 To discard output, redirect it to /dev/null
 /dev/null: a special virtual file, “a black hole”
./a.out > /dev/null 2>&1
 I don’t want to see the output or error message, nor do I want

them saved to a file …

23

Input/Output Redirection (cont’d)
 To read standard input from a file, instead of keyboard

$ command [[-] option (s)] [option argument (s)] [
command argument (s)] < FILENAME

 Examples
 mail zhang –s “Question” < proj1.cpp
 ./a.out < values.txt
//a.out is your program that reads integers from standard input

and calculate the sum

24

Combining commands together
 How many files are there under current directory ?

ls > tmp
wc –l < tmp
rm tmp

 Sort current online user by alphabetic order

 Is some user login to the system now ? (using grep)

Is file “tmp” listed ?

25

Pipe: getting rid of temporary file
 Pipe: an inter-process communication mechanism provided

by kernel
 Has a reading end and a writing end
 Any data write to writing end can be read back from reading

end
 Read/write pipe is no different from read/write files, i.e., any

prog. that reads from standard input can read from pipe,
similarly for the standard output

Reading end Writing end

26

Command Pipeline
 Shell set things up
 create a pipe, “start” two programs simultaneously, with the first

program’s output redirected to writing end of pipe, second
program’s input redirected to reading end of pipe

 individual program/command knows nothing about redirection
and pipe

27

Rule of composition
 Design programs to be connected with other programs
 Read/write simple, textual, stream-oriented formats
 Read from standard input and write to standard output

 Filter: program that takes a simple text stream on input and
process it into another simple text stream on output

28

The Power of Pipe
 Find out how many subdirectories are there ?

 Display the content of last edited file (under current
directory)…
 cat `ls –t | head -1`

Shell command line
 A command ends with a newline, or a semicolon (;), or an

ampersand (&)
 date;
 sleep 4; who
 sleep 20&who

 What’s the output ?
 date; who | wc
 | has higher precedence over ;

 ls –l | grep ^d &
 | has higher precedence over &

 Use parenthesis to group commands
 (date;who) | wc

29

Outline
 Shell command line syntax
 Shell builtin commands
 Shell variables, arguments
 I/O redirection
 Shell tracing
 Shell initialization

30

C/C++ topics: command line
arguments

 We learnt how to access command line arguments from shell,
how about in C/C++ Program?

 Example: write your own echo program
 echo: display a line of text

$echo Good morning, everyone !
Good morning, everyone!

 In C/C++, command line arguments are passed as parameters to
main function
 main(int argc, char * argv[])
 argc: number of command line arguments, including command itself
 argv: the arguments

 argv[0]: the first word in the command line (the command name)
 argv[1]: the second word in the command line

31

Simplified Echo program
 Does not take options yet
#include <iostream>

using namespace std;

int main(int argc, char *argv[])

{

 for (int i=1;i<argc; i++)

 {

 cout <<argv[i]<<" ";

 }

 cout <<endl;

}

 32

char * argv[];
char argv[][[];

--- argv is an array of “char *”.

In C, there is no string class, and
string is represented as an array
of char.

char myName[256];
char * name;

name = myName;
A array variable actually stores the
address of the first element.

Outline
 Shell command line syntax
 Shell builtin commands
 Shell variables, arguments
 I/O redirection
 Shell tracing
 Shell Initialization and Termination

33

User Customization
 shells read certain specified files on startup, and for some

shells,also on termination.
 We focus on bash here (different shell behaves differently)
 If you write shell scripts that are intended to be used by

others, you cannot rely on startup customizations. All of the
shell scripts that we develop in this book set up their own
environment (e.g., the value of $PATH) so that anyone can
run them.

34

Login Shell versus Non-login Shell
 Login shell: The shell that you talks to right after log in (from

terminal, or remote log in using ssh command)

 Nonlogin shell: the shell that you runs by typing “shell”
command, or by running a shell script

 Variable $0: indicates what shell you are in right now. Why?
[zhang@storm Codes]$ echo $0

-bash the “-” indicates it’s a login shell

[zhang@storm Codes]$ bash ## run a bash program,

[zhang@storm Codes]$ echo $0

bash this is nonlogin shell

[zhang@storm Codes]$ exit

exit exit the bash program

[zhang@storm Codes]$ echo $0

-bash back to login shell

35

Source command
 A shell builtin command
 Usage:

 . filename [arguments]
 source filename [arguments]
Read and execute commands from filename in current shell

environment, and return exit status of last command executed from
filename.

 Demo: difference of running a script directly and source it
$./CountFiles
$source CountFiles

 Why?
 When running a script directly, a new shell (non-login, non-interactive shell)

is started to batch processing script … 36

Bash: startup initialization
 For login shell:
test -r /etc/profile && . /etc/profile Try to read /etc/profile

if test -r $HOME/.bash_profile ; then Try three more possibilities

 . $HOME/.bash_profile

elif test -r $HOME/.bash_login ; then

 . $HOME/.bash_login

elif test -r $HOME/.profile ; then

 . $HOME/.profile

fi

37

/etc/profile: System wide default, setting environment for all shell.
/etc/bashrc: System wide function and aliases for bash

Shell: startup initialization
 non-login interactive shell :
test -r $HOME/.bashrc && . $HOME/.bashrc Try to read

$HOME/.bashrc

 Non-login non-interactive shell:
test –r ″$BASH_ENV″ && eval . ″$BASH_ENV″

 One can set BASH_ENV to point to an

initialization file.

38

Export command
 Take a look at typical settings
 export command: a bulit-in command
 Puts given variable into environment, a list of name-value pairs

available to all programs
 Will learn how to access environment from C/C++ program

 A child process inherits environment from parent process
 Variables not in environment not inherited

 When setting PATH, needs to put it into environment, unless
only for current script
 examples

39

To test your settings

40

 To test your changes to login shell initialization setting:
 Reloggin
 Run a script from current shell
 source .bashrc , or . .bashrc
 Change current shell’s settings

Summary
 Shell command line syntax
 Shell builtin commands
 Shell variables, arguments
 Argument variables
 Command substitution

 I/O redirection, pipe
 Shell initialization

41

	Introduction to Bash Programming
	Outline
	Last class
	Command line
	Shell built-in commands
	External commands
	echo
	Escape character
	Outline
	Variables
	Variable assignment
	Variable assignment
	Command Substitution
	Example CountFiles script
	Positional/argument parameters
	Outline
	Standard I/O
	Simple example
	Input/Output Redirection
	Input/Output Redirection (cont’d)
	User > and 2> together
	More on redirection
	Input/Output Redirection (cont’d)
	Combining commands together
	Pipe: getting rid of temporary file
	Command Pipeline
	Rule of composition
	The Power of Pipe
	Shell command line
	Outline
	C/C++ topics: command line arguments
	Simplified Echo program
	Outline
	User Customization
	Login Shell versus Non-login Shell
	Source command
	Bash: startup initialization
	Shell: startup initialization
	Export command
	To test your settings
	Summary

