
CISC3130, Spring 2013
Xiaolan Zhang

1

Chapter 3: Searching/Substitution:
regular expression

1

Outline

2

 Shell globbing, or pathname expansion
 Grep, egrep, fgrep
 regular expression
 sed
 cut, paste, comp, uniq, sort

2

Globbing, filename expansion
 Globbing: shell expands filename patterns or templates

containing special characters.
 e.g., example.??? might expand to example.001 and example.txt

 Demo using echo command: echo *
 Globbing is carried out by shell

 recognizes and expands wild cards.
 * (asterisk): matches every filename in a given directory.
 ?: match a single-character
 [ab]: match a or b
 ^ : negating the match.

 Strings containing * will not match filenames that start with a dot

3

Examples
$ ls

a.1 b.1 c.1 t2.sh test1.txt

$ ls t?.sh

t2.sh

$ ls [ab]*

a.1 b.1

$ ls [a-c]*

a.1 b.1 c.1

$ ls [^ab]*

c.1 t2.sh test1.txt

$ ls {b*,c*,*est*}

b.1 c.1 test1.txt

4

Outline

5

 Shell globbing, or pathname expansion
 grep, egrep, fgrep
 regular expression
 sed
 cut, paste, comp, uniq, sort

5

Filter programs

6

 Filter: program that takes input, transforms input,
produces output.
 default: input=stdin, output=stdout
 e.g.: grep, sed, awk

 Typical use:
 $ program pattern_action filenames
 program scans files (if no file is specified, scan standard input),

looking for lines matching pattern, performing action on matching
lines, printing each transformed line.

 grep comes from ed (Unix text editor) search command
“global regular expression print” or g/re/p
 so useful that it was written as a standalone utility

 two other variants
 grep - pattern matching using Basic Regular Expression
 fgrep – file (fast, fixed-string) grep, does not use regular expressions,

only matches fixed strings but can get search strings from a file
 egrep - extended grep, uses a Extended Regular Expression (more

powerful, but does not support backreferencing)

grep/egrep/fgrep commands

7

8

grep syntax
 Syntax

grep [-hilnv] [-e expression] [filename], or
grep [-hilnv] expression [filename]

 Options
 -E use extended regular expression (replace egrep)
 -F match using fixed string (replace fgrep)
 -h do not display filenames
 -i Ignore case
 -l List only filenames containing matching lines
 -n Precede each matching line with its line number
 -v Negate matches
 -x Match whole line only (fgrep only)
 -e expression Specify expression as option
 -f filename Take regular expression (egrep) or

 a list of strings (fgrep) from filename

A quick exercise

9

 How many users in storm has same first name or last name as
you ?

 In which C++ source file is a certain variable used?
 In which file is the variable defined?

 We can specify pattern in regular expression
 How many users have no password ?
 Extract all US telephone numbers listed in a text file?
 718-817-4484
 718,817,4484,
 718,8174484, ….

Outline

10

 Shell globbing, or pathname expansion
 grep, egrep, fgrep
 regular expression
 Basics: BRE and ERE
 Common features of BRE and ERE
 BRE backreference
 ERE extensions

 sed
 cut, paste, comp, uniq, sort

10

What Is a Regular Expression?

11

 A regular expression (regex) describes a set of
possible input strings, i.e., a pattern
 e.g., ls –l | grep ^d ## list only directories
 e.g., grep MAX_INT *.h ## where is MAX_INT defined

 Regular expressions are endemic to Unix
 vi, ed,
 grep, egrep, fgrep; sed
 emacs, awk, tcl, perl, Python
 more, less, page, pg

 Libraries for matching regular expressions: GNU C
Library, and POSIX.2 interface (link)

http://www.gnu.org/software/libc/manual/html_node/Regular-Expressions.html

POSIX: BRE and ERE
 Basic Regular Expression
 Original
 Supported by grep

 Extended Regular Expression
 more powerful, originally supported in egrep

12

Outline

13

 Shell globbing, or pathname expansion
 Grep, egrep, fgrep
 regular expression
 Basics: BRE and ERE
 Common features of BRE and ERE
 BRE backreference
 ERE extensions

 sed
 cut, paste, comp, uniq, sort

13

BRE/ERE commonmetacharacters
^ (Caret) match expression at start of a line, as in ^d.

$ (Dollar) match expression at end of a line, as in A$.

\ (Back slash) turn off special meaning of next character, as in \^.

[] (Brackets) match any one of the enclosed characters, as in
[aeiou], use hyphen "-" for a range, as in [0-9].

[^] match any one character except those enclosed in [],
as in [^0-9].

. (Period) match a single character of any value, except end of
line.

*(Asterisk) match zero or more of preceding character or
expression.

14

 Protect Metacharacters from Shell

15

 Some regex metachars have special meaning for shell:
globbing and variable reference
$grep e* .bash_profile ## suppose there are files email.txt, e_trace.txt

 # under current dir
Actual command executed is:
grep email.txt e_trace.txt .bash_profile

$grep $PATH file ## $PATH will be replaced by value of PATH…

 Solution: single quote regexs so shell won’t interpret special
characters
 grep ′e*′ .bash_profile
 double quotes differs from single quotes: allows for variable

substitution whereas single quotes do not.

Escaping Special Characters

16

 \ (backslash): match special character literally, i.e., escape it
 E.g., to match character sequence 'a*b*‘
 'a*b*' : ## match zero or more ‘a’s followed by zero or more

 ## ‘b’s, not what we want
 'a*b*' ## asterisks are treated as regular characters

 Hyphen when used as first char in pattern needs to be escaped
 ls –l | grep '\-rwxrwxrwx'
list all regular files that are readable, writable and executable to all

 To look for reference to shell variable PATH in a file
 grep '\$SHELL' file.txt

Regex special char: Period (.)

17

 Period . in regex matches any character.
 grep ′o. ′ file.txt

 How to list files with filename of 5 characters ?
 ls | grep ′….. ′ ## actually list files with filename 5 or more chars

long? Why?

 How to list normal files that are executable by owners?
 ls –l | grep ′\-..x ′

For me to poop on.

match 1 match 2

regular expression o .

Character Classes

18

 Character classes [] can be used to match any char from the
specific set of characters.
 [aeiou] will match any of the characters a, e, i, o, or u
 [kK]orn will match korn or Korn

 Ranges can be specified in character classes
 [1-9] is the same as [123456789]
 [abcde] is equivalent to [a-e]
 You can also combine multiple ranges
 [abcde123456789] is equivalent to [a-e1-9]

 Note - has a special meaning in a character class but only if it is
used within a range,
[-123] would match the characters -, 1, 2, or 3

Character Classes (cont’d)

19

 Character classes can be negated with the [^] syntax
 [^1-9] ##match any non-digits char
 [^aeiou] ## match with letters other than a,e,i,o,u

 Commonly used character classes can be referred to by
name (alpha, lower, upper, alnum, digit, punct, cntrl)

 Syntax [:name:]
[a-zA-Z] [[:alpha:]]
[a-zA-Z0-9] [[:alnum:]]
[45a-z] [45[:lower:]]

Anchors

20

 Anchors: match at beginning or end of a line (or both).
 ^ means beginning of the line
 $ means end of the line

 To display all directories only
ls –ld | grep ^d ## list all lines start with letter d

 To display all lines end with period
grep ′\.$′ .bash_profile ## lines end with .

Exercise

21

 To display all empty lines
grep ′^$′ .bash_profile ## empty lines

How to list files with filename of 5 characters ?
 ls | grep ′^…..$ ′ ## Now it’s right

 Find all executable files under current directory ?

Repetition

22

 * match zero or more occurrences of character or character
class preceding it.
 x* ## match with zero or more x
 grep ′x*′ .bash_profile ## display all lines, as all lines have zero

or more x
 abc* ## match with ab, abc, abccc, …
 .*x ## matches anything up to and include last x in the line

 Ex: How to match C/C++ one-line comments, starting
from // ? (use sed to remove all comments…)

Interval Expression

23

 Interval expression: specify # of occurences
 BRE:
 \{n,m\}: between n and m occurrence of previous exp
 \{n\}: exact n occurrence of previous exp
 \{n,\}: at least n occurrence of previous exp

 ERE:
 {n} means exactly n occurrences
 {n,} means at least n occurrences
 {n,m} means at least n occurrences but no more than m

occurrences
 Example:
 .{0,} same as .*
 a{2,} same as aaa*
 .{6} same as ……

Outline

24

 Shell globbing, or pathname expansion
 Grep, egrep, fgrep
 regular expression
 Basics: BRE and ERE
 Common features of BRE and ERE
 BRE backreference
 ERE extensions

 sed
 cut, paste, comp, uniq, sort

24

BRE: Backreferences

25

 Backreferences: refer to a match made earlier in a
regex
 E.g., to find lines starting and ending with same words

 How:
 Use \(and \) to mark a sub-expression that we want to back

reference
 Use \n to refer to n-th marked subexpression
 one regex can have multiple backreferences

 Ex: to search for lines that start with two same characters

 grep ′^\(.\)\1′ file.txt

26

Back-references
 Recall /etc/passwd stores info. about user account

[zhang@storm ~]$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin

 To find accounts whose uid is same as groupid
 grep '^[^:]*:[^:]*:\([0-9]*\):\1' /etc/passwd

 Find five-letter long palindrome in wordlist

 grep ′\(.\)\(.\).$2$1′ wordlist

Outline

27

 Shell globbing, or pathname expansion
 Grep, egrep, fgrep
 regular expression
 Basics: BRE and ERE
 Common features of BRE and ERE
 BRE backreference
 ERE extensions

 sed
 cut, paste, comp, uniq, sort

27

ERE: Grouping, Subexpressions

28

 () group part of an expression to a sub-expression
 Sub-expresssions are treated like a single character
 * or { } can be applied to them

 Example:
 a* matches 0 or more occurrences of a
 abc* matches ab, abc, abcc, abccc, …
 (abc)* matches abc, abcabc, abcabcabc, …
 (abc){2,3} matches abcabc or abcabcabc

ERE: Alternation

29

 Alternation character |: matching one or another
sub-expression
(T|Fl)an will match ‘Tan’ or ‘Flan’
^(From|Subject): will match lines starting

with From or Subject, followed by a :
 Sub-expressions are used to limit scope of

alternation
At(ten|nine)tion then matches “Attention” or

“Atninetion”
 not “Atten” or “ninetion” as would happen without the

parenthesis - Atten|ninetion

ERE: Repetition Shorthands

30

 *(asterisk): (BRE and ERE) match zero or more
occurrences of preceding char (or expression for ERE)

 + (plus) : one or more of preceding char/expression
 abc+d will match ‘abcd’, ‘abccd’, or ‘abccccccd’ but will not

match ‘abd’
 Equivalent to {1,}

 ‘?’ (question mark): single character that immediately
precedes it is optional
 July? will match ‘Jul’ or ‘July’
 Equivalent to {0,1}

31

egrep Examples

• Find all lines with signed numbers
 $ egrep ’[-+][0-9]+\.?[0-9]*’ *.c

bsearch. c: return -1;
compile. c: strchr("+1-2*3", t-> op)[1] - ’0’, dst,
convert. c: Print integers in a given base 2-16
(default 10)
convert. c: sscanf(argv[i+1], "% d", &base);
strcmp. c: return -1;
strcmp. c: return +1;

A good help with Crossword

32

How many words have 3 a’s one letter apart?
 egrep a.a.a wordlist| wc –l
 54

 egrep u.u.u wordlist
 Cumulus

 Words of 7 letters that start with g, 4th letter is a, and 7th
letter is h
 egrep ′g..a..h$′ wordlist

Practical Regex Examples

33

 Variable names in C
 [a-zA-Z_][a-zA-Z_0-9]*

 Dollar amount with optional cents
 \$[0-9]+(\.[0-9][0-9])?

 Time of day
 (1[012]|[1-9]):[0-5][0-9] (am|pm)

 HTML headers <h1> <H1> <h2> …
 <[hH][1-4]>

34

35

36

x

xyz

Ordinary characters match themselves
(NEWLINES and metacharacters excluded)
Ordinary strings match themselves

\m
^
$
.

[xy^$x]
[^xy^$z]

[a-z]
r*

r1r2

Matches literal character m
Start of line
End of line
Any single character
Any of x, y, ^, $, or z
Any one character other than x, y, ^, $, or z
Any single character in given range
zero or more occurrences of regex r
Matches r1 followed by r2

\(r\)
\n

\{n,m\}

Tagged regular expression, matches r
Set to what matched the nth tagged expression
(n = 1-9)
Repetition

r+
r?

r1|r2
(r1|r2)r3
(r1|r2)*

{n,m}

One or more occurrences of r
Zero or one occurrences of r
Either r1 or r2
Either r1r3 or r2r3
Zero or more occurrences of r1|r2, e.g., r1, r1r1,
r2r1, r1r1r2r1,…)
Repetition

fgrep, grep, egrep

grep, egrep

grep

egrep

This is one line of text

o.*o
input line
regular expression

Quick
Reference

37

Examples
 Interesting examples of grep commands
 To search lines that have no digit character:
 grep -v '^[0-9]*$' filename

 Look for users with uid=0 (root permission)
 grep '^[^:]*:[^:]*:0:' /etc/passwd

 To search users without passwords:
 grep ‘^[^:]*::’ /etc/passwd

 To search for binary numbers

 To search for telephone numbers
 To match time of day, e.g., 12:14 am, 9:02pm, …

Extensions supported by GNU
implementations
 Usually use \ followed by a letter
 Word matching
 \<chop chop appears at beginning of word
 chop\> chop appears at end of word

38

Specify pattern in files

39

 -f option: useful for complicated patterns, also don't
need to worry about shell interpretation.

 Example
 $ cat alphvowels

^[^aeiou]*a[^aeiou]*e[^aeiou]*i[^aeiou]*o[^aeiou]*u[
^aeiou]*$

 $ egrep -f alphvowels /usr/share/dict/words
abstemious ... tragedious

Outline

40

 Shell globbing, or pathname expansion
 grep, egrep, fgrep
 regular expression
 Basics: BRE and ERE
 Common features of BRE and ERE
 BRE backreference
 ERE extensions

 sed: stream editor
 cut, paste, comp, uniq, sort

40

Introduction to sed: substitution
 Stream Editor: perform text substitution in batch mode
 E.g., formatting data
 E.g., batch modification, change variable names, function names in

source code

 Replace occurrence of a pattern in standard input with a given
string, and display result in standard output
 sed s/regular_expression/replace_string/

 Substitute “command”: s
 changes all occurrences of a regular expression into a new string
 to change "day" in file old to "night" in "new" file:

 sed s/day/night/ <old >new

Delimiter
sed s/regular_expression/replace_string/

 One can use any letter to delimit different parts of command s
 If delimiter appears in regular expr or replace str, escape them
 To change /usr/local/bin to /common/bin:
 sed 's/\/usr\/local\/bin/\/common\/bin/' <old >new

 It is easier to read if you use other letter as a delimiter:
 sed 's_/usr/local/bin_/common/bin_' <old >new
 sed 's:/usr/local/bin:/common/bin:' <old >new
 sed 's|/usr/local/bin|/common/bin|' <old >new

Introduction to sed: substitution
 If you have meta-characters in the command, quotes are

necessary
 sed 's/3.1415[0-9]*/PI/' <old >new

 To mark a matching pattern
 grep –n count mylab1.cpp | sed s/count/<count>/

How sed works?
 sed, like most Unix utilties, read a line at a time
 By default, sed command applies to first occurrence of the

pattern in a line.
[zhang@storm ~]$ sed 's/aa*/bb/'
ab ab
bbb ab
 To apply to every occurrence, use option g (global)
 sed 's/aa*/bb/g

 To apply to second occurence:
 sed 's/aa*/bb/2

aggressive matching
 sed finds longest string in line that matches pattern, and

substitute it with the replacing string
 Pattern aa* matches with 1 or more a’s
[zhang@storm ~]$ sed 's/aa*/bb/'
aaab
bbb

Substitution with referencing
 How to mark all numbers (integers or floating points)

using angled brackets?
 E.g., 28 replaced by <28>, 3.1415 replaced by <3.1415>

 Use special character "&“, which refer to string that matches the
pattern (similar to backreference in grep.)

 sed 's/[0-9][0-9]*\.[0-9]*/(&)/g'

 You can have any number of "&" in replacement string.
 You could also double a pattern, e.g. the first number of a line:
$echo "123 abc" | sed 's/[0-9]*/& &/'
123 123 abc

Multiple commands
 To combine multiple commands, use -e before each command:
 sed -e 's/a/A/' -e 's/b/B/' <old >new

 If you have a large number of sed commands, you can put them
into a file, say named as sedscript
sed comment - This script changes lower case vowels to upper case
 s/a/A/g
s/e/E/g
s/i/I/g
s/o/O/g
 s/u/U/g
each command must be on a separate line.

 Invoke sed with a script:
 sed -f sedscript <file.txt >file_cap.txt

sed interpreter script
 Alternatively, starts script file (named CapVowel) with
#!/bin/sed -f
s/a/A/g
s/e/E/g
s/i/I/g
s/o/O/g
s/u/U/g

and make file executable
 Then you can evoke it directly:
 CapVowel <old >new

Restrict operations
 Restrict commands to certain lines
 Specifying a line by its number.
sed '3 s/[0-9][0-9]*//' <file >new
 Specifying a range of lines by number.
sed '1,100 s/A/a/' All lines containing a pattern.
 To delete first number on all lines that start with a

"#," use:
 sed '/^#/ s/[0-9][0-9]*//'

Many other ways to restrict

Command d
 Command d: deletes every line that matches patten
 To look at first 10 lines of a file, you can use:
 sed '11,$ d' <file
 i.e., delete from line 11 to end of file

 If you want to chop off the header of a mail message, which is
everything up to the first blank line, use:
 sed '1,/^$/ d' <file

Command q
 abort editing after some condition is reached.

 Ex: another way to duplicate the head command is:
 sed '11 q' which quits when eleventh line is reached.

Backreference
 To keep first word of a line, and delete the rest of line, mark first

word with the parenthesis:
 sed 's/\([a-z]*\).*/\1/'

 Recall: regular expr are greedy, and try to match as much as
possible.
 "[a-z]*" matches zero or more lower case letters, and tries to be as big

as possible.
 ".*" matches zero or more characters after the first match. Since the

first one grabs all of the lower case letters, the second matches anything
else.

 Ex:
 $echo abcd123 | sed 's/\([a-z]*\).*/\1/'
 abcd

Backreference (cont’d)
 If you want to switch two words around, you can remember

two patterns and change the order around:
 sed 's/\([a-z][a-z]*\) \([a-z][a-z]*\)/\2 \1/’

 To eliminate duplicated words:
 sed 's/\([a-z]*\) \1/\1/'

 If you want to detect duplicated words, you can use
 sed -n '/\([a-z][a-z]*\) \1/p’

 Up to nine backreference: 1 thru 9
 To reverse first three characters on a line, you can use

 sed 's/^\(.\)\(.\)\(.\)/\3\2\1/'

Sed commands & scripts
 Each sed command consists of up to two addresses and an

action, where the address can be a regular expression or
line number.

 A script is nothing more than a file of commands

addres
s

action command
addres
s

action
addres
s

action
addres
s

action
addres
s

action

scrip
t

sed: a conceptual overview

• All editing commands in a sed script are applied in order
to each input line.

 If a command changes input, subsequent command address
will be applied to current (modified) line in the pattern
space, not original input line.

 Original input file is unchanged (sed is a filter), and the
results are sent to standard output (but can be redirected
to a file).

Outline

56

 Shell globbing, or pathname expansion
 Grep, egrep, fgrep
 regular expression
 Basics: BRE and ERE
 Common features of BRE and ERE
 BRE backreference
 ERE extensions

 sed
 cut, paste, comp, uniq, sort

56

Store Info in text file
 Convention: one record per line, separate different fields

using a delimiter (space, tab, or other characters)
 Ex. /etc/passwd,
 Each user’s record takes a line
 Fields (Userid, numeric id, user name, home directory) by ;

 Output generated by ls, ps, …

 Recall a design philosophy of Unix is use textual file, and
providing a rich small filters working on such files …

57

Command cut
 cut: displays selected columns or fields from each line of a

file
 Delimit-based cut
 cutting one of several columns from a file (often a log file) :
cut -d ' ' -f 2-7
 Retrieves second to seventh field assuming that each field is separated by a

single space
 Fields are numbered starting from one.

 Character column cut
 cut -c 4,5,20 foo # cuts foo at columns 4, 5, and 20.
 How to choose file name and size from “ls –l” output?

 58

Command paste
 paste: merging two files together, line by line
 E.g., Suppose population.txt stores world population info,

GDP.txt stores GDP,
Population.txt GDP
Country population Country GDP
… …
 paste f1 f2 > pop_GDP
 Need to make sure info for same country are merged:
 Sort files using country name first (if same set of countries are listed in

both files, this solves problem)

59

Command join
 join: for each pair of input lines with identical join fields,

write a line to standard output.
 join [OPTION]... FILE1 FILE2

 -e EMPTY replace missing input fields with EMPTY

 -i, --ignore-case ignore differences in case when comparing fields

 -j FIELD equivalent to `-1 FIELD -2 FIELD‘

 -1 FIELD join on this FIELD of file 1

 -2 FIELD join on this FIELD of file 2

60

Command tr
 tr - Translate, squeeze, and/or delete characters from standard

input, writing to standard output.
 cat file| tr [a-z] [A-Z] ## translate all capital letter to lower case
 cat file | tr -sc A-Za-z '\n‘
 ## replace all non-letter characters with newline
 ## -c: complement
 ## -s: squeeze

61

Command tr and uniq
 uniq: report or omit repeated lines
 -c: precede each unique line with the number of occurrences

62

wf (word frequency)

63

Ex: Get a letter frequency count on a set of files given on command
line. (No file names means that std input is used.)

#!/bin/bash
cat $* |
tr -sc A-Za-z '\012' |
tr A-Z a-z|
sort |
uniq -c |
sort -nr -k 1
Uncomment the last two lines to get letters (and counts) from most

frequent to last frequent, rather than alphabetical.

What is being generated at second command ?
* Command tee can be inserted into pipeline, to save the streams of input/
output into a file.

Command tee
 tee – copy standard input to standard output and file
 tee [OPTION]... [FILE]...
 Option:
 -a, --append
 append to given FILEs, do not overwrite
 Useful for insert into pipes for testing, and for storing

intermediate results
 ls –l | wc –l
 To save output of ls –l
 ls –l | tee lsoutput.txt | wc –l

64

Capture intermediate result in file
#!/bin/bash
cat $* |
tr -sc A-Za-z '\012' |
tr A-Z a-z|
sort | tee aftersort |
uniq -c |
sort -nr -k 1

For example: add the parts in red to store output of sort

command to aftersort, and feed them to next command
in the pipeline (uniq)…

65

Usage of tee
 In shell script, sometimes you might need to process standard

input for multiple times: count number of lines, search for
some pattern:

#!/bin/bash

usage: tee_ex pattern

echo Number of lines `wc –l`

echo Searching for $1

grep $1

 Problems: standard input to the script (might be redirected
from file/pipe) will be processed by wc (the first command in
scripts that reads standard input). Subsequence command (grep
here) does not get it

66

tee to rescue
#!/bin/bash
Usage: tee_ex pattern
echo Number of lines `tee tmp | wc –l`
echo Searching for $1
grep $1 tmp
rm tmp

67

Use tee to save a copy of standard input to file tmp, while at the
same time copy standard input to standard output, i.e., fed into
pipe to wc

Another solution
#!/bin/bash
Usage: tee_ex pattern
save standard input to file for later processing
cat > tmpfile

echo Number of lines `wc –l tmpfile`
echo Searching for $1
grep $1 tmpfile
rm tmpfile ## always clean up temporary file created …

68

Summary
 Regular expression and Finite state automata
 Single quote search patterns so that shell do not interpret

characters that have special meaning to him:
 *, ., $, ?, …
 Be sure to distinguish regex and shell globbing

 We look at grep regex, egrep regex
 egrep regex is generally a superset of grep regex, except back

reference

 Some other useful filter commands

69

	Chapter 3: Searching/Substitution: regular expression
	Outline
	Globbing, filename expansion
	Examples
	Outline
	Filter programs
	grep/egrep/fgrep commands
	grep syntax
	A quick exercise
	Outline
	What Is a Regular Expression?
	POSIX: BRE and ERE
	Outline
	BRE/ERE commonmetacharacters
	 Protect Metacharacters from Shell
	Escaping Special Characters
	Regex special char: Period (.)
	Character Classes
	Character Classes (cont’d)
	Anchors
	Exercise
	Repetition
	Interval Expression
	Outline
	BRE: Backreferences
	Back-references
	Outline
	ERE: Grouping, Subexpressions
	ERE: Alternation
	ERE: Repetition Shorthands
	egrep Examples
	A good help with Crossword
	Practical Regex Examples
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Examples
	Extensions supported by GNU implementations
	Specify pattern in files
	Outline
	Introduction to sed: substitution
	Delimiter
	Introduction to sed: substitution
	How sed works?
	aggressive matching
	Substitution with referencing
	Multiple commands
	sed interpreter script
	Restrict operations
	Command d
	Command q
	Backreference
	Backreference (cont’d)
	Sed commands & scripts
	sed: a conceptual overview
	Outline
	Store Info in text file
	Command cut
	Command paste
	Command join
	Command tr
	Command tr and uniq
	wf (word frequency)
	Command tee
	Capture intermediate result in file
	Usage of tee
	tee to rescue
	Another solution
	Summary

