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ABSTRACT

ROUTING IN MOBILE DTNS: PERFORMANCE

MODELING, NETWORK CODING BENEFIT, AND
MOBILITY TRACE MODELING

SEPTEMBER 2007

XIAOLAN ZHANG

B.S., PEKING UNIVERSITY, BEIJING, CHINA

M.S., UNIVERSITY OF MASSACHUSETTS AT AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jim Kurose and Professor Don Towsley

We study three related problems on unicast routing in Disruption-Tolerant Net-

works (DTNs), i.e., resource-challenged networks where contemporaneous end-to-end

connectivity cannot be assumed. We particularly focus on mobility-induced DTNs

with opportunistic contacts.

First, we propose a unified framework based on Ordinary Differential Equations

(ODEs) to study the performance of a class of epidemic style routing schemes. De-

rived as the limit of Markov process model under proper scaling, the ODE models

capture the propagation and recovery process of data packets under different schemes.

We derive a rich set of closed-form results using the ODE models, and quantitatively

characterize the performance trade-off achieved by different schemes. We also show

that compared to the Markovian model, the ODE models have the additional advan-

tages of analytic tractability and scalability in numerical solution.

vii



Next, we investigate the benefit of applying Random Linear Coding (RLC), a

special type of network coding, to epidemic style routing in resource-constrained

DTNs. We explore different ways to apply network coding, and study both the

case where there is a single block of packets propagating through the network, and

the case where blocks of packets arrive continuously to multiple unicast flows. Our

results show that due to its increased randomness, the RLC-based scheme achieves the

minimal block delivery delay with high probability and improves the block delivery

delay versus number of transmission trade-off. The relative benefit of network coding

is even more significant when the node buffer is limited.

Last, we study mobility traces taken from UMass DieselNet, an operational bus-

based DTN. We analyze the bus-to-bus contact traces in order to develop a generative

model that can be used to generate synthetic traces with similar DTN routing per-

formance as the original trace. Focusing on inter-contact times, we show that an

aggregate model for the inter-contact time is too coarse a model to accurately cap-

ture DTN routing performance. We then construct a route-level inter-contact time

model based on the trace, which captures interesting mobility structure within the

trace and is shown to capture epidemic routing performance more accurately than

the aggregate model.
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CHAPTER 1

INTRODUCTION

The focus of this thesis is Disruption Tolerant Networks (DTNs). The general field

of DTNs, as defined by the Delay Tolerant Networking Research Group (DTNRG) [1]

“is concerned with how to address the architectural and protocol design principles aris-

ing from the need to provide interoperable communications with and among extreme

and performance-challenged environments where continuous end-to-end connectivity

cannot be assumed”. Application domains of DTNs include mobile wireless sensor

networks [61, 100] for wildlife tracking, underwater sensor networks [87, 92], disaster

relief team networks, networks for remote areas or rural areas in developing coun-

tries [2, 31, 6], vehicular networks [18, 53] and Pocket-Switched Networks [50]. These

networks are subject to intermittent connectivity and disconnection of nodes due to

limitations of power, node mobility, sparse node density, and equipment failures.

In this thesis, we focus on DTNs where node mobility is the main factor lead-

ing to the disruption of contacts, in other words, the communication links between

nodes going up and down as nodes move in and out of range of each other. For

some networks, such as Inter-Planetary Networks [19], the node-to-node contacts are

deterministic because the mobile nodes move along fixed trajectories according to de-

terministic schedules (e.g., the Low-Earth Orbiting Satellite (LEO) or planets). For

most applications, however, mobile node movement is either random, such as human

beings carrying PDAs or animals attached with sensors, or semi-random, such as

buses whose movement exhibits random effects due to traffic and road conditions.

As a result, the contacts between nodes are unpredictable and opportunistic, a.k.a.,
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opportunistic networks. Our emphasis in this thesis is on the latter case, whose op-

portunistic nature renders it the more challenging case; for the former case, [55] has

proposed various routing algorithms based on different assumptions about available

knowledge.

Many challenges have to be addressed for DTNs (the interested user is referred

to [50] for an overview), and several previous works have studied DTNs from the

point of view of power management [62], security [17], and capacity building through

deploying static nodes [119] or specialized mobile nodes [118, 77]. This thesis will

focus on the routing aspect which, as the key challenge for DTNs, has attracted the

most interest from the research community. In the remainder of this chapter, we

first give an overview about unicast routing in DTNs, reviewing previously proposed

schemes from four different perspectives. We then discuss research efforts that have

addressed the performance evaluation of DTN routing schemes and the importance

of studying real DTN mobility traces. Last, we highlight the contribitions made in

this thesis and present an outline of the thesis.

1.1 Unicast Routing Schemes for DTNs

In the past several years, numerous routing schemes [110, 57] have been proposed

for DTN routing. Unlike traditional routing protocols which assume the existence of

an end-to-end path between sender and receiver throughout the lifetime of their com-

munications, DTN routing has adopted a so-called “store-carry-forward” paradigm.

Under this paradigm, each node in the network stores a packet that has been for-

warded to it by other node, carries the packet while it moves around, and forwards

it to other relay nodes or the destination node when they come within transmission

range. Such a paradigm, also called “mobility-assisted routing”, is similar in spirit to

the 2-hop routing scheme proposed by Grossglauser and Tse [40]. Proposed for dense

mobile ad hoc networks, the 2-hop routing scheme takes advantage of node mobility
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and attains a constant per-session throughput as the network density grows (in sharp

constrast to the diminishing throughput under fixed networks as shown by Gupta

and Kumar [41]).

Generally, previously proposed DTN routing schemes differ in the following as-

pects: (i) single-copy or multi-copy schemes, (ii) stateful or stateless schemes, (iii)

non-coding or coding-based schemes, (iv) consideration of resouce constraints. We

elaborate on these four aspects of DTN routing schemes next with some examples.

Interested readers are also referred to [60] which provides a nice review of the DTN

routing schemes.

First, routing schemes can be classified as single-copy or multi-copy schemes. Un-

der a single-copy scheme, at any point of time, there is a single copy of the packet

in the network; each packet is forwarded (not copied) along a single path. Under

multi-copy schemes, there can be multiple simultaneous copies of a packet in the

network; a packet is copied (i.e., duplicated) to other nodes, allowing simultaneous

use of multiple paths to the destination. The single-copy schemes [103, 57] generally

incur less transmission overhead and place less demand on buffer space; the challenge

lies in the forwarding decision, which usually needs to take into account meeting

history and buffer availability. Under opportunistic node-to-node contacts, it’s ben-

eficial to use multi-copy schemes to search for a path to the destination. Compared

to single-copy schemes, multi-copy schemes enjoy better delivery performance (i.e.,

lower delivery delay and higher delivery probability), sometimes at the expense of

more transmission overhead and buffer occupancy; furthermore, a recovery scheme is

usually deployed to delete obsolete copies once a packet is first delivered, to avoid use-

less transmissions. The majority of routing schemes previous proposed are multi-copy

schemes. For example, epidemic routing proposed by Vahdat and Becker [110] essen-

tially floods the whole network in order to deliver a packet. Using all transmission

opportunities to achieve minimum delivery delay, epidemic routing incurs maximum
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resource consumption, and causes congestion in loaded networks. Many variations of

epidemic routing that trade-off delivery delay for resource consumptions have been

subsequently proposed and studied, for example, K-hop, probabilistic forwarding [43]

and spray-and-wait [104, 101, 102] schemes.

Secondly, different routing schemes make different assumptions about node mo-

bility, and vary in whether and how they leverage mobility properties. Generally

speaking, stateful routing schemes assume heterogeneous node mobility and make

use of the heterogeneity in the forwarding/copying decision. For example, a couple

of routing schemes including probabilistic routing [82], history-based routing [61],

utility-based routing [22], MaxProp [18], Mobility Pattern Space Routing [76], and

[103] have assumed that two nodes that meet more often (or more recently) in the

past are more likely to meet again soon; and thus the forwarding/copying decision

are made based on history information about past meetings. More recently, Hui et

al. [52, 51] have studied the identification of social structure within human mobility

traces, and demonstrated the benefit of routing schemes that leverage such social

structures. Routing schemes such as epidemic routing [110], K-hop, probabilistic

forwarding [43] and spray-and-wait [104, 101, 102], do not assume or leverage any

structure within the node mobility, and do not make use of such information; they

fall into the category of stateless routing schemes.

Thirdly, while most previously proposed schemes forward or duplicate packets

in the network without modifying packet contents, a number of source coding [111]

or network coding based schemes [112, 116] have also been proposed and shown to

be beneficial. Source coding based schemes [111, 24] source-erasure-codes a source

packet into a large number of blocks, and forwards these blocks via a large number of

paths, in order to increase path diversity and hence improve worst case performance

using a fixed overhead. For DTNs with resource (bandwidth and buffer) constraints,

Random Linear Coding (a special form of randomized network coding) based schemes
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are shown to improve block delivery delay versus transmissions overhead trade-off due

to its increased randomness [116].

Finally, previous proposed routing schemes differ in their assumptions about re-

source constraints. Real DTNs are often subject to sometimes severe resource con-

straints. First, transmission bandwidth is often limited due to the low data rates

supported by wireless radio communication, and the limited duration of node-to-node

encounters. In addition, applications such as mobile sensor networks often use small

battery-powered nodes (sometimes with solar panels to harvest solar power), hence

energy and memory capacity are also scarce resources. Considering ZebraNet [61] as

an example, the collars attached to zebras use a low-power, short range radio (100m,

19.2Kbps) for peer-to-peer communication, and only have 640KB of user-accessible

FLASH RAM memory. While most early routing schemes have ignored resource con-

straints, or only considered buffer constraints, several recent works [61, 18, 12] have

addressed transmission scheduling and buffer management problems. In particular,

Balasubramanian et al. [12] formulated the DTN routing under resource constraints

as a utility-driven resource allocation problem that can be configured to explicitly

optimize certain routing metrics such as average delivery delay or maximum delivery

delay. Using a per-packet utility function derived from the routing metric, a heuristic

algorithm is developed to schedule packet transmission and manage buffer.

1.2 Performance and Mobility Traces Modeling

Early performance evaluations of DTN routing schemes have been mainly carried

out through simulation [110]; recent years have seen considerable analytic modeling

efforts [101, 39, 104, 103].

Generally, these simulation and modeling works assume synthetic mobility mod-

els such as random waypoint, random direction, and random walk models (interested

readers are referred to [20] for a survey on mobility models). Most of these syn-
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thetic models assume independent and identically random movements of the mobile

nodes, and result in memoreless property or exponential tail of the induced meeting

times distributions [105, 9, 59]. Using such synthetic mobility models makes analytic

modeling possible, and in some cases it allows the derivation of closed-form results

for performance metrics of interest [39, 117]. The drawback of using such synthetic

mobility models is that these models haven’t been validated using real DTN mobility

traces, and the independent and identical assumption is questionsable. Hence it is un-

clear how accurately the performance predictions reflect what would be experienced

in real deployed systems.

Although some synthetic mobility models proposed in the past have accounted for

grouping behavior (a.k.a. group mobility models [20]), social structure of nodes [89]

or geographical constraints (such as streets), they are generally not widely adopted,

partly due to the lack of validation results for such models as well.

For the above reasons, the collection, analysis and modeling of mobility traces of

real DTN networks is a crucial problem. Several recent studies [21, 18, 107, 49, 64, 52,

51] have characterized traces collected from actual mobile networks with intermittent

connectivity or adapted from traces collected from wireless LAN, and/or evaluated the

impact of the measured mobility on DTN applications through simulation or analysis.

These works characterized certain certain aspects of traces, e.g., the aggregate inter-

contact time, without considering which aspects of the underlying mobility are the

most important factors in determining DTN performance and therefore need to be

captured and modeled accurately.

1.3 Our Contributions

In this thesis, we study three related fundamental problems in DTNs.

First, we propose an Ordinary Differential Equation (ODE) based framework for

the modeling of epidemic style routing. We derive the ODE models from Markovian
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models under appropriate scaling (when the network size increases). We also show

that such models allow one to derive or calculate important performance metrics (i.e.,

delivery delay and total number of copies generated) much more easily than Marko-

vian models. Although we mainly consider networks where there is no bandwidth

constraint for both the cases of with or without buffer constraints, extending the

model to further consider bandwidth constraints and contention is not difficult.

Our second contribution is the study of the benefit of network coding in DTNs.

For realistic DTNs where bandwidth and buffer are constrained, we compare the

performance of the non-coding based approach, and Random Linear Coding (abbre-

viated as RLC, a specific form of randomized network coding) based scheme. We find

that an RLC based scheme can decrease the block delivery delay, and improve the

block delivery delay versus the number of transmissions made trade-off. The relative

benefit of the RLC scheme is especially significant when both bandwidth and buffer

space are constrained.

The third contribution of this thesis is a careful modeling study of the mobility

trace collected from UMass DieselNet, an operational bus based DTN. We analyze

the bus-to-bus contact traces and characterize the contact processes between buses

and its impact on DTN routing performance. We find that the all-bus-pairs aggre-

gated inter-contact times show no discernible pattern. However, the inter-contact

times aggregated at a route level exhibit periodic behavior. Based on the analysis

of the deterministic inter-meeting times for bus pairs running on route pairs, and

considering the variability in bus movement and the random failures to establish con-

nections, we construct generative route-level models that capture the above behavior,

allowing one to generate synthetic DTN mobility traces. Through trace-driven simu-

lations of epidemic routing, we find that the epidemic performance predicted by traces

generated with this finer-grained route-level model are much closer to the actual per-

formance that would be realized in the operational system than traces generated
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using the coarse-grained all-bus-pairs aggregated model. This suggests the impor-

tance of choosing the right level of model granularity when modeling mobility-related

measures such as inter-contact times in DTNs.

1.4 Structure of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we presente our per-

formance modeling studies of epidemic style routing using an ODE based framework.

In Chapter 3, we explore the benefit of applying network coding to unicast applica-

tions in DTNs. In Chapter 4, we present our modeling studies of the mobility trace

collected from UMass DieselNet. We draw conclusions and discuss future research

directions in Chapter 5.
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CHAPTER 2

PERFORMANCE MODELING OF EPIDEMIC ROUTING

2.1 Introduction

Epidemic routing [110] has been proposed as an approach for routing in sparse

and/or highly mobile networks in which there may not be a contemporaneous path

from source to destination. It adopts the “store-carry-forward” paradigm – a node

receiving a packet buffers and carries that packet as it moves, passing the packet on

to new nodes that it encounters. Analogous to the spread of infectious diseases, each

time a packet-carrying node encounters a node that does not have a copy of that

packet, the carrier is said to infect this new node by passing on a packet copy; newly

infected nodes, in turn, behave similarly. The destination receives the packet when

it first meets an infected node. When the traffic load is very low, epidemic routing

achieves the minimum delivery delay at the expense of increased use of resources such

as buffer space, bandwidth, and transmission power. However this also leads to link

and/or storage congestion when the network is loaded. Variations of epidemic routing

have recently been proposed that exploit the tradeoff between delivery delay and

resource consumption, including K-hop schemes [99, 39], probabilistic forwarding [82,

43], and spray-and-wait [104, 101]. These different schemes differ in their “infection

process”, i.e., the spreading of a packet in the network. They need to be combined

with a so-called “recovery process” that deletes copies of a packet at infected nodes,

following the successful delivery of the packet to the destination. Different recovery

schemes have been proposed: some are simply based on timers, others actively spread
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the information that a copy has been delivered to the destination throughout the

network [43].

Early efforts evaluating the performance of epidemic routing schemes used simu-

lation [110, 61, 82]. More recently, Markovian models have been developed to study

the performance of epidemic routing [100, 39, 43], 2-hop forwarding [39], and spray-

and-wait [104, 101]. Recognizing the similarities between epidemic routing and the

spread of infectious diseases, [100, 43] used ordinary differential equation (ODE)

models adapted from infectious disease-spread modeling [27] to study the source-to-

destination delivery delay under the basic epidemic routing scheme, and then adopted

Markovian models to study other performance metrics.

In this chapter, we develop a rigorous, unified framework, based on Ordinary

Differential Equations (ODEs), to study epidemic routing and its variations. The

starting point of our work is [39], where the authors considered common node mobility

models (e.g., random waypoint and random direction mobility) and showed that nodal

inter-meeting times are approxmiately exponentially distributed when transmission

ranges are small compared to the network area, and node velocity is sufficiently high.

This observation suggests that Markovian models of epidemic routing can lead to

quite accurate performance predictions; indeed [39] developed Markov chain models

for epidemic routing and 2-hop forwarding, deriving the average source-to-destination

delivery delay and the number of extant copies of a packet at the time of delivery.

An analytical study of such Markov chain models is quite complex for even simple

epidemic schemes, and more complex schemes have defied analysis thus far. Moreover,

numerical solution of such models becomes impractical when the number of nodes is

large.

We develop ODEs as a fluid limit of Markovian models such as [39], under an

appropriate scaling as the number of nodes increases. Through the chapter we show

that the ODE approach is a valid tool for investigating epidemic style routing. In fact

10



this approach allows us to derive closed-form formulas for the performance metrics

considered in [39], obtaining matching results. More importantly, we are also able to

use the ODE framework to further model the recovery process, to study more com-

plex variants of epidemic routing, and to model the performance of epidemic routing

with different buffer management schemes under buffer constraints. While different

recovery processes are also studied in [43] using Markov chains, simulation is first

needed to determine a number of model parameters. Many of our ODE models can

be analytically solved, providing closed-form formulas for the performance metrics of

interest; in cases where we resort to numerical solution, the computational complexity

does not increase with the number of nodes. The drawback of our ODE models is that

they provide the moments of the various performance metrics of interest, while nu-

merical solution of Markov chain models can provide complete distributions (e.g., for

the number of packet copies in the system). Simulation results show good agreement

with the predictions of our ODE models.

The main purpose of this work is to show how ODE models can be advantageously

employed to study the performance of various epidemic style routing schemes, rather

than to provide final conclusions about the merits of specific schemes. Nevertheless

we have obtained insights into different epidemic routing schemes through our models.

In particular, we have identified rules of thumb for configuring these schemes, we have

shown the existence of a linear relation between total number of copies sent and the

buffer occupancy under certain schemes, and we have demonstrated that the relative

benefit of different recovery schemes depends strongly on the specific infection process.

Finally our analysis of buffer-constrained epidemic routing suggests that sizing node

buffers to limit packet loss is not vital as long as an appropriate buffer management

scheme is used.

The remainder of this chapter is structured as follows. Basic epidemic routing

and our basic ODE model are described and derived in Section 2.2, allowing one to
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characterize the source-to-destination delivery delay, the number of copies made for

a packet, and the average buffer occupancy. In Section 2.3, it is shown how the ODE

model can be easily extended to model three important variations of basic epidemic

routing, K-hop forwarding, probabilistic forwarding and limited-time forwarding, to

global timeout scheme, and to model signaling overheads. In Section 2.4, we perform

validation for these models through simulation. We use the proposed models to

characterize the tradeoff between delivery delay and resource consumption (buffer

occupancy, number of copies made) in Section 2.5. In Section 2.6, we integrate the

ODE models with Markov and fluid buffer models to study the effect of finite buffers,

and compare different buffer management strategies. In Section 2.7, we review related

works and compare our work with them. Finally, in Section 2.8 we summarize the

chapter.

2.2 Basic Epidemic Routing

In this section we develop our ODE model for basic epidemic routing [110], after

briefly describing epidemic routing and the scenario we are considering. We then use

the model to study three different recovery techniques for deleting packet copies after

the delivery of the packet.

We consider a set of N +1 nodes, each with a finite transmission range, moving in

a closed area, and different source-destination pairs. We say that two nodes “meet”

when they come within transmission range of each other, at which point they can

exchange packets. Let us focus on a single packet. The analogy with disease spreading

is useful in describing epidemic routing. The source of the packet can be viewed as

the first carrier of a new disease, the first infected node, which copies the packet

to (infects) every node it meets. These new infected nodes act in the same way.

As a result, the population of susceptible nodes (i.e., nodes without a copy of the

packet) decreases over time. Once a node carrying the packet meets the destination,
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notation meaning

N number of nodes in the network, excluding the source

β pair-wise meeting rate

B node buffer size (in packets)

λ per-flow packet arrival rate

K Maximum number of hops in K-hop scheme

p Forwarding probability under probabilistic forwarding scheme

T TTL (Time-To-Live) value for global timeout scheme

µ Exponential time out value for limited time forwarding

Td packet delivery delay

L average packet lifetime

G number of times a packet is copied during its lifetime

C number of copies a packet in the network at delivery time

Q per-node data packet buffer occupancy

Gh number of times the packet header is copied during the packet’s lifetime

Ga number of times the anti-packet is copied during the packet’s lifetime

Qanti per-node anti-packets buffer occupancy

i(t) the average fraction of infected nodes at time t

r(t) the average fraction of recovered nodes at time t

I(t) the average number of infected nodes at tiem t

R(t) the average number of recovered nodes at tiem t

P (t) the CDF for delivery delay Td

Table 2.1. Tables of notations used in Chapter 2

it passes the packet on to the destination, deletes the packet from its own buffer,

and retains “packet-delivered” information (an “anti-packet”), which will prevent it

from receiving another copy of this packet in the future. Such a node is said to have

recovered from the disease. Here the recovery process simply relies on meeting with

the destination. We will shortly consider more sophisticated recovery schemes. Table

2.1 explains the notations used throughout this chapter.

Consider now many packets spreading at the same time in the network. We assume

that when two nodes meet they can exchange an arbitrary number of packets, and

each node has enough buffer to store all packets (the latter assumption is relaxed in

Section 2.6), thus allowing different infections to be considered independently. We
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also assume a mechanism exists so that nodes never exchange a packet if both nodes

are already carrying a copy of that packet (more details in Section 2.3.3).

2.2.1 ODE Models for Basic Epidemic Routing

As noted earlier, Groenevelt et al. [39] showed that the pairwise meeting time

between nodes is nearly exponentially distributed, if nodes move in a limited region

(of area A) according to common mobility models (such as the random waypoint or

random direction model [13]) and if their transmission range (d) is small compared

to A, and their speed is sufficiently high. The authors also derived the following

estimate of the pairwise meeting rate β:

β ≈ 2wdE[V ∗]

A
, (2.1)

where w is a constant specific to the mobility model, and E[V ∗] is the average relative

speed between two nodes. Under this approximation, [39] showed that the evolution

of the number of infected nodes can be modeled as a Markov chain.

We introduce our modeling approach starting from the Markov model for basic

epidemic routing before the delivery of a copy to the destination. Given nI(t), the

number of infected nodes at time t, the transition rate from state nI to state nI + 1

is rN(nI) = βnI(N − nI), where N is the total number of nodes in the network

(excluding the destination). If we rewrite the rates in a “density dependent form”,

as rN(nI) = Nλ(nI/N)(1 − nI/N) and assume that λ = Nβ is constant, we can

apply Theorem 3.1 in [75] to prove that, as N increases, the fraction of infected nodes

(nI/N) converges asymptotically to the solution of the following equation1:

i′(t) = λi(t)(1 − i(t)), for t ≥ 0 (2.2)

1 Formally, ∀ε > 0, limN→∞ Prob{| sups≤t{nI(s)/N − i(s)}| > ε} = 0
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with initial condition i(0) = limN→∞ nI(0)/N . The average number of infected nodes

then converges to I(t) = Ni(t) in the sense of footnote 1. The following equation can

be derived for I(t) from Eq.(2.2):

I ′(t) = βI(N − I), (2.3)

with initial condition I(0) = Ni(0). Such an ODE, which, as we have shown, results

as a fluid limit of a Markov model as N increases, has been commonly used in epi-

demiology studies, and was first applied to epidemic routing in [100] as a reasonable

approximation.

We remark that 1) the initial population of infected nodes must scale with N ,

and 2) the pairwise meeting rate must scale as 1/N . Eq.(2.1) provides insight into

the physical interpretation of this meeting rate scaling: in particular if the area A

increases with N , keeping node density constant, then β scales with 1/A, i.e.,1/N .

In the following we will consider Eq.(2.3) with initial condition I(0) = 1, which cor-

responds to an initial fraction of infected nodes i(0) = 1/N . Despite the “small”

number of initial infected nodes, we will see via simulation that the approximation

is good. We also note that Eq.(2.3), as well as other related equations we will de-

rive shortly, can also be obtained in a different manner from Markovian models by

neglecting terms related to higher moments (the details are given in Appendix A).

2.2.2 Delay under Epidemic Routing

Let Td be the packet delivery delay, i.e., the time from when a packet is first

generated at the source to the time when it is first delivered to the destination, and

denote its cumulative distribution function (CDF) by P (t) = Prob(Td < t). Under

the same scaling and approximations considered earlier, we can derive the following

equation for P (t): P ′(t) = λi(1 − P ) , where i(t) is the solution of Eq.(2.2). Let us
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consider PN(t), the CDF of Td when the number of nodes in the system is N +1, i.e.,

there are N nodes plus one destination node. We have

PN (t + dt) − PN (t) = Prob{t ≤ Td < t + dt}

= Prob{destination meets an infected node in [t, t + dt] |Td > t}

×Prob{Td > t}

= Prob{destination meets one of the nI(t) infected nodes in [t, t + dt] }

×(1 − PN(t))

= E[Prob{destination meets one of the nI(t) infected nodes in [t, t + dt] |nI(t)}]

×(1 − PN(t))

≈ E[βnI(t)dt] (1 − PN(t))

= βE[nI(t)](1 − PN(t))dt

= λ
E [nI(t)]

N
(1 − PN(t))dt.

Note that nI(t) is the number of infected nodes at time t, given that the destination

has not received a copy of the packet. It implicitly accounts for the condition Td > t.

The following ODE for PN(t) follows from the above equation:

P ′
N(t) = λE

[

nI(t)

N

]

(1 − PN(t)).

As N increases, E[nI(t)/N ] converges to i(t), and PN(t) converges to the solution of

P ′(t) = λi(t)(1 − P (t)).

For a finite population of size N we can consider:

P ′(t) = βI(t)(1 − P (t)). (2.4)
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Eq.(2.4) was proposed in [100], based on an analogy with a Markov process. Solving

Eq.(2.3) and Eq.(2.4) with initial conditions, I(0) = 1, P (0) = 0 yields

I(t) =
N

1 + (N − 1)e−βNt
, P (t) = 1 − N

N − 1 + eβNt
.

From P (t), the average delivery delay can be explicitly found as:

E[Td] =

∫ ∞

0

(1 − P (t))dt =
ln N

β(N − 1)
. (2.5)

The average number of copies of a packet in the system when the packet is delivered

to the destination under epidemic routing, E[Cep], can also be derived, as it coincides

with the average number of infected nodes in the system, apart from the source, when

the packet is delivered. Let Q(t) := 1 − P (t), we have:

E[Cep] =

∫ ∞

0

I(t)P ′(t)dt − 1

= β

∫ ∞

0

I2(t)Q(t)dt , replacing P ′(t) by Eq.(2.4)

= β

∫ ∞

0

I2(t)Q(t)

−βI(t)Q(t)
d(Q(t)), by Eq.(2.4)

=

∫ ∞

0

I ′(t)Q(t)dt + 1, by integrating by parts.

By replacing I ′(t) with Eq.(2.3), and considering that
∫ ∞
0

βI(t)Q(t)dt = P (∞) −

P (0) = 1, we get: Cep = N−1
2

.

Using a Markov chain model, [39] obtained the same results for the number of

copies, computed the Laplace-Stieltjes Transform (LST) of the delay distribution,

and from the LST found the following asymptotic expression for the average delay as

N → ∞: 1
β(N−1)

(ln N + γ + O( 1
N

)), matching Eq.(2.5). We note that the derivation

is much simpler using our ODE model.
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2.2.3 Recovery from Infection

In the previous two subsections, we derived the ODE models to model the infection

process of epidemic routing, and obtained delivery delay, and the number of copies

made at delivery time. In this section, we further consider the recovery process by

studying several recovery schemes previously proposed in [43].

Clearly, once a node delivers a packet to the destination, it should delete the packet

from its buffer to save storage space and prevent the node from infecting other nodes.

Moreover, to avoid being reinfected by the packet, the node can keep record about the

packet’s delivery. We refer to this information stored at the node as “anti-packet”, and

refer to this scheme of handling already-delivered packets as the IMMUNE scheme. A

more aggressive approach toward deleting obsolete copies is to propagate anti-packets

among nodes. An anti-packet can be propagated only to infected nodes (which we

will refer to as the IMMUNE TX scheme), or to both infected and susceptible nodes

(VACCINE scheme). We study the following two metrics for epidemic routing under

these different recovery schemes. One is the average number of times a packet is

copied during its lifetime, excluding the copy to the destination, denoted as E[G].

This value is greater than or equal to E[C], because more copies can be made after

the delivery to the destination. This metric is strongly related to the bandwidth

requirement, and transmission power consumption of a specific scheme. The other is

the average buffer occupancy at each node E[Q], for which we are going to derive an

expression under a specific traffic pattern. The two metrics are related to each other

and they both depend on the specific recovery process.

In order to study these two metrics, we next derive ODE models that take into

account the above recovery processes as the limit of Markov models. We note that the

derivations require that we scale the number of destinations nD in a manner similar

to the scaling of the number of initially infected nodes, i.e. limN→∞ nD/N = d.
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IMMUNE Recovery. Let nR(t) denote the number of recovered nodes at time

t, then the system state can be denoted as (nI(t), nR(t)). The transition rates (i.e.,

the infection and recovery rate) can be expressed as:

rN((nI(t), nR(t)), (nI(t) + 1, nR(t))) = βnI(t)(N − nI(t) − nR(t))

rN((nI(t), nR(t)), (nI(t) − 1, nR(t) + 1)) = βnI(t)nD.

The transition rates can be written in a “density dependent” form, given that the

number of destinations nD scales in a manner similar to the scaling of the number of

initially infected nodes. Then by Theorem 3.1 in [75], we get that, as N increases,

the fraction of infected nodes (nI/N) and recovered nodes (nR/N) converge asymp-

totically to the solution of the following equations:

i′(t) = λi(t)(1 − i(t) − r(t)) − λi(t)d

r′(t) = λi(t)d

where d = nD/N , and the initial conditions are i(0) = limN→∞ nI(0)/N, r(0) = 0.

The number of infected and recovered nodes then converge to I(t) = Ni(t), R(t) =

Nr(t) respectively in the sense of footnote 1. The following equation can be derived

for I(t), R(t) from the previous ODEs:

I ′(t) = βI(N − I − R) − βInD (2.6)

R′(t) = βInD (2.7)

with initial condition I(0) = Ni(0), R(0) = 0. We consider I(0) = 1, R(0) = 0, nD =

1.

The above model allows us to evaluate the average number of times that a packet

is copied during its lifetime, E[Gep]. In fact the total number of copies made of
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a packet equals the number of nodes that have ever been infected, i.e., E[Gep] =

limt→∞(I(t) + R(t))− I(0). As R(t) is a strictly increasing function of t, I(R) is well

defined. Dividing Eq.(2.6) over Eq.(2.7) yields (we assume nD = 1):

dI/dR = N − I − R − 1.

Solving this ODE with initial condition I(R = 0) = 1 yields

I(R) = (−N + 1)e−R − R + N.

As limt→∞ I(t) = 0, we can solve I(R) = 0 for R to find limt→∞ R(t). For N

large enough (N > 10), the solution gives limt→∞ R(t) ≈ N . So we get E[Gep] =

limt→∞ I(t) + R(t) − 1 ≈ N − 1.

IMMUNE TX Recovery. For IMMUNE TX the transition rates are (omitting

the dependence from time, t):

rN ((nI , nR), (nI + 1, nR)) = βnI(N − nI − nR)

rN((nI , nR), (nI − 1, nR + 1)) = βnI(nR + nD)

The limiting equations are:

i′(t) = λi(t)(1 − i(t) − r(t)) − λi(t)(r(t) + d)

r′(t) = λi(t)(r(t) + d)

The following equations can be immediately derived:

I ′(t) = βI(N − I − R) − βI(1 + R) (2.8)
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R′(t) = βI(1 + R) (2.9)

We divide Eq.(2.8) over Eq.(2.9) to get an ODE of I(R). Solving the ODE yeilds

I(R) =
−R2 + (N − 1)R + 1

R + 1
.

As limt→∞ I(t) = 0, we find limt→∞ R(t) by solving I(R) = 0 for R. I(R) = 0

has two roots (N − 1 ±
√

N2 − 2N + 5)/2. Discarding the negative root, we have

limt→∞ R(t) = (N − 1 +
√

N2 − 2N + 5)/2. Therefore, for IMMUNE TX scheme, we

have

E[Gep(N)] = lim
t→∞

(I(t) + R(t) − 1) =
N − 3 +

√
N2 − 2N + 5

2
.

VACCINE Recovery. For VACCINE we need to specify how many destination

nodes have received the packet, let nDR denote this number2. We assume that all the

destinations have to receive the packets from an infected node3. The transition rates

are:

rN((nI , nR, nDR), (nI + 1, nR, nDR)) = βnI(N − nI − nR)

rN ((nI , nR, nDR), (nI − 1, nR + 1, nDR)) = βnI(nR + nDR)

rN((nI , nR, nDR), (nI − 1, nR + 1, nDR + 1)) = βnI(nD − nDR)

rN((nI , nR, nDR), (nI , nR + 1, nDR)) = β(N − nI − nR)(nR + nDR).

2There is no such a need for the previous schemes because only a destination can recover an
infected node. Hence even if the destination has not received the packet, the destination receives it
when it meets the infected node.

3Different assumptions can be made, for example a destination could receive the packet from an-
other destination, or a destination could receive the antipacket from a recovered node and propagate
it without having received the packet. The latter case is meaningful when we deal with an anycast
communication (the packet has to reach at least one of the destinations) or if we can rely on the fact
all the destinations will receive a copy of the packet from the destination that started the recovery
process. These different assumptions lead to minor differences in the final equations.
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The limiting equations are as follows, where dr(t) = limN→∞(nDR/N):

i′(t) = λi(t)(1 − i(t) − r(t)) − λi(t)(r(t) + d)

r′(t) = λi(t)(r(t) + d) + λ(1 − i(t) − r(t))(r(t) + dr(t))

d′
r(t) = λi(t)(d − dr(t)).

If we consider the average populations (Ni(t),Nr(t) and Ndr(t)), and assume nD = 1,

we observe that Ndr(t) satisfies the same ODE as P (t), and derive the following

equations:

I ′(t) = βI(t)(N − I(t) − R(t)) − βI(t)(R(t) + 1) (2.10)

R′(t) = βI(t)(1 + R(t)) + β(N − I(t) − R(t))(R(t) + P (t)) (2.11)

P ′(t) = βI(t)(1 − P (t)). (2.12)

Let C(t) be the number of nodes that are ever infected by the packet, then we

have

C ′(t) = βI(t)(N − I(t) − R(t)) (2.13)

Solving the ODEs (Eq.(2.10),(2.11),(2.12), (2.13)) allows us to evaluate the number

of times a packet is copied during its lifetime (excluding the copy to the destination),

as Gepvac = C(∞).

Buffer Occupancy. We next consider the average buffer occupancy E[Q], in

the case of N + 1 unicast flows, with each node being the source of one flow and

the destination for one other flow. The packet generation process in each flow is a
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Poisson process with rate λ. We denote by L the average packet lifetime (the time

from when the packet is generated by the source node to when all copies of the packet

are removed from the network). As the total arrival rate of new packets to the system

is (N + 1)λ, the average number of packets in the system is (N + 1)λL by Little’s

Law.

The average number of copies of a packet in the system during its lifetime can be

evaluated as
∫ ∞

0
I(t)dt/L, where I(t) is the solution to the ODEs that account for

the recovery process.

Therefore the average total buffer occupancy in the whole network is given by

E[Qtotal] = (
∫ ∞
0

I(t)dt/L)(N + 1)λL =
∫ ∞
0

I(t)dt(N + 1)λ, and the per-node average

buffer occupancy is thus E[Q] = λ
∫ ∞
0

I(t)dt.

Next, we demonstrate that modeling a node’s buffer as an M/M/∞ queue gives

the same result and shows a linear relationship between the average buffer occupancy

and the number of copies made under the IMMUNE scheme. In fact, given that each

packet is copied E[Gep] times during its lifetime, each flow generates relay traffic at

rate E[Gep]λ, and the total rate of relay traffic in the network is E[Gep]λ(N + 1) (as

there are N + 1 flows). This traffic is equally divided among the N + 1 nodes, hence

the arrival rate of relay packets to each node is E[Gep]λ, and the total packet arrival

rate is λ(1 + E[Gep]). If a copy is deleted only when the node meets the destination4,

the service rate is 1/β. Under the M/M/∞ queue, the average buffer occupancy is

E[Q] = λ
β
(1 + E[Gep]).

2.3 Extended Model

The schemes in the previous section all share the same infection process: they

propagate a packet among nodes in a flooding/epidemic manner, but differ in the way

4This is the case under IMMUNE for the basic epidemic routing, and also for the probabilistic
and K-hop forwarding schemes we consider in Section 2.3.1.
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they counteract the infection after the packet has been delivered to the destination.

As results in Table 2.2 show, this can lead to substantial differences in terms of

buffer occupancy and the total number of copies made of a packet. Depending on the

specific applications, it might be preferable to trade off timely delivery for savings in

resource consumption, by changing the way packets are propagated among nodes. We

describe in Section 2.3.1 K-hop forwarding, probabilistic forwarding and limited-time

forwarding that allow us to achieve such tradeoff. In Section 2.3.2, we introduce the

global timeout scheme that naturally addresses the problem of deleting anti-packets.

We discuss how ODE models can be used to model signaling overhead in Section 2.3.3.

All the ODEs models can be derived as limits of Markovian models, similarly to what

we have shown in Section 2.2.1. We do not detail the derivations, but only stress the

peculiarities (if any) to be taken into account when applying the limiting theorem.

2.3.1 Trade-off Schemes

In this section, we present ODEs models for the following variations of the basic

epidemic routing scheme, i.e., K-hop forwarding, probabilistic forwarding and limited-

time forwarding. They all allow one to trade off timely delivery delay for savings in

transmission bandwidth and buffer occupancy.

2.3.1.1 K-hop Forwarding

Under K-hop forwarding, a packet can traverse at most K hops to reach the

destination. We can use ODE models to model the K-hop forwarding scheme, as we

demonstrate in the following for K = 2 case.

Under 2-hop forwarding, the source copies the packet to every node it meets

until it meets the destination; relay nodes do not copy the packet to any other node

except the destination. As the packet spreads at a rate proportional to the number of
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susceptible nodes, the following equations model the spread process and the delivery

delay:

I ′(t) = β(N − I)

P ′(t) = βI(1 − P )

with initial conditions: I(0) = 1 and P (0) = 0. Note that to derive the previous

equations from the Markovian model similarly to what we did in Section 2.2.1, the

number of source nodes need to scale with N .

The above ODE system can be solved explicitly, from which we can then derive

an asymptotic expression for the average delivery delay E[Td] ≈ 1
β

∫ ∞
0

e−(N−1)t2/2dt =

1
β

√

π
2

1√
N−1

(derivation detail is given in Appendix B). As to the average number

of copies until delivery, C2hop, a derivation similar to that of epidemic routing in

Section 2.2.1 yields C2hop = βNE[Td] − 1∼N→∞
√

π
2

√
N . These results again match

those obtained in [39] using a Markov Chain model.

We can apply analysis similar to Section 2.2.3 to study the number of copies made

and the average buffer occupancy for given recovery schemes. For IMMUNE recovery,

we obtain more accurate model through the following derivations. Let G2hop be the

number of times a packet is copied during its life time (excluding the copy to the

destination) under this scheme. For each packet, the source node copies the packet to

every relay node it meets before it meets the destination, therefore G2hop(N) equals the

number of nodes the source node meets before meeting the destination. As the inter-

meeting times between all node pairs are independently identically distributed (i.i.d.)

exponential random variables, the destination node is equally likely to be the i-th

node to meet the source node, for i = 1, ..., N . Therefore we have Pr(G2hop = i) = 1
N

,

for i = 0, ..., N − 1, and hence E[G2hop] = N−1
2

. Given G2hop(N), we can derive the

average buffer occupancy using a M/M/∞ model with the departure rate β, by an

approach similar to what we described in Section 2.2.3.
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Schemes I(t) E[Td] E[C],E[G] E[Q]
P (t)

Epidemic I(t) = N
1+(N−1)e−βNt

ln N
β(N−1) E[C] = N−1

2 ≈ Nλ/β (IM)

routing P (t) = 1 − N
N−1+eβNt E[G] ≈ N − 1 (IM) ≈ λN−1+

√
N2−2N+5
2β

E[G] = N−3
2 (IM TX)

+
√

N2−2N+5
2 (IM TX)

2-hop I(t) = N − (N − 1)e−βt 1
β

√

π
2

1√
N−1

E[C] =
√

π
2

√
N , G = N−1

2 (IM) λ(N+1)
2β (IM)

forwarding P (t) = 1 − eN−1−βNt−(N−1)e−βt

Prob. I(t) = N
1+(N−1)e−pβNt [ ln(N)

β(N−1) ,
ln(N)

βp(N−1) ] E[C] = p(N−1)
1+p

forwarding P (t) = 1 − ( N
N−1+epβNt )

1/p

Limited-time I(t) = a2+eβ(a2−a1)t+A
A+eβ(a2−a1)t ∼

N→∞
1
β

ln(N−µ
β

)

N−µ
β

forwarding a1,2 =
(βN−µ)∓

√
(βN−µ)2+4βµ

2β ∼
µ→∞

µ−Nβ
βµ

(no reinfection) a1 < 0, a2 > 0, A = a2−1
1−a1

∼
N=µ

β
→∞

π
2β

√
N−2

Global P (t) = 1 − N
N−1+eβNt , t ≤ T ln(N)

β(N−1) E[C] = N−1
2

timeout P (t) = 1 − eβb(T−t) − ln(1+(N−1)e−βNT )
β(N−1) − N2(N−1)

2(eβTN +N−1)2

scheme N
N−1+eβNT , t > T, b = I(T ) + 1

βeβNT

Global P (t) = 1 − N
N−1+eβNt , t ≤ T ln(N)

β(N−1) E[C] = N−1
2

timeout P (t) = 1 − Neβ(T−t)

N−1+eβNT , t > T − ln(1+(N−1)e−βNT )
β(N−1) − N2(N−1)

2(eβTN +N−1)2

scheme (2) + N
β(eβTN+N−1)

Table 2.2. Summary of closed-form expressions obtained for different schemes
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2.3.1.2 Probabilistic Forwarding

Probabilistic forwarding is similar to epidemic routing except that when two nodes

meet, each node accepts a relay packet with probability p. When p = 0, the probabilis-

tic forwarding degenerates to direct source-destination delivery; when p = 1, epidemic

routing is performed. Varying p in the range (0, 1) allows a trade-off between stor-

age/transmission requirements and delivery delay. We can model the delivery delay

using the following ODEs:

I ′(t) = βpI(N − I)

P ′(t) = βI(1 − P )

with I(0) = 1, P (0) = 0. We derive a closed-form solution for this ODEs, from which

we then derive bounds for the average delay (details given in Appendix B, and the

results are given in Table 2.2). Close-form formula for the number of copies at delivery

time is derived using similar technique described in Section 2.2.2: Cprob = p(N−1)
1+p

.

Similar to the basic epidemic routing case, we extend the ODE models to consider

recovery process, and calculate the average total number of copies made of a packet

(Gprob) and the average buffer occupancy for probabilistic forwarding under different

recovery schemes.

2.3.1.3 Limited-time Forwarding

Under limited-time forwarding, when a relay node accepts a packet copy, it starts

a timer with duration drawn from an exponential distribution with rate µ. When the

timer expires, the copy is deleted from the buffer. To guarantee the eventual delivery

of each packet, a node does not time out a packet for which it is the original source.

The choice of timeout value allows us to trade off the delivery delay against storage

and number of transmissions.
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When a packet copy in a node times out, the node can either store an anti-packet

(so that it will not be infected by the packet again), or keep no information (in which

case it become susceptible to the packet again).

The former scheme can be modeled using the following ODEs, where T (t) is the

number of timed out nodes at time t. As before these ODEs can be derived as the

limit of a Markovian model5.

I ′(t) = βI(N − I − T ) − µ(I − 1)

T ′(t) = µ(I − 1)

P ′(t) = βI(1 − P )

We numerically solved this ODEs, and evaluate the average delivery delay as

E[Td] =
∫ ∞
0

(1 − P (t))dt. Similar to epidemic routing, by extending the ODEs to

include recovery processes, we are able to evaluate numerically the average total

number of copies made for a packet during its lifetime E[G], and the average buffer

occupancy E[Q].

The latter scheme can be studied using the following ODEs:

I ′(t) = βI(N − I) − µ(I − 1)

P ′(t) = βI(1 − P )

The above ODEs can be solved explicitly and an asymptotic expression for the av-

erage delay can be found (see Table 2.2 for the results, and Appendix B for derivation

detail). We found that if µ ≥ Nβ the number of infected nodes goes to zero as t → ∞.

In this case limited-time forwarding can perform recovery via timeout and there is no

5There is no need to scale the timer rate µ, while we need to scale β as we noted in Section 2.2.1.
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need for explicitly transmitted anti-packets, and the epidemic spreading will eventu-

ally die out. The asymptotic delay when µ = Nβ equals π
2β

√
N−2

(derivation detail is

given in Appendix B).

2.3.2 Handling Anti-packets: Global Timeout Scheme

Under the recovery schemes, IMMUNE, IMMUNE TX and VACCINE, nodes

store and propagate anti-packets to delete obsolete packet copies to save buffer space

and reduce the number of copies of each packet sent. Although anti-packets are typ-

ically much smaller than data packets, a mechanism is needed to delete anti-packets:

otherwise, the buffer space taken up by anti-packets will grow arbitrarily large. In

this section, we describe a global timeout scheme for deleting anti-packets.

Under the global timeout scheme, there is a global timer associated with each

packet, acting upon the copies and anti-packets for the packet stored at all the nodes.

Before the timer expires, the packet is propagated according to the specific forward-

ing scheme employed. When the timer expires, all anti-packets will be deleted; the

infected nodes keep their copies of the packet, but can only forward the copy to the

destination. Notice that as there is no relaying of packets after time T , nodes no

longer keep anti-packets. Varying the timeout value T allows a tradeoff between de-

livery delay and resource consumption. This scheme is similar to spray and wait [104]

in that both schemes have two phases: an epidemic style forwarding phase and a

direct delivery phase. While spray and wait limits the spread of packets by specifying

the maximum number of copies, our scheme limits the spread by setting a duration.

As [100] suggested, a global timer can be implemented as follows6. The source

node sets a TTL (Time-To-Live) field to duration T for each source packet generated.

The TTL field is decreased as time passes. Whenever the packet is copied to another

6Under the scheme they considered, when the packet timer expires, all copies and anti-packets
of the packet are deleted from the network. We note that there is a non-zero probability that the
packet is not delivered to the destination.
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node, the new copy’s TTL field is set to the remaining TTL field of the old copy;

when an anti-packet is generated at the destination, its TTL field is set to the same

value as the data packet being delivered.

We now demonstrate how ODEs can be used to model this global timeout scheme

using the example where it is deployed for the basic epidemic routing with IMMUNE

recovery. As usual, let I(t) be the average number of infected nodes at time t, given

that the packet has not been delivered; and P (t) the CDF of delivery delay. Before

time T , the packet propagates according to epidemic routing; after the timer expires,

the packet can be only forwarded to the destination. Therefore, I(t) and P (t) satisfy

the following ODEs:

I ′(t) = βI(t)(N − I(t)), for 0 ≤ t ≤ T (2.14)

I ′(t) = 0, for t > T (2.15)

P ′(t) = βI(t)(1 − P (t)) (2.16)

The initial conditions are I(0) = 1, P (0) = 0. When deriving these ODEs from the

Markovian model, one has to take into account that the system has time-dependent

transition rates (in particular they changes at time T ). Nevertheless the same kind

of convergence holds. It can be proven by applying Theorem 3.1 in [75] separately

to the system trajectories before time T and after time T and then by appropriately

joining them.

The above ODEs can be explicitly solved, and allow us to derive the average

delivery delay and the number of copies made for a packet at delivery time (see

Table 2.2 for the results).

As to the total number of copies made for a packet, we observe that after time

T , the packet can only be forwarded to the destination, hence the total number of

copies made for a packet (exclude the copy to the destination) is given by Ggt =
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I(T )+ R(T )− I(0) under IMMUNE and IMMUNE TX scheme, where I(t) and R(t)

are solutions to Eq.(2.6,2.7) and Eq.(2.8,2.9) respectively. Under VACCINE, the

total number of copies made is given by C(T ), where C(t) is solution to Eq.(2.13) in

Section 2.2.3. For the average buffer occupancy, E[Q], the following equation derived

in Section 2.2.3 still applies: E[Q] = λ
∫ ∞
0

I(t)dt.

An alternative scheme is to delete all anti-packets and copies of the packet, except

the copy at the source node, when the timer expires. Compared to the previous

scheme, this scheme saves buffer space but incurs larger delivery delay. Under this

scheme, I(t) and P (t) satisfy the following ODE:

I ′(t) = βI(t)(N − I(t)), for 0 ≤ t ≤ T

P ′(t) = βI(t)(1 − P (t)), t ≤ T

P ′(t) = β(1 − P (t)), t > T

Also, we have I(t) = 1 for t > T , as all infected nodes except the source node

will delete the copy when the timer expires. We derive the closed-form solution to

the above ODEs, and obtained explicit formula for the average delivery delay (see

the global timeout (2) in Table 2.2). The average number of copies made at delivery

time, E[C], and during a packet’s lifetime, E[G], are the same as those under the

original global timeout scheme.

2.3.3 Signaling Overhead

We have so far studied the number of copies made for a packet and the average

storage occupancy incurred by data packets, but ignored signaling overhead. We now

discuss the signaling overhead in epidemic style routing, assuming the global timeout

scheme is used to delete anti-packets.

We assume that when two nodes move into the transmission range of each other,

they perform the following steps of communication:
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1. exchange identification information, i.e. node ID,

2. exchange header information of data packets,

3. exchange anti-packets information,

4. exchange data packets.

The transmission cost of step (4) has already been studied in as the average total

number of copies made for a packet. The amount of information exchanged in step

(2) is dependent on the specific forwarding scheme. For example, under K-hop, the

packet header for a packet with hop count K − 1 does not need to be sent to other

relay nodes. Likewise, the amount of information exchanged in step (3) is dependent

on the specific recovery schemes. For example, while IMMUNE TX only propagates

anti-packets to infected nodes, VACCINE propagates anti-packets to all nodes.

Extending ODE models to account for signaling overhead is straightforward. Next

we present the ODE model for the case where the basic epidemic routing with IM-

MUNE recovery is employed with the global timeout scheme with timer duration

T .

Let I(t) and R(t) be the average number of infected and recovered nodes respec-

tively at time t, taking into account the recovery process. We have:

I ′(t) = βI(N − I − R) − βI, t ≤ T

I ′(t) = −βI, t > T

R′(t) = βI, t ≤ T

Since all anti-packets are deleted after the timer expires, we have R(t) = 0 for t > T .

The average per-node buffer occupancy of anti-packets, Qanti, is given by Qanti =

λ
∫ T

0
R(t)dt, following an argument similar to that in Section 2.2.3. Here λ is the

packet arrival rate.
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Now let us consider the overhead of exchanging packet headers and anti-packets.

Let H(t) and A(t) respectively denote the average number of packet headers and

anti-packets that are exchanged among all the nodes up to time t, we have:

H ′(t) = βI(N + 1), t ≤ T

H ′(t) = βI, t > T

A′(t) = βI

Intuitively, before time T , the packet header is sent by every infected node to every

node they meet7. After the timer expires, the packet header is sent only to the

destination node. Anti-packets are transmitted by the destination node to infected

nodes when they meet under IMMUNE, before or after T . For any packet, the average

total number of times the packet header and anti-packet is exchanged is given by

Gh = H(∞) and Ga = A(∞) respectively. Numerical techniques can be used to

evaluate these metrics.

2.4 Model Validation

We have developed a simulator that simulates various routing schemes and recov-

ery schemes under random waypoint and random direction models. The results we

present here are for a specific setting considered in [39]: N + 1 nodes move within a

20× 20 terrain according to the random direction model [13, 42]. Each node chooses

an initial direction, speed and travel time, and then travels in that direction with

a given speed for the chosen travel time. When the travel time expires, the node

chooses a new direction, speed, and travel time at random, independently of all pre-

vious directions, speeds and travel times. If a node hits the boundary of the terrain,

7For the purpose of clarity, we ignore some optimizations that can be used to save overhead. For
example, when two infected nodes for packet i meet, after one node sends its packet headers, the
other node, knowing the previous node has packet i, need not send packet i header to B.
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Figure 2.1. Delay under epidemic routing

it wraps around at the other side of the terrain. The node speed is chosen uniformly

in the range [4, 10], and the mean travel duration is 1/4. The transmission range of

the nodes is chosen to be 0.1. The pair-wise meeting rate for this setting is found to

be β = 0.00435 using the formula in [39].

We simulate N +1 unicast flows, with each node being the source of one flow, and

the destination of another flow. Each flow generates packets according to a Poisson

process with rate λ = 0.01. The simulation is run long enough such that at least 500

packets are generated and delivered. We then use the 500 observations to calculate the

mean and 95% confidence interval for average packet delivery delay and the average

total number of copies made for a packet. Average buffer occupancy is calculated

after removing the initial transient period from the trace. These simulation results

are then compared with the ODE models predictions. We report the relative modeling

error, defined as (Vs − Vm)/Vm, where Vm is the model predicted value and Vs is the

simulation result. We calculate the 95% confidence interval for the relative modeling

errors using the 95% confidence interval for Vs. We do not consider signaling overhead

as we expect similar model prediction performance for these metrics.

We first consider basic epidemic routing. We vary N between 5 and 160, and

plot the mean and 95% confidence interval of packet delivery delay obtained from
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simulation, and the model predicted average delay in Figure 2.1(a). We find that

the model accurately predicts the average delivery delay, capturing the performance

trend as N increases. Figure 2.1(b) compares, for N = 160, the CDF of packet

delivery delay obtained from simulation with the one predicted by Eq.(2.4). It shows

that ODE model under predicts the packet delivery delay. To investigate modeling

error, we run another simulation with nodes meeting according to a Poisson process

with rate β = 0.00435 (i.e., we set the meeting rate in the simulation to exactly

match the model’s meeting rate) and the results of the two simulations are very

close (see the curve labeled as “Poisson Simulation” in Figure 2.1(b)). This suggests

that the error introduced by the Poisson meeting process approximation is negligible.

We conjecture that the prediction errors are mainly due to the small number of

initially infected nodes and/or the small total number of nodes. This is confirmed by

simulations where we vary the number of initially infected nodes, and observe that

the modeling error becomes smaller when the number of initially infected nodes is

large. We also use a moment-closure technique to derive an ODE system involving

second moments using the MVN method (details are given in Appendix A). The

modified ODE provided a better prediction for mean and CDF of packet delivery

delay (Figure 2.1).

For epidemic routing with different recovery schemes, Figure 2.2 plots E[Gep]/N ,

and the average buffer occupancy E[Q] as predicted by the model and obtained from

simulation. We find that the ODE models are more accurate for IMMUNE than for

VACCINE. In some sense, any error in the infection process modeling is amplified

by the exponentially fast recovery of VACCINE. We observe that IMMUNE TX only

slightly reduces the number of copies sent for each packet, while VACCINE further

reduces the number of copies sent. The reduction in buffer requirements is similar for

IMMUNE TX and VACCINE.
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Figure 2.2. Copies sent and buffer occupancy under epidemic routing
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Figure 2.3. Relative modeling errors for epidemic routing with different recovery
schemes

Figure 2.3 plots the relative modeling errors for delivery delay, number of copies

made and buffer occupancy, for epidemic routing under the three recovery schemes.

We observe that as N increases, the error decreases. While ODE models over predict

the copies sent and average buffer occupancy for IMMUNE recovery, they under

predict buffer occupancy for IMMUNE TX recovery, and under predict both metrics

for VACCINE recovery.

Next, we present validation results for the forwarding schemes introduced in Sec-

tion 2.3, focusing on the following three metrics, average delay (E[Td]), average buffer

occupancy (E[Q]), and average total number of copies transmitted (E[G]) under
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Figure 2.4. Average delivery delay, copies transmitted and buffer occupancy under
2-hop forwarding

IMMUNE recovery. We expect the prediction errors to be slightly larger for IM-

MUNE TX and VACCINE recovery as observed for epidemic routing.

For the 2-hop forwarding, Figure 2.4 compares the three metrics as the number of

nodes N is varied, showing a good match between the modeling results and simulation

results. Figure 2.6(a) plots the relative prediction error.

For probabilistic forwarding scheme, Figure 2.5 plots the three metrics, comparing

the model prediction with simulation results for N = 100 under varying forwarding

probability. Figure 2.6(b) plots the relative prediction error for probabilistic forward-

ing. We observe a larger prediction error for p ∈ [0.01, 0.1], and the error decreases

as p increases and approaches to 1. We conjecture the large prediction error in

p ∈ [0.01, 0.1] is due to the larger variance when p takes a value in this range (as

shown in Appendix A). Like epidemic routing, the ODE models underpredicts the

average delay, whereas overpredicts the average number of copies sent and the average

buffer occupancy.

For limited time forwarding (with no reinfection after timeout) for N = 100 under

varying average timeout value, 1/µ, Figure 2.7 plots the three metrics as predicted by

the model and as obtained through simulation, and Figure 2.9.(a) plots the relative

modeling error. We observe that the relative modeling error decreases as the average
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Figure 2.5. Average delivery delay, copies transmitted and buffer occupancy under
probabilistic forwarding, N = 100
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Figure 2.6. Relative modeling error for 2-hop and probabilistic forwarding

timeout value increases. This is expected because the higher the number of infected

nodes, the better is the fluid approximation. As in the case of epidemic routing, the

model underpredicts the delay, and overpredicts the number of copies sent and the

average buffer occupancy.

Finally, for epidemic routing with IMMUNE recovery and global timeout mecha-

nism, Figure 2.8 plots the three metrics under N = 100 as the global timeout value, T

is varied. Figure 2.9(b) plots the corresponding relative prediction errors. We observe

that the ODE model underpredicts the average delay, and overpredicts the average

number of copies sent and the average buffer occupancy, as the case for epidemic
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Figure 2.7. Average delivery delay, copies transmitted and buffer occupancy under
limited-time forwarding, N = 100
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Figure 2.8. Average delivery delay, copies transmitted and buffer occupancy under
global timeout scheme, N = 100

routing. The relative modeling error decreases as the timeout value T increases, as is

the case for limited time forwarding.

2.5 Performance Trade-offs

In this section, we show how the ODE models we derived can be employed to quan-

titatively explore tradeoffs between delivery delays and resource consumption under

different forwarding and recovery schemes, and to determine configuration criteria.

It is not our intent to exhaustively explore all the possible dimensions of epidemic

routing (forwarding schemes, recovery schemes, methods to manage anti-packets) in
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Figure 2.9. Relative modeling errors for limited-time and global timeout scheme,
N = 100

order to determine the best candidate under a specific scenario and a performance

optimization goal.

We discuss the average delay versus average number of copies transmitted and av-

erage delay versus average buffer occupancy tradeoff achieved by different forwarding

schemes under IMMUNE (Section 2.5.1) and VACCINE (Section 2.5.2). We ignore

signaling overhead in this discussion, because doing so requires that we exactly ac-

count for the deletion of anti-packets, for example, by using the global timeout scheme.

For each forwarding and recovery scheme and the particular parameter setting, choos-

ing a different global timer T results in a different tradeoff between delivery delay

and resource consumptions. Furthermore there is no optimal choice of T unless an

optimization goal is given. The latter optimization consideration is beyond the scope

of this chapter. The reader interested in this topic can refer to our work [90].

The results presented in this section are mainly based on numerical solution of

the ODEs models previous proposed (for N = 100, β = 0.00435, λ = 0.01), but we

also employ asymptotic results for qualitative considerations.
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Figure 2.10. Performance tradeoffs for various schemes with IMMUNE recovery

Probability (p,%) 0.1 0.5 0.8 1 1.5 2 5 10 20 80

Timeout (1/µ) 0.1 0.5 1 2 5 10 20 40 80 160 320

Global timer (T ) 0.01 1 2 3 5 7 10 12 15 16 18 20 80

Table 2.3. Settings considered for probabilistic, limited-time forwarding, and global
timeout scheme

2.5.1 Performance Trade-off Under IMMUNE

Figure 2.10(a) and (b) respectively plot the delay-versus-number-of-copies-sent

and the delay-versus-buffer-occupancy trade-offs achieved by different forwarding

schemes when IMMUNE recovery is employed. In the figure, there are four sin-

gleton points corresponding to direct source-destination transmission, 2-hop, 3-hop

forwarding, and epidemic routing. Three curves have been obtained for probabilistic

forwarding, limited-time forwarding (without reinfection), and global timeout scheme

respectively; for these curves, each point corresponds to a different value of the forward

probability p, the mean timeout interval 1/µ or the global timeout T respectively. All

these parameter values are shown in Table 2.5.1.

Let us first consider the delay-versus-number-of-copies-sent trade-off. One can

reduce the average number of copies sent by decreasing p, 1/µ, or T , but with an

increase in average delay. p → 1, 1/µ → ∞, and T → ∞, whereas p → 0, 1/µ → 0,

or T → 0 correspond to a no-relaying scenario where the packet is only delivered
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directly from the source to the destination. The only difference is for 1/µ → 0, the

number of copies converges to N/2 (which is the average number of nodes the source

uselessly infects before meeting the destination). A global timeout scheme appears

to be the best choice when limiting the average number of copies transmitted is the

main concern. As a rule of thumb, one can choose T ≈ E[Td]/2 (= 5.0 in this specific

setting), where E[Td] is the average delay under epidemic routing. In this setting, this

choice significantly reduces the number of copies sent from nearly 100 to 6.8, with

the average delivery delay increased from around 10 to around 30.

Figure 2.10(b) shows that for probabilistic and K-hop forwarding, the delay-

versus-buffer-occupancy tradeoffs are similar to the delay-versus-copies tradeoffs. This

is due to the proportionality between the number of copies sent and the buffer occu-

pancy that we have shown in Section 2.2.3 for epidemic routing under IMMUNE. This

relation holds for all schemes where copies are deleted only after the infected node’s

meeting with the destination, hence also for probabilistic and K-hop forwarding un-

der IMMUNE, but not for limited-time or global timeout forwarding. We observe

that limited time forwarding is the best choice when limiting buffer occupancy is of

primary concern. With a value of 1/µ ≈ 2E[Td] (=20 in this specific setting), the

average buffer occupancy is decreased to about one tenth of that of epidemic routing,

with a small increase in the average delivery delay. The delay-versus-buffer tradeoff

achieved by the global timeout scheme is very close to that of limited time forwarding.

2.5.2 Performance Improvement by VACCINE

Figure 2.11 shows the delay-versus-copies and delay-versus-buffer-occupancy trade-

offs under various forwarding schemes when VACCINE recovery is employed. For

the delay-versus-copies tradeoff (Figure 2.11(a)), compared to IMMUNE recovery,

VACCINE recovery decreases the average number of copies sent for a packet and the

average buffer occupancy for each forwarding scheme. However, for different schemes,
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different amounts of improvements are achieved by VACCINE recovery: in particular,

the largest improvement is achieved for probabilistic forwarding, followed by K-hop

forwarding, and then limited-time forwarding and global timeout scheme. The rela-

tively small improvements for limited-time forwarding and global timeout scheme are

due to their intrinsic recovery features: nodes delete packet copies when the timer

expires and they cannot be reinfected. The explanation is more complex for the prob-

abilistic and K-hop forwarding schemes. Because of the two counteracting processes

– the counter-infection recovery process due to anti-packets spreading and the con-

tinuing packet infection – the total recovery speed depends not only on the recovery

scheme but also on the specific infection process. Given the same average delivery

delay, when the recovery process starts, the average number of nodes infected and

the infection rates are higher under probabilistic forwarding (its infection rate is ex-

ponential, hence in the long term it is faster than K-hop). For this reason, we expect

the IMMUNE recovery process to be significantly “longer” for probabilistic forward-

ing than for K-hop forwarding, leading to larger buffer occupancies and more copies

transmitted for a packet (as shown in Figure 2.10). Conversely under VACCINE, the

recovery process is much shorter; the buffer occupancy is mainly determined by the

initial infection process (before the delivery), and the difference in the copies trans-

mitted and the buffer occupancy under probabilistic forwarding and K-hop scheme

becomes much smaller, as shown in Figure 2.11.

Figure 2.11(b) and Figure 2.11(c) illustrate the delay-versus-buffer-occupancy

tradeoff for various forwarding schemes under VACCINE recovery, where Figure 2.11(c)

focuses on the small buffer occupancy range. Comparing Figure 2.11(c) to Fig-

ure 2.11(a), we find that the delay-versus-buffer tradeoff is similar to the delay-

versus-copies tradeoff for all schemes except the global timeout scheme. For the

global timeout scheme, as Figure 2.11.(b) shows, as T increases, the average delay

decreases monotonically; whereas, the buffer occupancy increases first and then de-
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Figure 2.11. Performance tradeoffs for various schemes with VACCINE recovery

creases. To see why this is the case, Figure 2.12 plots the numerical solutions for

I(t) in ODEs given by Eq.(2.14) and Eq.(2.15), the number of infected nodes at time

t, for several values of T . Basically, under the global timeout scheme, the recovery

process after time T is essentially the IMMUNE recovery, which is much slower than

VACCINE recovery. As a result, increasing the timeout value T not only leads to

a longer epidemic spread phase, but also results in a faster overall recovery process.

When T is smaller than a certain threshold (which is around 15 for the specific setting

considered here), the former effect outweighs the latter one, leading to a larger buffer

occupancy (as illustrated by T = 2 and T = 10 curves); when T increases further, the

latter effect becomes the dominant factor, leading to a small average buffer occupancy

(as illustrated by the T = 20, 40 curves)8.

2.6 Epidemic Routing under Buffer Constraints

Thus far, we have assumed that each node has sufficient buffer space to store

all packets. In reality, however, mobile nodes often have limited storage due to cost

and form factor. Sizing the buffer to limit end-to-end packet losses due to buffer

8Recall that Q = λ
∫ ∞

0
I(t)dt, as derived in Section 2.2.3.
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overflow in store-carry-forward networks is difficult. For example, [43] studied buffer

occupancy variability for the purpose of buffer sizing, but their model requires an

empirical distribution obtained from simulation.

In this section, we examine the performance of epidemic routing under the con-

straint that each node can store at most B packets, and compare the performances of

three buffer management strategies: droptail, drophead and drophead sp (i.e., source

prioritized drophead) under IMMUNE recovery. From the modeling point of view, we

couple the forwarding models with Markovian or fluid queuing models. The coupling

involves some common parameters, so that in general a fixed point problem has to

be solved.

2.6.1 Droptail Scheme

Under droptail scheme, when the buffer of a node is full, the node will not accept

any packet. Let Pd denote the probability that the buffer of a node is full. As packets

are accepted by relay nodes with probability 1−Pd, the forwarding process is exactly

the same as probabilistic forwarding with forwarding probability 1 − Pd. The model

proposed in Section 2.3.1.2 is hence directly applicable. Furthermore, with probability

Pd, a source packet generated at a node finds a full buffer and is discarded, leading

to a loss probability of Pd.

45



In order to estimate Pd, we model the buffer at a node as an M/M/B/B queue,

where B denotes the buffer size. Under IMMUNE recovery, a packet copy is deleted

only when meeting the destination, therefore the service rate is β, the rate that the

node meets the destination. The arrival rate is the sum of the source packet rate,

λ, and the relay packet rate. The latter rate is given by (N − 1)λ(1 − Pd), as there

are N − 1 relay flows each of rate λ, with each packet being lost at the source with

probability Pd. We find Pd by solving a fixed point problem: given an arrival rate

of λ(1 + (N − 1)(1 − Pd)), and a service rate of β, the loss probability Pd of the

M/M/B/B queue can be calculated using the Erlang’s B formula [4]: Pd =
AB

B!
� B

i=0
Ai

i!

,

where A = λ(1+(N−1)(1−Pd)
β

is the traffic offered in Erlangs.

2.6.2 Drophead Scheme

Under drophead scheme, when a node receives a new packet (source or relay) and

its buffer is full, it discards the oldest packet in its buffer; and the node does not

accept a copy of the discarded packet in the future.

Let Gdh be the number of times a packet is copied in the system, and Gdh its

expected value. As the average arrival rate to a node is given by (Gdh + 1)λ, the

packets in the buffer are pushed to the head of the buffer with this rate, in other

words, the packets in the buffer age with this rate. As before, let’s consider the

spread process of a packet. Let S(t) denote the average number of susceptible nodes

at time t, Ii(t) the average number of infected nodes where the copy of the packet

is the i-th newest packet, D(t) the average number of nodes that have deleted the

packet (and would not accept the packet in the future) at time t. The following ODEs

can be used to model the forwarding process.

S ′(t) = −βS
∑

1≤i≤B

Ii

I ′
1(t) = βS

∑

1≤i≤B

Ii − (Gdh + 1)λI1
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Figure 2.13. Markov chain for the number of source packets in a node’s buffer under
drophead sp scheme. Source packets arrive to a node with rate λ. When the node
encounters the destination of these packets (with rate β), all source packets in the
buffer are delivered and deleted from the buffer.

I ′
j(t) = (Gdh + 1)λ(Ij−1 − Ij), 2 ≤ j ≤ B

D′(t) = (Gdh + 1)λIB

P ′(t) = β
∑

1≤i≤B

Ii(1 − P )

The initial conditions are: S(0) = N − 1, I1(0) = 1, Ij(0) = 0, for j = 2, ...B,

D(0) = 0, P (0) = 0.

Note that if all copies of a packet are discarded before the packet’s delivery to the

destination, the packet is lost. We estimate the loss probability as limt→∞ P (t).

We find Gdh by solving a fixed point problem: given Gdh, we numerically solve

the extended ODE model (obtained by adding recovery process to the above ODEs)

and calculate the amount of flow from state S to I1, i.e. S(0) − S(∞) = Gdh. We

perform a binary search to find the fixed point Gdh.

2.6.3 Source Prioritized Drophead Scheme

Source prioritized drophead scheme, in short, drophead sp, is similar to drophead

scheme, with the difference to give higher priority to source packets. Under this

scheme, if a source packet arrives to a node with a full buffer, the node will first try

to drop oldest relay packets, and then the oldest source packets. If a relay packet

arrives to a full buffer, the node finds the oldest relay packet and delete it from the

buffer; if all packets in the buffer are source packets, the relay packet is not accepted.
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Let Pf be the probability that a node’s buffer is filled with its own source packets.

We use the Markov chain as shown in Figure 2.13 to model the number of source pack-

ets in a node’s buffer. We then calculate the stationary distribution pi (probability

that there are i source packets in the buffer) of the Markov chain, and get:

Pf = pB =

λ
β
( λ

λ+β
)B−1

1 + λ
β
− ( λ

λ+β
)B−1

.

Given Pf , a relay packet is accepted with probability 1−Pf , leading to an effective

infection rate of β(1 − Pf). The following ODE can be used to study the delivery

delay; here Is
j (t) denotes the probability that the source node’s copy of the packet is

the j-th newest source packet in the buffer.

S ′(t) = −β(1 − Pf)S
∑

1≤i≤B

(Is
i + Ii)

I ′
1(t) = β(1 − Pf)S

∑

1≤i≤B

(Is
i + Ii) − (Gdhs + 1)λI1

I ′
j(t) = (Gdhs + 1)λ(Ij−1 − Ij), 2 ≤ j ≤ B

Is
1
′(t) = −λIs

1

Is
j
′(t) = λ(Is

j−1 − Is
j ), 2 ≤ j ≤ B

D′(t) = (Gdhs + 1)λIB + λIs
B

P ′(t) = β
∑

1≤i≤B

(Is
i + Ii)(1 − P )

The initial conditions are given by: S(0) = N − 1, Ij(0) = 0, for j = 1, ..., K,

Is
1(0) = 1, Is

i (0) = 0, for i = 2, ...B, D(0) = 0, P (0) = 0.

Similar to the drophead scheme, we find Gdhs by solving a fixed point problem

using the extended ODE model (taking into consideration the recovery process).
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Figure 2.14. P (t) under B = 5, 10

2.6.4 Comparisons of Different Schemes

We have simulated these buffer management schemes, using the same setting as

before (N = 100, λ = 0.01, β = 0.00435), with different buffer sizes B = 5, 10, 20. We

compare the results obtained from these simulations to the prediction from our ODE

models. Table 2.6.4 tabulates the packet loss probability, i.e. the probability that all

copies of a packet are dropped before the destination receives one. Figures 2.14 plot

the delay distributions predicted for B = 5, 10, in the range [0, 200] and [0, 50] of the

X axis respectively so that the difference between schemes can be seen.

We observe that the models provide reasonably accurate loss probability pre-

dictions that reflect the relative performance of the three schemes. The shape of the

distribution probability function for delivery delay is also well-captured by the model.

We observe that naive droptail performs poorly. Drophead provides fast infection, as

relay packets are always accepted; however, significant packet losses are incurred for

B ≤ 10. With drophead sp, although the infection spreads slower than under drop-

head, more packets are delivered. If the packet rate is so high that the buffer can

only hold its own source packets, drophead sp degenerates to direct source-destination

transmission. Note that with infinite buffers, the average buffer occupancy for this

setting is over 200 (Figure 2.2(b)). Our results here suggest that similar performance
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can be achieved by drophead and drophead sp with a much smaller buffer size, equal

to only 20 packets.

2.7 Related Work

In the mathematical epidemiology field, there exists a vast literature about math-

ematical models on the spreading of infectious diseases, including both stochastic

and deterministic models [11, 27]. These mathematical techniques have been applied

to various computer networking problems that exhibit a strong analogy to epidemic

spreading of disease. For example, [70, 106, 88, 120] modeled the spread of computer

viruses and worms in computer networks by adapting epidemiological models. More-

over, a number of network applications and protocols have adopted epidemic-style

communication for data dissemination and resource discovery, and therefore epidemic

models are natural ways to study their performance. These include epidemic algo-

rithms [30] for maintaining consistency of replicated database, gossip or rumor-based

protocol [65], broadcast communication [71, 34] and peer-to-peer data sharing [91] in

mobile ad hoc network, and more recently, epidemic routing [110, 43, 117] in Delay

Tolerant Networks. Epidemic routing differs from the other above mentioned broad-

cast based protocols in that it supports unicast applications, using epidemic style

flooding to decrease the delivery delay.

Buffer size simulation/model droptail drophead drophead sp

5 simulation 0.9696 0.2234 0.0536
model 0.8544 0.0928 0.0079

10 simulation 0.9471 0.0315 0.0
model 0.7891 0.0088 0.0

20 simulation 0.899 0.0016 0.0
model 0.7011 0.0 0.0

Table 2.4. Loss probability under buffer constraints
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Based on earlier results in [38], we have used a homogeneous mixing model em-

ploying a single parameter (derived from mobility parameters) to capture the contact

rate between mobile nodes. [71, 88] considered similar network settings as our work,

i.e., mobile ad hoc network. [71] made a similar homogeneous mixing assumption,

and obtained the contact rate through finding best-fitting formula from results of

many simulation runs. [88] considered a network with higher node density and slower

nodal mobility than our paper, and extended Kephart-Whilte model [69] to model

the virus spreading, characterizing the fraction of nodes with varying connectivities

under given mobility models.

Another important difference between our work and the above mentioned work lies

in the fact that we are interested in performance metrics that are unique to the unicast

application in DTN. We have seen that there exists a tradeoffs between the delivery

delay and resource consumptions in terms of the number of transmissions made for a

packet and buffer occupancy. Using ODE models, we have studied the performance

of various epidemic style routing, and explored the tradeoffs they achieve.

The work most closely related to ours is the work by Haas and Small [43], where

an ODE model is applied to study delay under epidemic routing, and Markov chain

models are used to study the storage requirement under different recovery schemes.

While both our work and [43] study the delay, storage requirement, and transmis-

sion numbers of epidemic routing, our work goes beyond this single scheme to study

schemes such as 2-hop forwarding, probabilistic forwarding, limited-time forwarding,

global timeout scheme, and epidemic routing in the buffer-constrained scenario. In

addition, our analysis leads to new closed-form expressions and asymptotic results,

when the number of nodes increases, for a number of schemes. Furthermore, we study

epidemic routing under buffer-constrained scenario using ODE models coupled with

Markov models to compare different buffer management strategies. We also note that

the approach in [43] is a hybrid approach and requires obtaining some model param-
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eters, such as the number of nodes infected at the time of delivery, from simulations.

We derive all metrics as part of the model itself. Last, because our focus is on the

use of ODE models, we provide insight into when they do or do not work and why,

and show how moment closure techniques could be employed to improve the model

predictions.

Another closely related work is [38], where based on the result of Poisson meeting

process, Groenevelt et al. modeled 2-hop forwarding and epidemic routing using

Markov chain models. Average delay and the number of copies generated at the

time of delivery for these two schemes was derived from the models. Using ODE

models, we have more easily derived similar results. [44] later extended this work to

consider a variant of 2-hop scheme with exponential timers at each node, and with

a limit on the maximum number of copies. Through Markovian analysis, the author

derived closed-form formulas and numerical solutions for delivery delay, number of

copies transmitted for these two schemes respectively. Given the difficulty in deriving

asymptotic formulas from Markovian analysis, ODE models were employed to derive

asymptotic formulas for moments of delivery delay, and copies made at delivery time.

2.8 Summary

In this chapter, we proposed and investigated a unified framework based on ODEs

to study the performance of various forwarding and recovery schemes. We derived

ODE models as limit processes of Markovian models under a natural scaling as the

number of nodes increases, and employed the ODE models to obtain a rich set of

closed-form formulas regarding the packet-delivery delay, number of copies sent, and

buffer occupancy under various schemes. We validated the models through simu-

lations, and observed a good match between the model prediction and simulation

results. We used the ODE models to explore performance tradeoffs achieved by vari-

ous schemes, and obtained insights into the different schemes. We further considered
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the buffer-constrained case, and showed that with an appropriate buffer management

scheme, a much smaller buffer can be used with negligible effect on delivery perfor-

mance.
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CHAPTER 3

ON THE BENEFIT OF NETWORK CODING FOR

UNICAST APPLICATION IN DTN

3.1 Introduction

Network coding is a new field in information theory started by the seminal work

by Ahlswede et al. [8] in 2000. Network coding refers to the new concept where

the network nodes (e.g., routers, switchs) combine/mix previously received packets

before forwarding them, rather than simply forwarding data received. [8] showed that

network coding allows for higher network throughput for a single multicast flow case.

Since then, network coding has found many intersting applications (see the short

primer [36] which gave a nice review on previous works on network coding).

Random Linear Coding (RLC) is a form of network coding that was first pro-

posed by Ho et al. [46]. Basically, under RLC, each network node forwards random

linear combinations of the data it has received. Previous works have applied RLC to

networking scenarios including P2P content distribution [37], multicast applications

[25], gossip protocols [29] and distributed storage [28, 7].

In this chapter, we investigate the benefit of applying Random Linear Coding

(RLC) to unicast applications in DTNs with opportunistic contacts and resource

constraints. To our knowledge, the only previous work applying network coding to a

DTN setting is [112] by Widmer and Boudec. There, the authors consider broadcast

data delivery using RLC; our focus here is on using RLC for unicast delivery.

For unicast applications, there are different possible ways to combine packets:

each node can combine all the packets in its buffer, or only the packets destined
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to the same destination, or only the packets belonging to the same flow (i.e., same

source-destination pair). We first consider these three possibilities in the simple case

where a single block of K packets propagate in the network.

The performance metric of interest is the delay until the last packet in a block

is delivered, but we will also comment on the average packet delay for a block. We

show that for the single block case, when bandwidth is constrained, applying RLC over

packets destined to the same node achieves the minimum delay with high probability.

We find that this benefit increases further when buffer space within DTN nodes is

limited. We also demonstrate that the “price” to be paid for the improved delay

performance is a larger number of epidemically-spread copies of data in the network.

However, when a token-based scheme is used to limit the number of transmissions

made, the RLC based scheme yields a smaller average delivery delay under similar

transmission overhead as non-coded schemes.

We then consider the scenario where there are multple source/destination pairs

with blocks of K packets arriving according to a Poisson bulk arrival process at

each source. We find that the RLC scheme achieves slightly smaller average block

delay than non-coded schemes when only bandwidth is constrained, but shows more

significant benefits when both bandwidth and buffers are constrained.

The remainder of this chapter is structured as follows. We introduce the network

model, the forwarding and recovery schemes, and the simulation setting in Section 3.2.

Section 3.3 studies the benefit of the RLC scheme over non-coded schemes for the

single generation case. Section 3.4 extends the study to multiple generation case.

Section 3.5 reviews related work. Finally, Section 3.6 summarizes this chapter and

discusses future works.

55



3.2 Network Model, Forwarding and Recovery Schemes

In this section, we first introduce the network model, and then describe the for-

warding and recovery schemes we study in this work, and finally describe the simu-

lation setting. Table 3.1 summarizes the notations used throughout this chapter.

3.2.1 Network Model

We consider unicast communications (i.e. each message is destined for a single

node) in a network consisting of N nodes moving according to a mobility model

(discussed shortly) within a closed region. Each node has a limited transmission

range, such that the network is sparse and disconnected.

We employ the temporal network model proposed by Kempe et al. in [68] to repre-

sent the dynamic network topology formed by the mobile nodes. Basically, a temporal

network is an directed graph G = (V, E) in which each edge e is annotated with a

time label λ(e) specifying the time at which its two endpoints “communicated”. We

extend this model such that each link also has a capacity attribute and assmume that

one packet can be exchanged over each link. We construct the temporal network as

follows (Figure 3.1): there are N vertices, each corresponding to a mobile node. For

each contact between a pair of nodes that can exchange b packets in each direction, b

directed edges are added in each direction between the corresponding vertices. Edges

are labeled with the times that the contacts occur. A time-respecting path in the

network is a path in the network where the successive edges have increasing times-

tamps. For example, there are three time-respecting paths from node 1 to node 4,

i.e., two paths that goes through node 2 and one path that goes via node 3. There is

no time-respecting path from node 4 to node 1. A set of paths are independent if they

do not share edges. In this example, the two paths from node 1 to 4 going through

node 2 are not independent, as they share the edge (2, 4). Pathes (1− > 2− > 4)

and (1− > 3− > 4) are independent.
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notation meaning

N number of nodes in the network

β pair-wise meeting rate between a node pair

K block (generation) size

λ block arrival rate to each flow

l packet size in bits

b number of packets can be exchanged in one direction during a meeting

B number of relay packets a node can store

q size of finite field GFq, where q = pn, p is a prime and n is a positive integer.

d dimension of the packet in the finite field GFq

A encoding matrix

r rank of the encoding matrix

Dblock the time to deliver the last packet of a block

L the number of per-packet tokens

Table 3.1. Tables of notations used in Chapter 3

t=3.5

1

2 3

4

t=23t=10.2

t=1.2

t=7

Figure 3.1. Random graph representing the contacts between nodes

3.2.2 Forwarding, Recovery Schemes

When two nodes come within transmission range of each other (i.e., they meet),

they first each figure out if the other has some useful information and, if any, they

try to exchange it. We detail this process with reference to the two mechanisms we

are going to compare: non-coded packet-forwarding and RLC-forwarding.

Non-coded forwarding: When two nodes meet, each of them uniformly ran-

domly selects one or more packets, depending on the available bandwidth, among

the packets that the other node does not have, and forwards them to the other
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node. We refer to this scheme as the random selection scheme. We also consider a

RR random scheme in which the packet’s source node chooses a packet to forward

in round-robin manner, while intermediate nodes perform random selection. Intu-

itively, the round-robin scheduling at the source node help speed up the propagation

of initial copies of each packet.

As each packet is duplicated by the nodes in the network, when it is first deliv-

ered to the destination, there are multiple copies of the packet in the network. A

recovery scheme can be used to delete these obsolete copies from the network to free

up storage space and avoid useless transmission [43]. We will focus on VACCINE

recovery scheme. Under VACCINE, when a packet is first delivered, an antipacket is

generated and propagated through the network (in the same way as data packets) to

delete buffered copies of this packet.

Random Linear Coding based forwarding: RLC is applied to a finite set

of K packets, mi, i = 1, 2, ..., K, called a generation. Under the RLC based scheme,

each packet is viewed as a d dimensional vector over a finite field [80], GFq of size q.

More specifically, a packet of l bit length is viewed as an d = dl/log2(q)e dimensional

vector over GFq, i.e., we have mi ∈ GF d
q, i = 1, 2, ...K.

A linear combination of the K packets is:

x =
K

∑

i=1

αimi, αi ∈ GFq,

where the coefficients α = (α1, ..., αK) are referred to as encoding vector, and addi-

tion and multiplication are over GFq, and the generated linear combination, x, are

referred to as the encoded data. Each original packet, mi, can be viewed as a special

combination with coefficients αi = 1, and αj = 0, ∀j 6= i.

Under the RLC scheme, linear commbinations of the packets, together with the

coefficients, are stored and forwarded by network nodes. If a node carries r linearly

independent encoded data, X = (x1, ..., xr) (together the corresponding encoding
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vectors), we say that the rank of the node is r, and refer to the (K × r) matrix

made up by the encoding vectors as the node’s encoding matrix, A. Initially, the

source node(s) carries the original packets, M = (m1, ..., mK). When two nodes,

say u and v meet, they first send their encoding matrices to each other, and then

perform the following operations which we describe using node u as example. Node

u, based on the matrix of node v, checks if it has useful information for node v1. If so,

node u generates a random linear combination of the currently stored combinations,

say x1, ..., xr, xnew =
∑r

j=1 βjxj, where the coefficients β1, ...βr are chosen uniformly

randomly from the field GFq. Obviously, xnew is also a linear combination of the

original K packets. This new combination, along with the coefficients with respect to

the original packets, is forwarded to node v. Given that node u has useful information

for node v, this randomly generated combination is useful to node v (i.e., can increase

the rank of node v) with probability greater or equaled to 1−1/q, according to Lemma

2.1 in [29]. We further note that as node u has knowledge about the encoding matrix of

node v, node u can iteratively generate random linear commbinations from its stored

combinations, until a combination useful to node v is generated. Such processing

pays computation overhead to attain savings in transmission bandwidth. We do not

consider such processing in this thesis.

Essentially, a node with rank r has stored r linear equations with the K source

packets as the unknown variables, i.e., AM t = X t, where M t represents the original

K packets. When a node (e.g., the destination) reaches rank K (i.e., full rank), it

can decode the original K packets through matrix inversion, as AM t = X t leads to

M t = A−1X t. We then can use the Gaussian elimination algorithm to solve for the

original packets, M t. 2.

1In fact, if a node has at least one combination that cannot be linearly expressed by the combi-
nations stored in another node, it has useful (i.e., innovative) information for the latter node.

2A packet can be decoded before the matrix reaches full rank, as long as the encoding matrix
contains a simple encoding coefficient.
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Similar to non-coded scheme, when a generation is delivered to the destination,

the destination generates an antipacket for the generation, which is subsequently

propagated maximally in the network to delete buffered combinations of the genera-

tion (i.e., VACCINE recovery). To simplify analysis and simulation, we assume that

the storage and transmission of antipacket are not subject to bandwidth and buffer

constraints.

3.2.3 Performance Metrics and RLC Scheme Overhead

We define block delivery delay, Dblock, as the time from the arrival of the block in

the network to the delivery of the whole block to the destination. We compare this

time deliver a block of packets when the packets are forwarded without any coding or

when RLC is applied to the block of packets. Depending on the specific application,

other metrics could be more meaningful, like the average time to deliver a packet

in the block, or the average time to deliver a packet in order. Note that Dblock is

the metric more favorable to RLC in the comparison. Other performance metrics of

interest are the average number of packet copies or combinations made within the

network, as this is a measure of resources consumed (bandwidth, transmission power,

buffering) within the DTN.

Compared to non-coded scheme, the RLC based scheme incurs additional over-

head in computation, storage and transmission. First, when nodes come in contact,

they check if they have useful information for each other before they generate and

forward linear combinations. This, together with the decoding performed at the des-

tination, introduces computational overhead. One can also consider a scheme where

such checking is not performed, which save computation overhead by paying the

price of some useless transmission. Secondly, as the encoding vectors are stored and

transmitted along with coded packets, the RLC scheme pays extra storage and trans-

mission overhead. Actually, the ratio between the size of the encoding vector (i.e.
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coefficients) to the data packet is K/(dl/log2(q)e) ≈ Klog2(q)/l; this overhead can be

ignored when l >> log2(q).

3.2.4 Simulation Setting

Throughout this chapter, we mainly rely on simulation to quantify performance

gains of the RLC scheme. We extend the simulator used in Chapter 2 to implement

buffer management and transmission scheduling schems and the RLC based scheme.

We report simulation results based on a pair-wise Poisson meeting process between

two nodes, rather than an actual mobility model such as random waypoint/direction

mobility model. This simplification speeds up the simulation, and as [39] has shown,

under the random waypoint/direction models, the inter-meeting time between a pair

of nodes follows a Poisson process when node velocity is relatively high compared to

the region size, and the transmission range is relatively small. We have also performed

simulations using the actual mobility models and observe similar performance as the

poission meeting simulation. For the results presented in this paper, we simulate a

network of N = 101 nodes with a pair-wise meeting rate of β = 0.0049. We use

a finite field of size q = 701 = 7011, as field arithmetic operations of this field are

simpler to implement than then those of the commonly used field GF (28) or GF (216).

Note that we have outlined in Section 3.2 the RLC scheme in its most basic form.

In reality, one could improve performance in terms of average delivery delay using var-

ious optimizations. For example, the node (including destination) can decode packet

before the matrix reaches full rank, and forward the decoded packets to destination

directly (other than generate random linear combinations). These approaches allow

improvement in the average packet delivery delay for the RLC scheme.
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3.3 Single Generation Case

Having described the network setting and the non-coded and RLC schemes, in

this section, we investigate the benefit of the RLC scheme under simple setting where

there is a single generation of packets in the network. In particular, we assume that

K packets arrive at the same time in the network.We examine the following three

scenarios:

• SS SD (Single Source/Single Destination): the in K packets from a source

are to be delivered to a single destination;

• MS SD (Multiple Source/Single Destination): the K packets from dif-

ferent sources are to be delivered to the same destination;

• MS MD (Multiple Source/Multiple Destination): the K packets (each

from a different source) are to be delivered to different destinations.

3.3.1 Coding Benefit under Bandwidth Constraints

We first consider the bandwidth constrained case and assume when two nodes

meet, they can send a maximum of b packets in each direction. Mobile nodes are

assumed to have sufficient buffer space to store all packets in this section.

3.3.1.1 Analysis of RLC benefit

Recall that we use temporal network to represent the dynamic network formed by

the nodes. It’s easy to see that for the SS SD case, where the source node at time

t = 0 has K packets to send, the minimal time to deliver these K packets is the time

when there are K independent paths from the source to the destination. Similarly,

for the MS SD case, the minimal time to deliver the K packets from the K source

nodes to the single destination is the earliest time that there are K independent paths

from the K source nodes to the destination.
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Notice that in DTN routing schemes, the mobile nodes have no knowledge, or only

delayed knowledge about packets transmission decision made by other nodes. As a

result, a node along the K paths might choose to forward information that some other

path is forwaring or has forwarded. Under the RLC scheme, rather than choosing

from the K packets, nodes randomly and independently combine packets to generate

“equally important” encode-packets. As the number of independent coded packets is

much greater than K, the probability that some path forward data that is useless to

the destination is much smaller than for a non-coded scheme. As [29] pointed out,

such benefit of RLC scheme is well captured by the Coupon Collector Problem [35].

Next, we demonstrate that the RLC scheme achieves the minimum delay to deliver

a block of packets with high probability.

Proposition 3.3.1 If there is a single block of K packets in the network, for the

SS SD and MS SD case, RLC achieves the minimum Dblock with high probability. For

the SS SD case, the probability can be bounded as follows:

pachieve min delay ≤ (1 − 1/qK)(1 − 1/qK−1)(1 − 1/qK−2)...(1 − 1/q). (3.1)

Proof: For the SS SD case, in order to achieve the minimal block delivery

delay, the K combinations generated by the source node to send along the K paths

must be linearly independent. Under the basic RLC scheme, the probability that

K combinations generated by the source is linearly independent is given by (1 −

1/qK)(1− 1/qK−1)(1− 1/qK−2)...(1− 1/q)3, which yields the upper bound above.

We note that to achieve the minimal block delivery delay, it’s necessary that each

node along the K paths chooses to forward a combination that is independent from

combinations forwarded by nodes along the other paths. Quantifying this probability

3This is obtained by dividing the number of ways of generating K linearly independent combina-
tions of the K packets, (qK − 1)(qK − q)(qK − q2)...(qK − qK−1), over the total number of different
ways of generating K combinations, (qK)K .
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requires considerations for the exponentially large number of possible scenarios for

the K paths.

In the remainder of this subsection, we first illustrate the benefit of the RLC

scheme compared to non-coded scheme using a simple example. We then present

two examples to demonstrate that the probability for the RLC scheme to achieve

minimum block delivery delay is dependent on the specific meeting scenarios.

Consider the 4-node network as shown in Figure 3.1. Assume that at time t = 0,

node 1 generates two packets m1 and m2 destined to node 4. By time t = 23, there

are two edge-disjoint paths from node 0 to node 4, therefore the minimum delay to

deliver the two packets is 23.

Under the RLC scheme, source node 1 forwards random linear combinations c1

and c2 to node 2, and c3 to node 3 at the contacts at times t = 1.2, 7, 3.5 respectively.

With proability 1 − 1/q, c1 and c2 are independent. For the case where c1 and c2

are independent, node 2 stores both combinations. When node 2 meets node 4, it

generates a random linear combination c12 of c1 and c2 and forwards it. If c12 and

c3 are independent, node 4 can decode the two original packets after node 3 delivers

c3 at time t = 23. Note that c3 can be linearly expressed by c1 and c2, and with

probability 1 − 1/q, c12 is independent from c3. For the case where c1 and c2 are

linearly dependent, node 2 stores c1, and forwards it to node 4 at t = 10.2. If c3

and c1 are independent (with probability 1− 1/q), node 4 reaches full rank at t = 23

and the two packets are delivered at the minimum delay. Summing up both cases,

we conclude that for this particular contact scenario, RLC achieves minimum block

delivery delay with probability 1 − 1/q. In this particular example, the benefit of

the RLC scheme over non-coded scheme is reflected in the forwarding decision made

by node 2. Having no knowledge about the contents at other nodes (node 3), node

2 cannot choose to forward information that’s not available at node 3. The RLC
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Figure 3.2. Two meeting scenarios for a 4-node network

scheme decreases the probability that a useless infomation is forwarded through its

increased randomness.

On the other hand, under non-coded scheme, node 1 forwards m1 and m2 to node

2 at time t = 1.2, 7 respectively, and one of the packets (say m1) to node 3 at time

t = 3.5. When nodes 2 and 4 meet at t = 10.2, node 2 randomly selects a packet and

delivers to node 4 (as it has no global knowledge of past and future contacts for other

nodes). With probability 0.5, packet m2 is selected to forward to node 4, and thus

when node 3 meets node 4 at t = 23, it has no useful information for node 4. Hence,

the non-coded scheme achieves the minimum delay with probability 0.5.

The probability for the RLC scheme to achieve the minimum block delivery delay

depends on the particular meeting scenarios. For example, Figure 3.2 depicts two

different meeting scenarios for a four-node network. We have, for the meeting scenario

shown in Figure 3.2(a),

pachieve min delay = prob{c1, c2 and c3 are independent}

×prob{c4 and c5 are independent}

×prob{c6 is non trivial}

= (1 − 1/q3)(1 − 1/q2)(1 − 1/q)(1 − 1/q2)(1 − 1/q)(1 − 1/q)
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Figure 3.3. RLC scheme versus non-coded schemes

= (1 − 1/q3)(1 − 1/q2)2(1 − 1/q)3

Whereas, for the meeting scenario shown in Figure 3.2(b), we have

pachieve min delay = prob{c1,c2 and c3 are independent} × prob{c4 is non trivial}

= (1 − 1/q3)(1 − 1/q2)(1 − 1/q)(1 − 1/q)

= (1 − 1/q3)(1 − 1/q2)(1 − 1/q)2.

3.3.1.2 Characteristics of the RLC Scheme

We now highlight several characteristics of the RLC scheme compared to the non-

coded schemes using simulation.

First, we observe that the RLC scheme allows faster propagation of the informa-

tion in the network, but incurs more transmissions being made in the network. For

example, for a particular run for the SS SD case with N = 101, K = 10 case, Fig-

ure 3.3(a) and (b) respectively depict the cumulative number of transmissions made,

and the total number of packet copies (for the non-coded schemes) or combinations

(for the RLC scheme) in the entire network as a function of time. We observe that

there are two factors causing more transmissions made under the RLC scheme. first,
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the RLC scheme allows faster propagation of information, as the random combination

performed at each node allows two nodes that meet each other to have useful informa-

tion to exchange more often. Secondly, under the RLC scheme, the recovery process

starts only when the whole generation is delivered, much later than under non-coded

approach, where the recovery process for individual packet starts immediately when

the packet is delivered.

The second point to make concerns the performance metric. Throughout this

chapter, we mainly study the average block delivery delay as the performance metric;

there are alternative metrics such as mean packet delay, in-order delay. For multiple

simulation runs of the above setting, Figure 3.4 plots the empirical CDF for different

delay metrics achieved by RLC and RR-random scheme. It shows that although RLC

is able to decreases the block delivery delay, it sacrifices performance metrics such as

mean packet delay and in-order packet delay.
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3.3.1.3 Performance Gain of the RLC scheme

We now quantify the performance gain of the RLC scheme through simulation. We

note that due to the random nature of the contacts and the large size of the network

in which we are interested, a quantitative analysis of delivery delay is difficult.
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Figure 3.5. Benefit of the RLC scheme under SS SD

We first explore the relative benefit of the RLC scheme with respect to the non-

coded schemes under varying bandwidth constraints. Figure 3.5(a) plots the E[Dblock]

and its 95% confidence interval for the SS SD case with K = 10 under varying band-

width constraints. (The average block delivery delay, E[Dblock] reported through-

out Section 3.3 is the average value from 50 different simulation runs). The figure

shows that that the RLC scheme achieves a lower E[Dblock] than both random and

RR random schemes. All schemes perform the same under b = 10 case where the

K = 10 packets are propagated independently without competing for bandwdith;

whereas as bandwidth decreases, the relative benefit of the RLC scheme increases.

We next study the sensitivity of the performance gain to the block size K. Fig-

ure 3.5(b) plots the average Dblock for the SS SD case with varying block size K and

a bandwidth constraint of b = 1 (i.e., on every contact, only one packet can be sent

in each direction. For the remainder of this chapter, this is the default bandwidth

constraint used in our simulation results), and Figure 3.5(c) plots the relative ben-

efit of the RLC scheme over non-coded schemes. We observe that as the block size

increases, the relative benefit of the RLC scheme over non-coded schemes decreases.

This is because for non-coded schemes, with a larger block size, there are a larger
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number of packets to randomly choose from, and therefore the probability of two

paths choosing to forward the same packets is smaller.

Our results for the MS SD and MS MD case are not shown here. We note that

the benefit achieved by the RLC scheme for the MS SD case is smaller than for the

SS SD case. Basically, under the MS SD case, the K packets start to propagate from

the K different source nodes, and the effect of relay nodes choosing the wrong packets

to forward becomes less significant. For the MS MD case, the RLC scheme performs

worse than the non-coded scheme since the RLC scheme forces every destination node

to receive K independent combinations to decode the one single packet destined to

it.

3.3.2 Coding Benefit under Bandwidth and Buffer Constraints

In the previous section, we have assumed that nodes have unlimited buffer ca-

pacity. In this section, we conisder the case where each node can store at most B

(B < K) relay packets or combinations, but has sufficient buffer space to store all

source packets and packets destined to it. As the nodes do not have enough memory

to hold the whole block of packets, an algorithm is needed to determine what to keep

or drop when the buffer is full.

We consider the following buffer management schemes. For the RLC scheme,

when a node receives a combination and its buffer is full, it randomly combines the

new combination with an existing combination in the buffer and stores the result.

For the non-coded scheme, a drophead scheme [117] is used. Under the drophead

scheme, when a new relay packet arrives to a node, and the node’s buffer is full, the

node drops the relay packet that has resided in the buffer the longest.

Figure 3.6(a) plots the block delivery delay under the RLC scheme and the non-

coded schemes for the case SS SD (with K = 10) under varying nodal buffer sizes. We

find that as nodal buffer sizes decrease, the performance of the RLC scheme degener-
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Figure 3.6. Bandwidth and buffer constrained case
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Figure 3.7. RLC scheme makes use of more transmission opportunities, B=1

ates only slightly; while the performance of the non-coded schemes degrade quickly.

We examine the simulation trace closer to better understand the performance gain

of the RLC scheme. For a particular run, Figure 3.7 plots the cumulative number of

transmissions made as a function of time for different schemes. We see that the RLC

scheme is able to make use of more transmission opportunities, and therefore prop-

agates information much faster than the non-coded schemes. Further examination

of the simulation traces reveals that under the RLC scheme, different information

propagates evenly throughout the network. As different packets are mixed randomly

by nodes, when a node drops a combination, an equal amount of information is lost

for each packet. For the non-coded schemes, however, different packets in the block

propagate at very uneven speeds: some packets spread quickly to a large number of
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nodes, while other packets spread much more slowly. The uneveness of propagation

of the non-coded schemes can be explained by the adopted random selection scheme:

the more copies a packet has in the network, the more likely the packet is copied to

some other node with the effect of kicking out copies of other packets. As a result of

such uneveness, it takes much longer to deliver the “slowest” packet using non-coded

schemes than using the RLC scheme.

Again, we note that the improvement in delay performance of the RLC scheme

is achieved at the cost of more transmissions being made as shown in Figure 3.6(b).

Notice that when there is no buffer constraint, at most K linear combinations of a

generation (of size K) are sent to each node. This is however, not the case when

there are buffer constraints. When a relay node cannot store all combinations of a

generation, it can be repeatedly sent different combinations of a generation without

increasing its rank.

For the MS SD case, we observe similar performance gains achieved by the RLC

scheme (not shown here). For the MS MD case with K = 10, where coding is applied

to packets sent by different sources to different destinations, we observe that the

RLC scheme out-performs the non-coded schemes when the buffer is very constrained

(K = 10, b = 1 for this setting) as shown in Figure 3.6(c).

3.3.3 Controlling Transmission Power Consumption

So far, we have seen that the RLC scheme delivers a block of data, or collects

multiple packets from different sources faster than the non-coded schemes, at the

“cost” of having more copies of packets present in the network, consuming more

buffer space, transmission power and bandwidth (to send these copies). Can the RLC

scheme achieve a smaller average block delivery delay than the non-coded schemes (i)

under the same transmission power consumption, (2) under the same transmission

power consumption and buffer constraint ? We answer these questions in this section.
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To limit the number of copies made of a packet, we use a token-based scheme,

extending the binary spray and wait scheme proposed independently in [104, 101].

We refer to the maximum number of copies made for a packet as the number of per-

packet tokens. Each node carrying a copy of a packet is assigned a token number that

denotes the number of copies the node can make for the packet.

The spray and wait protocol [104] with the number of per-packet tokens, L, con-

sists of two phases: a spray phase to spread L − 1 copies of the packet, and a wait

phase (if the destination node has not been reached) where each of L carriers (includ-

ing the source) performs direct transmission to deliver the packet to the destination.

There can be different ways to spread the initial L − 1 copies, one of them is binary

spray and wait. Under binary spray and wait with number of per-packet tokens L,

every new packet generated at the source is assigned L − 1 tokens. When the source

node meets another node, the packet is copied to the other node and half of the tokens

are assigned to the new copy, while the source node keeps the remaining half of the

tokens. A relay node carrying a copy in turn does the same. When a packet copy

has only a single token remaining, it can only be forwarded to the destination. [104]

has shown that under an independently and identically distributed mobility model,

binary spray and wait achieves minimum expected delay among all spray and wait

routing schemes.

We note that this scheme can be improved by allowing two nodes carrying copies

of the same packet to average their token numbers when they meet, as the two nodes

have equal opportunities to meet susceptible nodes or destination node (and to prop-

agate and deliver the packet). Furthermore, to apply the notion of tokens to the RLC

scheme, we associate a token number with each generation, which limits the total

number of combinations that can be exchanged for the generation in the network.

The generation token number equals the product of the number of packets in the

generation and the per-packet token number. When a node sends a random combi-
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Figure 3.8. Transmission number vs block delivery delay trade-off

nation to another node, its token number is decreased by one. After two nodes finish

exchanging combinations of a generation, they average their token numbers: the sum

of the two nodes’ token number is reallocated to the two nodes in proportion to their

ranks. Even if the two nodes meet each other have no information to exchange, they

average their token numbers. The rationale behind averaging tokens in proportion to

ranks is that the potential of a node to spread the generation is linear with the rank

of the node, i.e., the “amount” of information the node carries for the generation.

We run simulations for the SS SD case with K = 10 and the number of per-

packet tokens varying between 5 and 90, and ∞. Figure 3.8 plots ((a) without buffer

constraint, (b) with buffer constraint of B = 2), the number of transmissions versus

delay tradeoff achieved under different per-packet token limits. The results show

that even with similar transmission numbers, the RLC scheme is still able to out

perform non-coded schemes. This is because the random mixing performed by the

RLC scheme allows faster and more even propagation of independent information

through the network. The results for limited relay buffer case further establish the

usefulness of the RLC scheme in decreasing block delivery delay.
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3.4 Multiple Generation Case

In the previous section, we examined the behavior of the RLC scheme in a single

generation setting. We found that it provides faster delivery of a block of packets

under bandwidth constraint, and that the delay performance degrades very slowly as

nodal buffer becomes more and more constrained, at the cost of more transmissions.

Although limiting token numbers leads to a larger average delay under both RLC

and non-coded schemes, the RLC scheme achieves better transmission power versus

delay trade-off than non-coded schemes.

The natural next question to ask is whether the benefit of RLC continues when

one moves from a single generation case to the more realistic case where there are

multiple continuous flows in the network. We address this question in this section by

considering a scenario where there are multiple asynchronous continuous unicast flows

in the network. In what follows, we first introduce the traffic process and scheduling

schemes. We then present the results for the following two scenarios: when only

bandwidth is constrained, and when both bandwidth and buffers are constrained.

Finally, we discuss the feasible throughput of network under the non-coded schemes

and the RLC scheme.

3.4.1 Traffic Process and Scheduling Schemes

We assume there are N flows in the network, with each node being the source of

one flow and the destination of another flow. Each source independently generates

a block of K = 10 packets according to a Poisson process with rate λ. Thus the

total packet arrival rate to the network is NKλ. We only consider applying the RLC

scheme to packets belonging to the same block, i.e. each block forms a generation, as

this case has been shown to result in the largest benefit under the single generation

setting.
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Our focus is on understanding the benefit of using RLC, not on designing an

optimal scheme. Hence we adopt simple randomized scheduling. For non-coded

schemes, when a node meets another node, it randomly selects a packet from the

set of packets that it carries and the other node does not have, and forwards it.

For the RLC scheme, the node first randomly chooses a generation from the set of

generations that it carries which contain useful information for the other node, and

then generates a random linear combination for this chosen generation to forward.

For both cases, priorities are given to the packets/generations destined to the other

node; furthermore, among such packets/generations, those originated from the sender

itself are served first.

3.4.2 Coding Benefit under Bandwidth Constraint

We have seen that for one single generation, under bandwidth constraints, the

RLC scheme achieves a smaller average delay than the non-coded schemes, because

the RLC scheme can take advantage of more contact opportunities. We now examine

the multiple generation case.

We perform simulations under varying block arrival rate with bandwidth con-

straint b = 1. We observe that the RLC scheme only shows a benefit when the traffic

rate is low; and performs worse than the non-coded scheme when the traffic rate is

high, as shown in Figure 3.9(a), which plots the empirical cumulative distribution

function (CDF) of Dblock under λ = 0.00045.

The reasons that the RLC scheme experiences worse performance than the non-

coded scheme under relatively high traffic rates are two-fold. First, when the arrival

rate λ is high, there is a large number of different packets in the network under the non-

coded schemes; and it is more likely that two nodes have some useful information to

exchange when they meet. As a result, the relative benefit of the RLC scheme through

its increased randomization is smaller. Secondly, as we have shown in Figure 3.3(a),
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Figure 3.9. Block delivery delay under multiple generation case

the RLC scheme generates more transmissions for each generation than the non-coded

schemes; this means that when the block arrival rate is high and there are many

simultaneous generations in the network, the contention for bandwidth is severer

under the RLC scheme. An optimal scheduler should favor generations that have

fewer combinations spread throughout the network, but the currently implemented

random scheduling scheme does not consider this optimization.

The trade-off between the average number of transmissions and average block

delivery delay shown in Figure 3.8 suggests a way to deal with this resource contention

problem. Figure 3.8 shows that the RLC scheme can achieve similar block delivery

delays as the non-coded schemes with a significantly smaller number of transmissions

(left part of the curve), so we expect a significant benefit by appropriately limiting

the number of copies made of a generation. Figure 3.9(b) confirms that this is the

case. Figure 3.9(b) plots the E[Dblock] achieved for the RLC and random schemes for

a block arrival rate λ = 0.00045, when the per-packet token limit is varied between

20 and 100. In particular there is an optimal token limit value for the RLC scheme

between 40 and 50 tokens. If the token limit is too large, the system suffers severe

contention that degrades performance; if too small, some useful meetings cannot be

exploited because all the tokens have been consumed. For the non-coded scheme
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under this arrival rate, contention is not significant and the reduction in the token

limit incurs larger delays. We do observe that under a higher block arrival rate, the

non-coded scheme also benefits from limiting the number of copies made for a packet.

How to set the per packet token limit based on bandwidth constraint and block

arrvial rate is an open problem. We can estimate an upper bound of the number

of transmissions that can be made for each packet as the ratio between the total

bandwidth available in the networks, N(N − 1)β, and the total arrival rate, NKλ.

For the specific setting considered here, this value is equal to 100.

3.4.3 Coding Benefit under Bandwidth and Buffer Constraints

We have seen in Section 3.3.2 that for a single generation case, the RLC scheme

is especially useful when buffer is constrained. We now consider whether this is still

the case when there are multiple generations in the network.

As for the single generation case, we assume that each node has limited buffer

space for storing relay packets, but unlimited buffer space for storing its own source

packets or packets destined to it. Since the source node always stores a packet until

it is known to be delivered, there is no packet loss. Under the RLC scheme, when a

node receives a combination and its buffer is full, it first selects one generation from

its buffer to compress. This is done by randomly choosing one generation from the

set of generations in its buffer that have the highest rank. If the newly received com-

bination is for the chosen generation, the combination is combined with an existing

combination within that generation; otherwise, the node compresses the matrix of

the chosen generation by one 4 to make room for the new combination, and insert the

new combination into the generation it belongs to. For the non-coded schemes, the

drophead scheme is used.

4This is done by randomly combining two encoded packets into one.
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When both bandwidth and buffer are constrained, limiting the number of trans-

missions made for each generation becomes even more important for the RLC scheme.

As Figure 3.6(b) in Section 3.3.2 has shown, under a single generation case, the RLC

scheme generates much more transmissions than the non-coded scheme. Therefore,

when there are multiple generations in the network, resource contention is even greater

than when buffer space is not constrained. We expect that a token scheme will allow

bandwidth and buffer space to be allocated more evenly among different generations.

We simulate the case of block arrival rate of λ = 0.00045, and every node only store

B = 5 relay packets (combinations) under various token limits. As Figure 3.9(c)

shows, the RLC scheme achieves a lower average block delivery delay than the non

coding scheme, reducing the average block delivery delay by about 22.5%.

3.4.4 Feasible Throughput

In the previous two sections, we compared the average block delivery delay achieved

by the RLC scheme and non-coded schemes under certain block arrival rates. An in-

tersting question is whether network coding, can increase the throughput, i.e., the

maximum per-flow block arrival rate that can be supported by the network.

When nodal buffer is not constrained, a DTN can be viewed as a traditional

static network, where the link bandwidth represents the long term bandwidth avail-

able between the nodes (i.e., taking into account the meeting frequency). For the

communication links in wireless networks, data transmission links along both direc-

tions share the same spectrum, therefore it’s more natural to view the network as

undirected network [79]. As conjectured by Li and Li [78], the benefit of network

coding for multiple unicast sessions in direcional networks is likely to be non-existent.

The question of whether network coding scheme can increase throughput when

nodal buffer is constrained remains to be answered.
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3.5 Related Work

In this section, we first review briefly previous works that studied the benefit of

network coding for wireless networks. Next, we compare in more details our work

with previous work studying network coding benefit for broadcast applications in

DTNs and wireless ad hoc networks. Then we review previous works that performed

analytic studies of the RLC scheme for similar settings. Finally, we compare network

coding approach with the source-coding approach.

Several previous works have investigated the benefit of network coding for wireless

network. For multicast applications, Lun et al. [86] and Wu et al. [114] studied

the problem of minimum-energy multicast, and showed that allowing network coding

greatly simplifies the problem (from an NP-complete problem to a linear optimization

problem solvable in polynomial time). For broadcast applications, Widmer et al. [112,

113] proposed RLC based scheme for energy efficient broadcast in mobile and static

networks. For unicast applications, Wu et al. [115] and Katti et al. [66] studied the

benefit of network coding in taking advantage of the shared nature of the wireless

medium. Such benefit is applicable to relatively dense network, but not applicable to

the sparse mobile network we are considering.

We now compare in more detail our work with those by Widmer et al. [112, 113],

in which a RLC-based scheme was proposed for broadcast applications in DTNs and

wireless ad hoc network, and was shown to achieve higher packet delivery rates than

non-coded schemes under the same forwarding overhead. Our work differs from these

two works as we consider unicast applications rather than broadcast applications.

Even though we consider epidemic style routing where a flooding protocol is used

for unicast delivery, it’s different from broadcast delivery in that we consider token

scheme for limiting the total number of copies made and a recovery scheme for delet-

ing obsolete copies once the first copy is delivered. Moreover, we are interested in

the overhead in terms of the number of copies made for each packet. Although [112]
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considered generation management (i.e., how to decide which packets form a genera-

tion) and information aging (i.e., how to delete or compress information), they only

reported simulation results for the single generation case. We have considered both

single generation and multiple generation cases, and demonstrate that the coding

based scheme is especially robust under relay buffer constraint.

Throughout this chapter, we assume that two nodes coming into contact will ex-

change information about what they carry, and only transmit data that is useful to

the other node. This signaling protocol is equivalent to the intelligent beacons consid-

ered in [112]. We have also performed simulation using a signaling protocol equivalent

to normal beacons in [112], where nodes do not exchange buffer content information

before the actual data transmission. We find that under such signaling, the relative

benefit of RLC is much more significant than the intelligent beacon signaling. This

result is also in line with findings in [29] showing with intelligent signaling, the benefit

of RLC scheme over non-coded scheme to be less significant.

Our main focus in this chapter is to investigate the benefit of applying network

coding to unicast applications in DTNs, therefore we rely on simulations so that we

can quantify the benefits accurately. Recent work by Lin et al. [81] proposed an

ODE model for analyzing delivery delay under an RLC-based scheme and replication

(epidemic routing) scheme, for the case of a single block of K packets propagating in

resource constrained network. The model is proposed based on the assumptions that

(i) two nodes with ranks between 1 and K−1, i.e., carry some, but not all information

about a generation, always have useful information for each other, (ii) for all such

nodes, equal fractions of them are of rank 1, ..., B − 1, (ii) under replication based

schemes, the K packets are equally likely to reside each nodes. We comment that

the results therein confirm our findings in this chapter, for example, the benefit of

a RLC scheme under buffer constraints; and we have considered more complicated

scenarios than them. A priority scheme is also proposed in the paper, which strictly
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transmits packets of different priorities in sequence. We observe that such a scheme

is not optimal in making use of contact opportunity, and therefore can be improved

by priority transmission scheduing at each nodes.

As pointed out in Section 3.3.1, the benefit of RLC observed in our setting is sim-

ilar in spirit to that of rumor mongering as studied [29]. They studied the problem of

simultaneously disseminating multiple message in a large network, under the “random

phone call” communication model where in each time step, each node communicates

with another node randomly uniformly chosen from all the nodes. Through rigor-

ous stochastic analysis, asympotic bounds for the delay under coding and non-coded

schemes were derived. As both the communication model and the schemes consid-

ered (no signaling) therein differ from ours, applying similar analysis to our setting

is non-trival.

Two previous works have investigated the application of erasure coding to DTNs,

where the source node uses an erasure coding algorithm such as Reed-Solomon codes

[93] and Low-Density Parity-Check (LDPC) based coding (e.g., Gallager codes, Tor-

nado codes [85], or LT codes [84]) to encode a message into a large number of code

blocks, such that if a fraction of 1/r or more of the code blocks is received, the mes-

sage can be decoded. For DTNs where there are prior knowledge about paths and

their loss behavior, Jain et al. [56] addressed the problem of allocating the source-

erasure-coded blocks to the multiple paths between source and destination each with

different loss behavior, in order to maximize the message delivery probability. Wang

et al. [111] considered DTNs with unpredictable node mobility, and proposed to

source-erasure-code message with a fixed overhead, and then send the large number

of coded blocks over a large number of relays that then try to deliver them to the

destination. Such erasure coding scheme allows for the usage of a large number of re-

lays, in order to decrease the variance of the delivery delay, while maintaining a small

fixed redundancy. Chen et al. [24] later proposed a hybrid scheme that combines the
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erasure-coding based scheme [111] with a scheme that aggregressively forwards coded

blocks, to achieve both good worst-case performance and small delay performance.

Compared to the erasure coding scheme, RLC based schemes have different benefits

and characteristics. An intersting open problem to consider is how to combine these

two type of codings to attain the different benefits simultaneously.

3.6 Summary and Future Work

We study the benefits of applying RLC to unicast applications in mobile DTNs in

this chapter. When there is a single generation in the network, we found that RLC

achieves minimum block delay with high probability for a block of data destined to

the same destination. Larger gains are achieved by the RLC scheme when buffer

space is also constrained. Although the RLC scheme generate more transmissions, by

using a token limit scheme, it can achieve better transmission power/delay tradeoff

than non-coded schemes. When there are multiple generations in the network, under

appropriately chosen token limit, the RLC scheme achieve a slight gain over non-

coded schemes under only bandwidth constraint, and significant gains when nodal

buffer is also constrained. Essentially, for epidemic style routing (i.e., replication

based scheme) to work effectively in resource constrained DTNs, the most challenging

problem is how to schedule packet transmissions and manage node buffers. RLC based

schemes, where each node randomly combine multiple packets together to transmit

to downstream node, and randomly evict a combination on buffer full, has higher

degree of randomness compared to a randomized scheme. As a result, under RLC

schemes, the probability that a node forwards/keeps a piece of information useful

for the eventual delivery is greater than the case where random selection is done on

per-packet base.

In the future, we plan to study several practical issues in applying RLC. First of all,

we will analyze the computational complexity, and storage and transmission (signaling
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and data transmission) overhead of RLC scheme. As the finite field size, q, affects

the probability of achieving minimum delay, the complexity of encoding/decoding,

and the storage/transmission overhead, choosing q is an important practical issue.

Another practical issue concerns generation management. We have assumed that

packets arrives to the source node in batches, which could arise from applications

that generate large messages that are then fragmented to smaller packets to take

advantage of more transmission opportunities. For applications that generate small

messages, it is not reasonable to fragmented the message to even smaller packets,

because the relative per (coded) packet overhead will be too large. For such scenarios,

RLC can be applied to a group of packets whose generation times are close to each

other. We expect the benefit of RLC schemes will be smaller.

We are also interested in performing analytic studies of the performance of RLC-

based schemes and non-coded schemes to obtain closed-form (asymptotic) results.

We expect an analysis for an ODE model such as done in [16] might be promising.
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CHAPTER 4

MOBILITY TRACES MODELING AND IMPLICATIONS

ON DTN ROUTING

4.1 Introduction

The many advantages offered by mobile communications have pushed wireless

networks beyond supporting laptops in buildings to more challenging environments.

Many of the wireless mobile ad hoc networks for groups of vehicles, pedestrians, or

tracked wildlife experience intermittent node connectivity and disconnection of nodes

or groups of nodes due to limitations of power, mobility, node density, and equipment

failure. Network architecture and protocol designs that route data despite intermit-

tent connectivity among nodes are generally referred to as Disruption-Tolerant Net-

works (DTNs). Such networks have been deployed in the context of buses [18, 12, 98],

pedestrians [21], animal tracking [61], and underwater sensor networks [32].

Unlike other network regimes — such as tethered networks or multi-hop, un-

partitioned MANETs — routing performance in DTNs is primarily affected by the

frequency and duration of opportunities for data transfer between nodes. Therefore,

when studying the performance of routing protocols and applications in DTNs, it is

important to have models that accurately characterize these transfer opportunities.

There is a rich body of work on the measurement, characterization, and modeling

of mobility traces taken from contemporaneously connected wireless LANs [109, 54,

72] and mobile ad hoc networks [58, 10]. Several recent studies have characterized

traces collected from actual mobile networks with intermittent connectivity [21, 18]

or adapted from traces collected from wireless LAN, and evaluate the impact of
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the measured mobility on DTN applications [107, 49]. These works characterized

only certain aspects of traces, e.g., the aggregate inter-contact time or the contact

graph, without considering which aspects of the underlying mobility patterns are

most important in determining DTN performance and therefore need to be captured

and modeled accurately.

In this chapter, we develop a generative model of the inter-contact time of DTN

nodes based on traces collected from our operational vehicular DTN, UMass DieselNet

[18]. The model is generative in that it can be used to generate synthetic traces of

node inter-contact times that can then be used to drive simulations. As we will see,

however, these models are of interest in their own right, as models at the appropriate

level of granularity can reveal structure that is hidden at the aggregate level and that

can influence DTN performance. Indeed, a focus of our research is to understand the

right level of modeling granularity so that traces generated by the model can then

be used in simulation to accurately predict DTN performance. We show that while

the all-bus-pairs aggregated inter-contact times show no clear pattern, inter-contact

times at the bus-route level show periodic structure that can be modeled as mixtures

of normal distributions (whose parameters can be inferred from empirical traces using

an EM algorithm). Using a trace-driven simulation of epidemic routing, we show that

this finer-grained route-level model of inter-contact times predicts performance much

more accurately than the coarser-grained aggregated all-bus-pairs model.

The remainder of this chapter is structured as follows. Section 4.2 describes our

testbed and trace data. In Section 4.3, we describe the performance metrics that

we use to evaluate our generative model. In Section 4.4, we evaluate the aggregate

model used in previous work and show that it does not perform well by our metrics.

In Section 4.5 we propose a route-level model that generates synthetic traces that

better match the routing performance of the original trace. We review related works

in Section 4.6, and summarize this chapter and discuss future work in Section 4.7.
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4.2 UMass DieselNet Traces

In this section, we first describe the UMass DieselNet [18] testbed, explain the

traces collected and present background information about bus dispatching. We then

describe our preprocessing of the traces, including merging two directional processes

into one symmetric process, merging contacts that occurs close in time, and excluding

falty devices from the traces.

4.2.1 Testbed and Trace Collection

UMass DieselNet consists of 40 buses serving the area surrounding the University

of Massachusetts, Amherst campus. Each bus is equipped with a Linux computer, an

802.11b Access Point (AP), a second 802.11b interface, and a GPS device. The AP on

each bus beacons its SSID once every 100 ms. The second radio continuously searches

for SSID broadcasts. On discovering a remote bus’s AP, the discovering bus obtains

an IP address from the remote bus. Then, a TCP connection is opened, initiating a

contact event , and data is continuously transmitted to the remote bus until the TCP

connection is broken when the buses move out of range. Once the socket reports an

error or closure, the contact event is marked as ended and logged. For each contact,

the receiver logs the ID of the sender, the time, duration, and the number of bytes

received. These bus-to-bus transfer records are transmitted to a central repository

whenever a bus is able to associate with a fixed 802.11 access point that is attached

to the Internet (e.g., offered by a cafe or in the bus garage). We refer to the records of

the times and locations that each bus connects to fixed APs as (bus-to-AP) check-in

records.

It is helpful to understand how buses are scheduled and dispatched since these

are the primary determinants of bus mobility. The bus system serves approximately

ten routes. Some routes have more buses running at the same time than others. In

this work, we focus on the three most popular routes, the campus SHUTTLE that
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tours the campus in a butterfly shape route (see Section 4.5.2 for details) and the

SN SA and NA BR routes that travel between our campus and nearby towns within

150 square miles. During weekdays, beginning at approximately 7 A.M. and ending

at approximately 7 P.M., there are multiple shifts serving each of these three routes.

The shifts within a route are spaced so that there is a 15-minute spacing between

shifts. Each of the other seven routes is served by only one or two shifts at a time, or

they may be served only every other day, and in general we have fewer data points

characterizing their operation.

For dispatching and driver assignment purposes, shifts are divided into morning

(AM), midday (MID), afternoon (PM), and evening (EVE) sub-shifts. In the morning,

drivers choose buses at random to run the AM sub-shifts. At the end of the AM sub-

shift, the bus is often handed over to another driver (often at a bus stop) to operate

the next sub-shift; but in some cases, the bus returns to the bus garage, and it is then

possibly assigned to another shift on that route or to another route.

Our results are based on the study of 55 days of traces collected during the spring

2006 semester, from Jan 30 to May 28 with weekends, spring break, and holidays

removed since during these times the buses run on reduced schedules. We focus on

the events logged between 7 A.M. and 7 P.M. for each day, when buses are running

regularly. We also use bus dispatching records, which record the mapping from buses

to routes and shifts for each day. Both the traces and dispatching records are available

for download at http://traces.cs.umass.edu.

4.2.2 Mobility Traces Preprocessing

As discussed earlier, when two buses are in transmission range, each one connects

to the other’s AP to transmit data to the other bus using a separate TCP connection,

i.e., the recorded contacts are directional. The contacts in both directions are over

the same 802.11b channel; as a result, during one physical meeting of two buses, there
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can be multiple directional contacts (in both directions) as they gain or lose access to

the shared channel. We note that this is due to the way the current system is built;

we can imagine systems where symmetric contact is established when two buses meet

or where two different channels are used for the contacts in each direction. As we

wish to focus on the mobility rather than the specific operations of the bus nodes

(including MAC layer), we assume all contacts are symmetric, i.e., data can flow in

either direction.

X2 X3X1 7pm4X
A −− B

7am

Figure 4.1. A contact process between bus A and bus B. Here X2, X3

are fully observed inter-contact time, X1 is a start-censored observation,
and X4 is a end-censored observation of inter-contact time

Figure 4.1 illustrates the contact process between two buses, A and B, during a

day. In the figure, we use black boxes to represent contacts and spaces in-between

to represent the interval between contacts. We refer to the duration of time between

two subsequent contacts as the inter-contact time.

In our traces, there are many very short inter-contact times. This occurs, for

example, when two buses that travel closely in the same direction repeatedly come

in and out of range of each other as their spacing changes with the road traffic. We

merge such events as little else can occur between the contacts. Specifically, for each

pair of buses, we combine any two subsequent contacts that occur within 60 seconds

of each other. The merged contact has a starting time equal to the earlier contact’s

starting time and an ending time equal to the later contact’s ending time.

We observed that some buses operating on routes during a day were not observed

in the traces. It may be the case that the bus did not physically meet other buses,

but it may also be the case that the bus failed to set up TCP connections when

in range of other buses. There are several reasons for the latter. When the buses
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transfer & transfer & no transfer & no transfer &
check-in no check-in check-in no check-in

Counts 1055 42 34 228

% 77.91 3.1 2.5 16.84

Table 4.1. Number and fraction of four different cases of daily bus status. There
are 1,354 records in total.

are moving at high speeds, there is not enough time for two passing buses to form

an 802.11 association and initiate a TCP transfer; we have data on bus speeds that

confirms this problem. Hardware failures are not uncommon on the testbed and

occasionally mechanics disable the system when servicing the bus and neglect to

enable it afterwards. As we don’t know whether devices were functioning correctly

when the traces were collected, for any day, if we observed a bus in the bus-to-bus

transfers or bus-to-AP check-in records, then we assume the device on the bus worked

properly for that whole day; otherwise, the device was assumed to be faulty and the

bus was removed from the trace for the day.

Table 4.1 shows, among all the buses running on routes during the whole trace,

the numbers and fractions of instances that a bus (i) had transfer records and check-

in records, (ii) had transfer records but no check-in records, (iii) had no transfer

records but had check-in records, and (iv) had no transfer records or check-in records

during a day. We observe that the correlation of “having a bus-to-bus contact” and

“having check-in records” is high.

4.3 Performance Characteristic under the Trace

The goal of modeling the bus mobility trace is to correctly predict DTN routing

performance. In the past, many routing schemes have been proposed for DTNs, but

we focus here on basic epidemic routing. When there are no resource constraints in

the network, epidemic routing provides the best-case delivery delay performance. In
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this section, we first introduce epidemic routing and the performance metrics that

we are interested in, and then describe the trace-driven simulation we develop for

evaluating the performance of epidemic routing under given mobility traces.

4.3.1 Epidemic routing and performance metrics

Epidemic routing [110] adopts a “store-carry-forward” paradigm: a node receiving

a packet buffers and carries that packet as it moves, passing the packet on to new

nodes that it encounters. Analogous to the spread of infectious diseases, each time

a packet-carrying node encounters a new node that does not have a copy of that

packet, the carrier is said to infect this new node by passing on a packet copy; newly

infected nodes, in turn, behave similarly. The destination receives the packet when

it first meets an infected node, and initiates a recovery process that delete packets

copies at infected nodes by the propagation of acknowledgment information in the

network. Many recovery schemes have been previously proposed and studied [117, 18];

we will adopt the VACCINE recovery scheme in which acknowledgment information

is propagated maximally in the same manner as data packet.

As we have seen from Chapter 2, for DTN routings, there exists a trade-off between

packet delivery delay and the number of copies made for each packet, where delivery

delay is an important performance metric for application and the number of copies

made is directly related to transmission overhead. In this chapter, in addition to

these two important performance metrics, we also study the number of hops of the

minimal delay paths discovered by epidemic routing. This hop count metric is useful

in setting the maximum number of hops in a K-hop scheme [39].

4.3.2 Trace-driven Simulation of Epidemic Routing

As our primary focus is on the impact of mobility on DTN routing, we assume

there is no resource contention in the network in terms of bandwidth or buffers and

that when two buses come into contact, they can instantaneously exchange an ar-
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B −− C

D −− C

D −− Dest

Src −− B

l1

l2

l3

l4l5

avail(P), P={l1,l2,l3,l4}

Figure 4.2. Example of a path P = {l1, l2, l3, l4} from src to dest. Note that
{l1, l2, l3, l5} is not a time-respective path.

bitrary number of packets. We next describe the trace-driven simulation that we

use evaluate the performance of epidemic routing under a given mobility trace under

these assumptions.

A meeting trace can be represented as G =< V, L >, where V is the set of nodes

and L is the set of edges. Each edge l ∈ L, represents a contact between two nodes

v1, v2 ∈ V , and is labeled with the time interval that the contact happens, [s(l), e(l)],

where s(l) is the starting time of the contact, and e(l) is the ending time of the

contact.

Under instantaneous transmission assumption, as Figure 4.2 demonstrates, in or-

der for a packet generated at node src at time t to reach the destination node dest,

a time-respective path in the network, P = (l1, ..., lk), is required such that e(l1) ≥ t.

A path is called time-respective path if the edges along the path have increasing time

labels, i.e., s(li) < e(lj), for any i < j. Each path is available until a certain time,

i.e., avail(P ) = min{e(li), i = 1, ..., k}. A packet generated at time t traversing along

path P will experience a delay given by max{0, s(li) − t, i = 1, ..., k}. This means

that as t increases, the delay on a path decreases linearly with time, until it becomes

0 after which the delay remains 0 until t = avail(P ). We assume that packets gen-

erated at t = avail(P ) can be delivered through path P , but packets generated right

after this time, denoted as avail(P )+, cannot be delivered through path P .

91



We wish to evaluate the delivery delay, the number of copies made, and the

hop count of the path for packets generated at any point of time for given source-

destination pair under epidemic routing scheme. We next consider the plots that

depicts such information, e.g., the packet-delivery-delay versus packet-generation-

time plot and the number-of-copies-made versus packet-generation-time plot. The

following observations allow us to simulate the propagation of a finite number of

packets to obtain these information.

First, one can show that, for a class of routing schemes including epidemic rout-

ing, the delivery-delay versus packet-generation-time plot of a node pair is piece-

wise linear1. As Figure 4.3(a) shows, the delay versus generatime-time plot is made

up of multiple line segments, connected with vertical lines at time instances when

a previous path becomes invalid, or when a new path is used from that time on.

Similarly, the number-of-copies-made versus generation-time plot and the hop-count

versus generation-time plot are also piecewise linear, and more specifically, step func-

tions. Secondly, we observe that the time instances when contacts start (or end)

are the time instances when new paths become available (or existing paths become

invalid).

Based on the above piecewise linear property, we generate packets at time in-

stances when contacts start and end, and then using the metrics (delay, copies made,

hop count) obtained for these packets to obtain these metrics for packets generated at

any time. More specifically, for each source-destination pair, a packet was generated

respectively at the simulation start time, the starting time s(l), the ending time e(l),

1Actually, this class of routing schemes include all routing scheme where the forwarding/routing
decision at a node does not change in between the two subsequent node-to-node contacts in the
network.
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Figure 4.3. Performance of epidemic routing under the trace

and right after the ending time e(l)+, of each contact.2. We then perform trace-driven

simulations of epidemic routing for these trace packets.

As an example, Figure 4.3(a) plots the delivery delay under epidemic routing and

direct source-to-destination transmission for packets sent from bus 3029 destined to

bus 3038 at any time between 7 A.M. and 7 P.M. on April 4, 2006. We observe a

significant difference between the delays achieved by epidemic routing and by direct

transmission (i.e., where only the source can deliver a packet directly to a destination).

As the two buses have only one contact on this day, the delay under direct transmission

is very large. Epidemic routing, however, is able to make use of other buses to

relay packets, achieving an average delay of 67.5 minutes. Figure 4.3(b) plots the

number of copies made for a packet generated on the same day for this unicast pair

under IMMUNE (where the acknowledgment is not propagated in the network; only

destination node can “cure” infected nodes) and VACCINE recovery.

Making use of the piece-wise linear property of the above delay-(copies, and hop

count) -versus-generation-time figures, we can evaluate the cumulative distribution

function for these performance metrics assuming packets arrive uniformly randomly

2The packets generated right after e(l), i.e., e(l)+, have a generation time of e(l), but is marked
as trail packets such that it cannot be sent during contact l.
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to each bus pair, at times uniformly randomly distributed between 7 A.M. to 7 P.M.

for all the 55 days in the trace. For example, Figure 4.3(c) plots the cumulative

distribution function of packet delivery delay for all bus pairs over the whole trace.

Our goal is to build a generative model that accurately captures DTN routing per-

formance in terms of the above cumulative distribution functions of delivery delay,

copies made and hop counts under epidemic routing.

4.4 An aggregate model for bus DTN

The contact processes between node pairs, and in particular, the inter-contact

times between node pairs, determine DTN routing performance. In this section,

we characterize and model the bus mobility traces by studying the all-bus-pairs-all-

day aggregated inter-contact time. Such approach has been taken by Chaintreau

et al. [21]. The underlying assumptions made by such approach are (i) the contact

processes of node pairs are renewal processes, (ii) there is no correlation between the

contact processes of different node pairs.

In the remainder of this section, we first define the different inter-contact time

observations in the trace. We then present the aggregate inter-contact time statistics.

Finally, we evaluate a generative model based on the aggregate statistics.

4.4.1 Censored observations of inter-contact times

Recall that in Section 4.2.2, we have defined the inter-contact time as the time

between two subsequent contacts. For any mobility trace, however, we have different

inter-contact time observations. First, there are fully observed inter-contact time,

measured as the duration of time from the end of a contact to the beginning of the

subsequent contact, such as X2, X3 in Figure 4.1. There are also some incomplete

observations of inter-contact times. Suppose that we measure the system from 7 A.M.

to 7 P.M., for each bus pair, the duration from 7 A.M. to their first observed contact,
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Figure 4.4. Aggregate inter-contact times

such as X1 in Figure 4.1, is a censored observation. We refer to such an observation

as a start-censored observation, as we don’t know when the inter-contact time starts.

Similarly, the duration of time from the last contact between a bus pair to 7 P.M. is

also a censored observation, which we refer to as an end-censored observation. For

the case when two buses have no contacts during this measurement period, we have

a no-meeting observation with duration given by 12 hr for the bus pair. For such an

observation, we do not know the starting or the ending time of the inter-contact time.

To our knowledge, previous studies of mobility traces studied the inter-contact

time solely based on fully observed inter-contact times and simply ignored censored

observations, with Chen et al. [23] as an exception. Chaintreau et al. [21] recognized

the effect of finite measurement duration, but did not consider its effect in their

characterization of inter-contact time. As longer inter-contact times are more likely

to be censored, ignoring censored observations leads to an under-estimation of the

inter-contact time distribution, especially when the duration of the measurement is

short.

4.4.2 Aggregate inter-contact time statistics

To study aggregate inter-contact time statistics, we first analyze, for each day, the

contact process for each bus pair and obtain censored and fully observed inter-contact
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times. We then aggregate all the fully observed inter-contact times and censored

observations together.

Figures 4.4(a) and (b) plot the empirical complementary cumulative distribution

function (ECCDF) and histogram of the aggregated fully observed inter-contact times,

respectively. We observe that the fully observed inter-contact time distribution has

two modes, and that there are many short inter-contact times.

The above figures do not suggest an obvious model for the aggregate inter-contact

time distribution. Hence we adopt the standard Kaplan-Meier estimator (KM esti-

mator) [63] to estimate the CCDF of the aggregate inter-contact time (also called a

survival function), S(t) := Pr(X > t), based on all observations. Suppose there are n

distinct fully observed inter-contact times in the sample as follows: T1 < T2 < ... < Tn,

and let ni, 1 ≤ i ≤ n be the number of inter-contact times, including both fully

observed and censored observations, that are greater than or equal to Ti, and let

di, 1 ≤ i ≤ n be the number of inter-contact times of length Ti, then the KM estima-

tor for S(t) is:

Ŝ(t) =
∏

Ti<t

ni − di

ni
. (4.1)

Eq.(4.1) is the non-parametric maximum likelihood estimate of S(t).

Figure 4.4(c) compares the survival function for inter-contact time (i.e., Pr(X >

t)) estimated by the KM estimator, the ECCDF of fully observed inter-contact times,

and the ECCDF of all observations. The results show a very large difference between

the CCDF of fully observed inter-contact time and Ŝ(t). This comparison demon-

strates quantitatively the importance of carefully accounting for censored observations

when modeling inter-contact times.
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4.4.3 Generative model based on aggregated statistics

In order to accurately model a DTN mobility trace, is it sufficient to model the

all-node-pairs aggregate inter-contact time? To answer this question,we compare the

routing performance of the original traces to the synthetic tracesgenerated based on

the inter-contact time statistics.

To generate a synthetic trace that is comparable to the original trace, we generate

traces for the same number of days. For each day, we generate the same number of

active buses as in the original trace. The contact process between each bus pair for

each day is generated as follows: we draw the time until their first contact (since

7 A.M.) from the observed samples of all the start-censored and no-meeting obser-

vations. The subsequent inter-contact times are drawn based on the KM estimate of

the conditional distribution of inter-contact time given two buses have contacts on

the day, calculated using fully observed inter-contact times and end-censored observa-

tions. The contact durations are drawn uniformly and randomly from the aggregate

contact duration samples.

We first compare the number of contacts per day in the synthetic trace with that

in the original trace. Figure 4.5 compares the scatter plots of the number of contacts

versus the number of active nodes for all the days in the original trace and in the

generated trace. It shows that the aggregate model generates a similar total number

of contacts per day as the original trace.
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Figure 4.5. Comparison of no. of active nodes and contacts in aggregated model
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Figure 4.6. Comparison of epidemic routing performance under aggregate model
generated trace and original trace

We then compare epidemic routing performances under the two traces. Figure 4.6

compares the all-bus-pairs-aggregated CDFs for delivery delay, total copies made in

the network, and hop count under the original trace and the generated trace. The

results show that many more packets are delivered and fewer copies are made for

packets based on the generated trace than on the real trace, although the two traces

have a similar number of contacts. (The CDF of the epidemic path hop count,

however, is very close.) The reason is that under the aggregate model, contacts are

equally distributed to all bus pairs, leading to more balanced connectivities for all

buses, which in turn results in more packets being delivered. In fact, we observe

that, under original traces, the delivery delays of different bus pairs can differ quite

significantly, whereas the generated trace incurs similar performance for different bus

pairs. This suggests the need for a finer-grained model to accurately predict DTN

routing performance.

4.5 Modeling Route-level Aggregate Inter-Contact Time

Our study of the aggregate model in the previous section suggests the need for a

finer-grain model in order to capture the heterogeneity among different buses. The

next question is then: what granularity shall we use to model the mobility trace ?
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One approach is to build the finest-grained model possible by characterizing the

contacts between individual bus-pairs. This is problematic for two reasons. First,

within a day, there are usually just a few contacts between a bus pair; there are

simply not enough samples to accurately characterize the pair’s contact behavior.

Second, each bus is randomly dispatched to a route each day and may change routes

during a day, so a bus pair exhibits different meeting behaviors on different days and

even during different times of the day. Therefore, one cannot simply aggregate traces

from multiple days. For the above reasons, we focus on the contact process between

two buses running on certain shift pairs, i.e., shift-pair contact process, rather than

the contact process between two physical buses. In the following subsection, we

describe the process to construct a shift-pair contact process from the original trace,

and we present the route-level aggregate statistics.

4.5.1 Route-Level Inter-Contact Time Statistics

Recall that for each route in the bus system, there are multiple simultaneous shifts

continuously running back and forth on the route. We construct a shift-pair contact

process from bus-pair contact processes, making use of the bus dispatching records.

Figure 4.7 illustrates this process. Suppose that we want to generate the contact

process between Shift01 and Shift02 (both belong to the SN SA route). From bus

dispatching record, we find that Shift01 (with duration [t0, t1]) is served by bus A,

while Shift02 is served first by bus B during [t2, t3] and then by bus C during [t3, t4]

(as shown by the two middle axes in the diagram). The overlapping time of the two

shifts is [ts, te] = [max(t0, t2), min(t1, t3)]. We then insert those contacts between bus

A and bus B (shown by top axis) that occur when the buses are running on Shift01

and Shift02 respectively into the (Shift01, Shift02) contact process (shown by the

bottom axis), and similarly for bus A and bus C.
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Figure 4.7. Obtaining (Shift01, Shift02) contact process from original

traces using dispatching records. Bus A runs Shift01 during [t0, t1], bus

B runs Shift02 during [t2, t3], bus C runs on Shift02 during [t3, t4]. For the

(Shift01, Shift02) contact process, X1 (X4) is a start-censored (end-censored)

inter-contact time observation, X2, X3 are fully observed inter-contact times.

In this particular example, our observation of the shift-pair contact process starts

at ts and ends at te (i.e., the duration of time that both shifts are actively running).

Under our classification of different observations, we have X1 (X4) as a start-censored

(end-censored) observation for the shift pair, and X2,X3 as fully observed inter-contact

times. If we observed no contacts between two shifts, we introduce a no-meeting

observation of length te − ts.

As we expect different shifts within the same route to exhibit similar contact

processes, we aggregate shift-pair inter-contact time observations that belong to the

same route pair together to study route-level inter-contact times. For example, Fig-

ure 4.8 plots the histograms of the different observations of the inter-contact time

for route pair (SN SA,SN SA). Let’s first consider the censored observations. We

observe the same number of start-censored and end-censored inter-contact times as

expected. There are many instances when a pair of buses running on this route have

no contacts. The histogram of the fully observed inter-contact times (Figure 4.8(a))

exhibits interesting periodic behavior and a trend of decreasing probability for longer

inter-contact times. There are a large number of small inter-contact times (the first

peak in Figure 4.8(a)). Recall that we have discussed the possible causes for very

small inter-contact times in Section 4.2.2, and we have merged contacts that are less
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Figure 4.8. Observations of inter-contact times for SN SA and SN SA route pair

than 60 seconds apart. This figure suggests that there are still many instances of

small inter-contact times even after this processing.

The histograms of fully observed inter-contact times for other route-pairs show

similar periodic behavior. This suggests that there is interesting structure in the inter-

contact times. To better understand the cause of such characteristics, we investigate

the deterministic meeting behavior of buses in the next section.

4.5.2 Understanding Deterministic Meeting Behavior

In this section, we analyze the meeting patterns of two buses running on certain

routes based on the assumption that buses operate according to planned schedules

and run at constant speed. We define the inter-meeting time as the duration of time

between when two buses are in transmission range; notice that this is different from
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inter-contact time, which is defined as the duration of time between two subsequent

contacts.

We first classify bus routes in our network as either a linear or butterfly-shaped

route. On a linear route, shown in Figure 4.9(a), bus goes back and forth between

two endpoints of the route. On a butterfly-shape route, shown in Figure 4.9(b), a

bus either travels along direction A → B → C → D → E → F → C → D → A or in

the reverse direction.

B

E
D

C

F

A B
T

T1 T2

T3 T4

 S1−>A−>B−E1 and S2−>A−>B−E2.
(a) Two linear routes: (b) Butterfly Route 

E1S1

S2 E2

A

Figure 4.9. Linear route and butterfly-shaped route

For two buses running on a same linear route, let the round trip time of the route

be the time it takes for a bus to travel from an endpoint to another endpoint and

then coming back to the starting endpoint, then they always meet every half round

trip time, regardless of the spacing between them.

For a butterfly-shape route, let Tl be the travel time for the left loop (ABCDA), and

Tr be the travel time for the right loop (CDEFC). The round trip time for the route

is given by Tl + Tr. It’s easy to show that two buses running in opposite directions

either follow the inter-meeting time sequence {Tl/2, Tl/2, Tr/2, Tr/2, Tl/2, Tl/2, ...} or

meet periodically with period (Tl +Tr)/2. The latter case occurs when the two buses

are spaced so that they do not meet in the joint segment C −D. Two buses running

in the same direction meet in the C − D segment if their spacing is exactly Tl or

Tr. For the butterfly-shape route in our network, i.e., SHUTTLE, we observe that

Tl ≈ Tr = T , therefore a pair of SHUTTLE buses travel in opposite directions have
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the following inter-meeting time sequences: {T, T, ...} or {2T, 2T, ...}. In addition,

SHUTTLE buses running in the same direction very rarely meet, as the buses are

scheduled to avoid such meetings.

For two buses running on different routes, we divide the bus routes into smaller

segments as needed, and we keep track the time that the buses enter or leave these

route segments. If during some time interval, the two buses travel on a same segment

in opposite directions, then they will meet each other in the middle of this time

interval. For example, for the two linear routes that have overlapping segments (e.g.,

SN SA and NA BR) as shown in Figure 4.9(a), we consider the the following segments

S1A, S2A, AB, BE1, BE2, and let T1,T2,T3,T4,T be the travel time for each segment.

The deterministic inter-meeting times takes up to 5 different values; the inter-meeting

time sequence varies depending on the time-phasing of the two buses.

4.5.3 Mean-Restricted Mixture Normal Model

In the previous section, we considered the deterministic meeting sequences be-

tween bus pairs, ignoring random influence such as varying traffic and bus-operation

conditions. We found that two buses running on a specific route pair had a fixed meet-

ing sequence that is made up a number of inter-meeting times Tbi, i = 1, 2, 3, ..., k.

In reality, due to varying traffic conditions, bus speeds and other considerations,

the inter-meeting time of buses is not constant, but rather a random variable that we

can model as a normal distribution with mean Tbi and a certain variance. Further-

more, when two buses are in transmission range of each other, they are not always

able to associate and transfer data, due to high bus speed, or because one of the buses

is already in contact with a fixed access point. As a result, a data transfer can occur

at the l-th physical meeting since the last contact (l = 1, 2, 3, ...). This means that

an inter-contact time is made up of l inter-meeting times. As each inter-meeting time

can be modeled as a normal random variable with mean given by Tbi, i = 1, 2, 3, ..., k,

103



0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

inter−meeting time (in seconds)

C
D

F

estimated model
sampled data

(a) CDFs of data and estimated model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5  6

W
e
ig

h
ts

Component of the mixture normal model

Estimated weights
Geometric sequence

(b) Estimated weights and geometric

seq.

Figure 4.10. Model fitting result for mean-restricted mixture normal models for
SN SA and SN SA data

the inter-contact times can be modeled as the sum of l such normal random variables

where l = 1, 2, 3, ....

For the case where there is a single inter-meeting time between a bus pair running

on the route-pair, e.g., (SN SA, SN SA) and (NA BR, NA BR), or when the inter-

meeting times are multiples of a single base value, e.g., (SHUTTLE,SHUTTLE) route

pair, we propose the following mixture normal model for the inter-contact times:

fSM(x) =
G

∑

i=1

wifN(x|iµ, σ2), (4.2)

where fN represents the PDF of the normal distribution parameterized by mean iµ

and variance σ2, µ corresponds to the base inter-meeting time Tb, σ2 is the common

variance for all normal components, the weights wi depend on the specific inter-

meeting time sequence for the route-pair, and we have
∑G

i=1 wi = 1.

We derive an Expectation Maximization algorithm [14] to estimate the model

parameters from fully observed inter-contact times3. The detail of the EM algorithm

is given in Appendix C. As this model, and the model in the next section, focus

3Censored observations are not considered here, as we propose a model that is more appropriate
for taking into account censored data in Section 4.5.4.
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on the periodicity of inter-contact times, we have excluded the short inter-contact

time observations when applying the model. We applied the model to study the

(SN SA,SN SA) data set, and compared the empirical CDF of fully observed inter-

contact time (with short inter-contact time removed) with that of the estimated model

in Figure 4.10(a). We find that they match very well.

The above model has incorporated the periodicity by setting the means of the

normals to be multiples of a single base value. From the original data (e.g., Figure 4.8),

we also observe a geometric trend in the heights of the different normal components.

In Figure 4.10(b), we plot the estimated weights, and we find that they match quite

closely with the curve of the geometric sequence pi−1(1−p), with p = 1−w0. Actually,

if we assume there is a fixed probability that two buses fail to set up a contact when

they meet, then we have wi = pi−1(1 − p), where i is the number of meetings until a

successful contact.

As for the case when there are multiple inter-meeting times between a bus pair

running on a route pair, such as SN SA and NA BR route pair, one could consider a

mixture of normals with the means set to different linear combinations of the basic

inter-meeting times. As we don’t have enough data samples for such route pairs in

our network, i.e., (SN SA, NA BR), (SN SA, SHUTTLE) and (NA BR, SHUTTLE),

we leave the modeling of them for future work.

4.5.4 Mean-Weight-Restricted Mixture Normal Model

The model proposed in the previous section has incorporated our knowledge about

the deterministic meeting sequences of the route pair, but still involves parameters

that have no clear physical interpretations, i.e., the weights and the number of com-

ponents. Furthermore, it’s not clear how to take into account censored observations

when estimating model parameters. Nevertheless, our analysis of the weights as es-

timated by the model parameter estimation algorithm has suggested the following
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models that explicitly model the probability of failing to set up contact when buses

are in range.

One-Base-Mean Model. For bus pairs with a single inter-meeting time, one can

use the following model to characterize their inter-contact times:

fGEO 1P 1BM (x) =
∞

∑

i=1

pi−1(1 − p)fN(x|iµ, σ2), (4.3)

where p is the probability that two nodes in transmission range fail to establish a

contact, µ corresponds to the base inter-meeting time, and a single variance σ2 is

used for all normals as buses tend to keep to their schedules, so the variance does not

add up. As there is a single base inter-meeting time µ, we refer it as one-base-mean

model.

In Section 4.4.2, we have demonstrated that one needs to consider both fully ob-

served inter-contact times and censored observations in order to correctly characterize

the inter-contact time. Recall that we have used Kaplan-Meier estimator when we

do not assume a model for inter-contact times. We now discuss how to account for

censored observations when estimating parameters for the above model.

To consider censored data in the model parameter estimation, we first need to

understand how the censored observations relate to the inter-contact times. Let’s

denote the PDF (Probability Distribution Function) and CDF of the inter-contact

time as fX(x) and FX(x) respectively, and denote the mean of the inter-contact time

as E[X]. We assume that the time we start to observe a shift-pair, i.e., the time

that two buses enter the routes (ts in Figure 4.7), is a random incidence into an

inter-contact time interval. As a result, the time until we see the next contact, i.e.,

the start-censored observation is the residual lifetime [73] following a PDF given by

fY (x) = 1−FX(x)
EX

. If we observe no meeting, i.e., a no-meeting censored observation

of length te − ts, this means that we observe a residual life time that is longer than

te − ts (the probability of which is given by 1− FY (te − ts), where FY (x) is the CDF
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Figure 4.11. Model fitting results for mean-weight-restricted mixture normal model

for fY (x).). We further assume that all inter-contact times are equally likely to be

cut off in the end. Thus an end-censored observation of value y means that a random

inter-contact time has value larger than y, the probability of which is then 1−FX(y).

Based on the above analysis of the censored data, we derive an EM algorithm to

estimate the parameters p, µ, σ in model (4.3) from empirical data (details are given

in Appendix D).

It turns out that the above model doesn’t provide a good fit to the (SN SA,SN SA)

data set. A careful examination of the traces and the bus schedule reveals that some

shift pairs have fewer contacts than other shift pairs. This is mainly due to the fact

that different shift pairs meet at different points within the route segment, some meet

at high speeds, others meet at more congested downtown areas at low speeds. When

buses traveling at high speed come into transmission range, there is shorter duration

of time for them to set up connection and transfer data, which means a higher failure

probability in setting up a contact. Based on these observations, we extend the above

model to account for such factors:

fGEO MP 1BM (x) =

C
∑

i=1

wi

∞
∑

l=1

pl−1
i (1 − pi)fN(x|lµ, σ2), (4.4)
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where C is the number of components, and wi specifies the fraction of bus pairs that

have failure probability given by pi.

Similar to model (4.3), we derive an EM algorithm to estimate the parameters for

the above model, using all observations. We then use model (4.4) with C = 2 to model

(SN SA, SN SA) data set, and then generate synthetic traces based on the estimated

model. Figure 4.11(a) and (b) respectively compare the CCDF of the model-generated

fully observed inter-contact time and censored observations with those in the original

traces. We observe that for the fully observed inter-contact times, the original data

fall within the 95% confidence interval of the model. As to the censored observation,

the match is less good. We believe that this is due to the fact that there are other

failure conditions that haven’t been taken into account in the model, such as bus

hardware failure or hardware being turned off for certain duration.

Two-Base-Mean Model. Recall from our deterministic analysis of the SHUTTLE

route that (i) a bus pair running on SHUTTLE in the opposite direction either meet

every half round trip time T or every round trip time 2T ; (ii) a bus pair running in

the same direction very rarely meet with each other. Based on this knowledge, we

propose the following model for the inter-contact time for a pair of SHUTTLE buses

running in the opposite directions:

fGEO 2BM (x) =
2

∑

i=1

wi

∞
∑

l=1

pl−1
i (1 − pi)fN(x|liµ, σ2). (4.5)

where p is the probability that two buses in transmission range fail to establish a

contact, µ, 2µ correspond to the base inter-meeting times T and 2T , and a single

variance σ2. We refer this model as two-base-mean model as there are two base

inter-meeting times, µ and 2µ.

Similar to the One-Base-Mean model, we develop an EM algorithm to estimate

the parameters for the above model from the fully observed data and censored data.

108



We apply the model to (SHUTTLE, SHUTTLE) dataset, and the results are plotted

in Figure 4.11(c), which shows a good fit of our model to the empirical data.

4.5.5 Model Comparison

In this section, we compare three models, i.e., the model based on all-shift-pair

aggregate statistics, the model based on route-level statistics, and the route-level

model described in the last section, with a focus on their accuracy in capturing

epidemic routing performance of the original trace.

We first process the original traces to include only buses running on the three

routes that we have been focusing on, and we analyze this thinned trace to obtain

aggregated inter-contact time statistics and route-level aggregated statistics. We then

generate three synthetic traces. The first synthetic trace is generated based on all-

shift-pair aggregated statistics, using the procedure described in Section 4.4.3; the

second synthetic trace is generated based on the route-level statistics in a similar

way; the third synthetic trace is generated using the route-level inter-contact models

that we developed based on the route-level statistics in the last section, combined with

route-level statistics for route-pairs that we don’t have a model for. Last, we simulate

epidemic routing respectively over the thinned original trace and the three synthetic

traces. Figure 4.12 compares routing performance in terms of delivery delay, copies

made, and the hop count of minimal delay paths under the four traces. We observe

that under the four traces, the difference in delivery delay is the largest, followed by

copies made. All traces have similar hop count CDF.

Similar to what we have observed in Figure 4.6 in Section 4.4.3, the trace gen-

erated by aggregate model exhibits significantly different performance compared to

the original trace (i.e., the trace of inter-contact times empirically observed in the

operational bus network). The trace based on route-level statistics, which is able
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Figure 4.12. Comparison of epidemic routing performance under original trace and
synthetic traces generated by three different models, respectively

to capture the heterogeneity among different bus routes, exhibits epidemic routing

performance closer to the original trace.

Now let’s focus on the the route-level model generated trace. We find that under

this trace, all performance metrics are closer to the original trace than those of the

previous two traces. In particular, under this trace, the average delivery delay is

15.8% larger than that under the original trace; and the packet delivery ratio is

0.75% less than that under the original trace. We think that the larger delivery delay

and slightly smaller delivery ratio are due to the fact that our route-level model does

not capture those short inter-contact times, and therefore it generates fewer contacts

than the original ones. Nevertheless, as the model captures longer inter-contact times

accurately, it’s able to predict the longer time range delivery performance well.

As the route-level models are developed based on route-level statistics, it’s some-

how surprising that the prediction performance of the former is better than the latter.

Our explanation is that in the route-level model we developed, we have treated the

SHUTTLE bus pairs traveling in the same direction, and those traveling in the oppo-

site direction differently, whereas in route-level statistics, we treated them together

in SHUTTLE-SHUTTLE route pair. A related comment is that we expect that the

granularity between shift- and route-level might be able to capture different meeting
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behavior exists between different shift-pairs within a route, and therefore will achieve

a good balance between model complexity and prediction performance.

4.6 Related Work

Many previous works have proposed mobility models [47, 109, 54, 72, 94, 48]

for Wireless LANs or Vehicular Ad-Hoc networks, with some of them based on real

mobility traces [109, 72]. Our work differs significantly from the above because we

model the contact process between node pairs and in particular, the inter-contact

time distribution between node pairs, as contact opportunity frequency and duration

are the main determinants of DTN routing performance. Moreover, our traces are

generally longer and more fine-grained than those used in previous studies.

Due to the lack of large scale DTN deployment, traces collected from campus

WLANs such as UCSD [5] and Dartmouth College [45] of access point (AP) associa-

tion records for laptops and PDAs were sometimes adapted to support DTN research.

This is based on the assumption that mobile devices associating with the same AP

would also be in transmission range of each other. Recently, several projects have col-

lected traces from real DTNs, including the University of Toronto trace [107], iMote

traces by Haggle project [95, 96]. The Reality Mining project at MIT [3, 33] has also

made available node-to-node contact traces of mobile phones carried by students and

faculty.

A couple of works have analyzed mobility traces and studied the impact on routing

schemes. For example, Hsu and Helmy [49] also used the Dartmouth traces [45]

to study encounter-based broadcasting. They studied the trace induced encounter

relationship graph (where a pair of nodes is connected with an edge if they ever meet

each other), found it exhibits a small world property, and showed that encounter-based

forwarding is robust to selfish node behaviors. For both works, the traces used are

WLAN traces, rather than a real trace collected from a DTN, and the approximation

111



with the same access point is used to infer contacts between a pair of devices. Another

example is the works by Su et al. [108, 107] that studied DTN traces collected from

a network of 20 students carrying PDAs with bluetooth radio. They studied direct

contact and multi-hops paths between node pairs, and used trace driven simulation

of epidemic routing and link-state routing to characterize the trade-off between delay

and replication.

We next review several recent works that characterize DTN mobility traces through

studying the inter-contact times between node pairs, similar to our works.

First, Chaintreau et al. [21] characterized the all-node-pairs aggregate inter-contact

times from the UCSD trace [5], Dartmouth trace [45], Toronto trace [107] and three

iMote traces, all of pedestrians carrying wireless devices. They observed an approx-

imately power-law distribution of inter-contact times, with a power law index less

than 1. Based on this observation, the authors proposed a simplified stationary i.i.d.

contact model with power-law distributed inter-contact times, and they analytically

studied the performance of different forwarding algorithms under such a model. The

question of whether an aggregate model is sufficient for predicting DTN routing per-

formance was not addressed. Their study did not account for censored observations

in the characterization of aggregate inter-contact times. Furthermore, the claim that

inter-meeting time follows power-law distribution needs more careful examination.

In their analysis of the UCSD and Dartmouth trace [5, 45], Chen et al. [23] took

into account censored observations in their characterization of the aggregate inter-

contact times, and proposed a censorship removal algorithm.

Karaginnis et al. [64] analyzed human mobility traces including the UCSD trace

[5], the MIT Reality Mining trace [3, 33], the iMote traces [95, 96], and personal

vehicular GPS dataset [74]. They found that for the aggregate inter-contact times

of all traces, there is a characteristic time, in the order of half of day, beyond which

the distribution decays exponentially; up to this value, the distribution follows a
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power law. This is in contrast to previous hypothesis of power-law distribution by

Chaintreau et al., and suggests the prediction therein on routing schemes performance

may be overly pessimistic. They also demonstrated that simple synthetic models can

feature the above dichotomy, showing that simple synthetic models might be good

for capturing human beings’s mobility trace. Through further analysis of the trace,

the author demonstrated that the dichotomy can be explained by the underlying

returning time to favorite home of the mobile nodes. In addition to the above analysis,

the author further explored the spatial and temporal heterogeneity within the trace.

We comment that they have not considered censored observations, and therefore the

conclusions about exponential decay can be an under-estimate of the actual inter-

contact times.

A recent work by Conan et al. [26] studied the Dartmouth traces, iMote traces

and the Reality Mining traces. Other than focusing on aggregate inter-contact time

distribution, they studied pair-wise inter-contact times and found that log-normal dis-

tribution fits the largest fraction of data. They also provided a potential explanation

to the approximate power-law distribution observed in the aggregate inter-contact

times: when pair-wise inter-contact times follow exponential distribution with differ-

ent rate, one can gain power-law phenomenon in the aggregate statistics. Finally, for

a DTN with exponential pair-wise inter-contact times (with different rate for each

pair), an opportunistic single-copy routing scheme (that minimize expected delay) is

proposed and evaluated against other schemes.

4.7 Summary

In this work, we have studied mobility traces taken from UMass DieselNet, with

the goal of building a generative model that can capture aspects of mobility (specifi-

cally inter-contact times) at the right level of granularity. The model is generative in

that it can be used to generate synthetic traces to drive a trace-driven simulation. Al-
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though this model is derived from mobility traces collected from a specific bus-based

network, we expect such a model is applicable to other transport based networks that

follow certain periodic schedules. Further work is needed to validate the model using

mobility traces collected from different networks once they become available.

As the first careful study of a fielded system, the model is of interest in its own

right, as they revealed structure that was hidden at the aggregate level — structure

that can influence DTN performance. Indeed, using a trace-driven simulation of

epidemic routing, we showed that this finer grained route-level model of inter-contact

times predicts performance much more accurately than the coarser-grained aggregated

all-bus-pairs model. This suggests that one must take care in choosing the right level

of model granularity when modeling mobility-related measures such as inter-contact

times, in DTN networks. Determining the appropriate granularity of models is both

a difficult and a deep problem. At one extreme we can use a movement model, such

as Brownian motion with parameters that are chosen to correspond to the parameters

of the aggregate inter-contact time distribution obtained from a trace. At another

extreme we can devise a model that accounts for the physics of the underlying system

such as described above for our bus-based DTN network.

Our ongoing work includes the understanding and modeling of short inter-contact

times. Our future research will focus on identifying the level of abstraction needed

to produce good models, where goodness refers to how well generated traces statis-

tically match collected mobility traces and how well models predicting the behavior

of different information dissemination algorithms. We will also focus on developing

techniques for teasing out the physical structure from a trace (such as the underlying

periodic behavior in the inter-contact times) in the absence of domain knowledge.
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CHAPTER 5

CONCLUSION

5.1 Summary of the Thesis

In this thesis, we have studied a class of Disruption Tolerant Networks with op-

portunistic contacts caused by node mobility and sparse density. We focused on three

fundamental problems about unicast routing in such networks.

First, in Chapter 2, we proposed a unified Ordinary Differential Equations (ODEs)

based framework to study the performance of epidemic style routing in DTNs. For

DTNs with pair-wise exponential meeting process, we derived ODEs models from

Markov chain models that characterize the forwarding and recovery process. The

ODEs models allow us to derive a rich set of closed-form result for performance metrics

of interest, i.e., packet delivery delay, number of copies sent, and buffer requirements.

When numerical solution is used, the complexity does not increase with network size.

We validated the models through simulations and explored the tradeoffs achieved by

different schemes using the modeling result. We further extended the models with

Markovian or fluid queue models, in order to consider the buffer-constrained case.

We showed that with appropriate buffer management schemes, a much smaller buffer

can be used with negligible effect on delivery performance.

Next, in Chapter 3, we studied the benefits of Random Linear Coding (RLC), a

type of randomized network coding, for unicast applications in resource-constrained

DTNs. For the case where there is a single generation in the network, we found that

RLC applied to a block of data destined to the same destination achieves minimum

block delay with high probability. A larger gain is achieved by the RLC scheme
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when buffer space is constrained. Generally, the RLC scheme allows faster and more

even propagation of information, due to its increased randomness. Although the RLC

scheme generates more transmissions, by using a token limit scheme, the RLC scheme

can achieve better transmission power versus block delivery delay tradeoff than the

non-coding approach. When there are multiple generations in the network, under an

appropriately chosen token limit, the RLC scheme achieves a slight gain over non-

coding scheme under only bandwidth constraints, and a significant gain when nodal

buffers are also constrained.

Last, in Chapter 4, we studied mobility traces taken from UMass DieselNet, and

built a generative model that characterizes the inter-contact times at the route level.

The model is generative in that it can be used to generate synthetic traces to drive

a trace-driven simulation. As the first careful study of a fielded system, the model is

of interest in its own right, as it revealed structure that was hidden at the aggregate

level — structure that can influence DTN performance. Indeed, using a trace-driven

simulation of epidemic routing, we showed that this finer grained route-level model

of inter-contact times predicts performance much more accurately than the coarser-

grained aggregated all-bus-pairs model, the approach that most previous works have

taken. Our works suggests that one must take care in choosing the right level of model

granularity when modeling mobility-related measures such as inter-contact times, in

DTN networks.

5.2 Future Work

We have discussed some ongoing and future works in the previous three chapters.

In this section, we outline additional new research directions that we would like to

investigate in the future.

The problem of DTN routing under resource constraints is an inherently very hard

problem, due to the severe resource constraints, local knowledge, uncertainty about
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the future contacts, and more. However, there are also many possible ways to facilitate

DTN routing. For example, mobile or fixed nodes can be strategically deployed in

the network. For some applications such as transportation networks, it might be

possible to optimally plan the trajectories and schedules of mobile nodes under certain

application-imposed constraints, to achieve optimal network connectivity.

It’s also imaginable that for some applications, the mobile node might be instru-

mented with two radios of different characteristics [61]. For example, [62] has shown

this approach to be beneficial for power management purpose. It will be interesting to

explore whether and how multiple radios can improve routing performance, for exam-

ple, by dedicating radios with different transmission ranges for data communication

and signaling respectively.

Throughout the thesis and in most previous works, unicast routing is considered.

We imagine for some applications, this might not be the most preferable communi-

cation paradigm, and one need to explore other communication paradigms, including

broadcast, publication and subscription networks. A related question is the design

of prioritized transmission schemes to handle network traffic with different quality of

service requirements.

Broadly speaking, the DTNs we studied in this thesis fall into the category of

complex networks [15] that can arise from areas ranging from biological and chemical

systems, neural networks, social interacting species, to the Internet and World Wide

Web. Many previous works have characterized the structure of complex networks,

and studied the different processes such as epidemic spreading on such networks. It

is worthwhile to investigate results from this field and consider their relevance for

DTNs.
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APPENDIX A

DERIVATION OF ODES FROM MARKOV CHAIN

THROUGH MOMENT CLOSURE TECHNIQUES

In this section, we show how the ODE model can be derived from Markov Chain

model by ignoring variability and how variability can be taken into account using

differential equations involving higher moments.

We consider the generic epidemic routing under IMMUNE recovery with a pair-

wise infection rate of γ, and per-node recovery rate of β. Under the basic epidemic

routing, we have γ = β; for probabilistic forwarding, we have γ = pβ. A bivariate

Markov chain as illustrated in Figure A.1 can be used to model the infection and

IMMUNE recovery process, with state (S(t), I(t)) denotes a state where there are S(t)

susceptible nodes, and I(t) infected nodes at time t, given that S(0) = N−1, I(0) = 1.

Define the state probabilities: Ps,i(t) = Pr{S(t) = s, I(t) = i|S(0) = N−1, I(0) =

1}. The Kolmogorov forward equation for the process is :

dPs,i(t)

dt
= −Ps,i(t)(βi + γsi) + Ps,i+1(t)β(i + 1)

Ps+1,i−1(t)γ(s + 1)(i − 1)

Let M(θ1, θ2, t) := E[eθ1s+θ2i] be the moment generating function. Multiplying the

above equation with eθ1s+θ2i, and summing over all possible s, i, we get:

∂M

∂t
= β(e−θ2 − 1)

∂M

∂θ2

+ γ(eθ2−θ1 − 1)
∂2M

∂θ1∂θ2

, (A.1)
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γ (i+1)

(s,i)(s,i+1)

siβ

(s+1)(i−1)β

iγ

(s−1,i+1)

(s,i−1)

(s+1,i−1)

Figure A.1. Markov Chain for generic epidemic routing with infection rate γ, re-
covery rate β

We define the cumulant generating function, K(θ1, θ2, t) := log M(θ1, θ2, t), and

observe that the following equations hold:

∂K

∂t
=

1

M

∂M

∂t
∂K

∂θ1

=
1

M

∂M

∂θ1

∂2K

∂θ1∂θ2

= −∂K

∂θ1

∂K

∂θ2

+
1

M

∂2M

∂θ1∂θ2

Substitute these equations into Equation (A.1), we get:

∂K

∂t
= β(eθ

2 − 1)
∂K

∂θ2

+ γ(eθ2−θ1 − 1)

(

∂2K

∂θ1∂θ2

+
∂K

∂θ1

∂K

∂θ2

)

(A.2)

By taking partial derivatives of θ1 and θ2 respectively on Equation (A.2) and

setting θ1 = θ2 = 0, we can get the following ODE system.

dS̄

dt
= −γ(Ī S̄ + CIS)

dĪ

dt
= −βĪ + γ(Ī S̄ + CIS)
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where S̄(t) = E[S(t)], Ī(t) = E[I(t)], CIS(t) = Cov(S(t), I(t)).

If we ignore covariance of I(t) and S(t), and set CIS = 0, we get:

dS̄

dt
= −γĪS̄

dĪ

dt
= −βĪ + γĪS̄

This is exactly the ODEs we have derived as limiting process of Markov Chain model.

If we continue this process, we could derive ODEs for second-order moments by

taking second order partial derivatives of θ1 and θ2 respectively on Equation (A.2)

and setting θ1 = θ2 = 0:

dVS

dt
= γ(Ī S̄ + CIS) − 2γ(TSSI + VS Ī + S̄CIS)

dVI

dt
= βĪ − 2βVI + γ(CIS + Ī S̄) + 2γ(TSII + CIS Ī + S̄VI)

dCIS

dt
= −βCIS − γ(CIS + Ī S̄) − γTSII − γCIS Ī − γS̄VI + γTSSI + γVS Ī + γS̄CIS

where Vs(t) = Var(S(t)), VI(t) = Var(I(t)), and TSII , TSSI are the third central mo-

ments: TSII = E[(S − ES)(I − EI)2], TSSI = E[(S − ES)2(I − EI)].

One could keep on this procedure to derive ODEs for the third and higher mo-

ments, but eventually a moment closure technique is needed to truncate the equations

at certain order. We experiment with three different methods [67, 97, 83].

• MVN (Multi-Variate Normal) method: setting third central moments to zero.

This is equivalent to assuming a multi-variate normal distribution of the state

variables (S(t), I(t)).

• Lognormal method: if we assume a lognormal distribution for the state vari-

ables, then the third moments can be expressed in terms of the lower moments
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Figure A.2. Comparison of different moment equations for the case p = 1.0

• Third-order moment: truncate the equations by setting fourth-order moments

to zero.

In order to compare the performance of these different methods, we simulate

probabilistic forwarding, varying p in the range between 0.001 to 1.0, with N = 100,

and compare the model predictions with the simulation results.

For the basic epidemic routing, i.e., p = 1.0, γ = β case, Figure A.2 plots the

average infected node number, the covariance of infected node number of susceptible

node, and the CDF of delay, comparing simulation results with the prediction of dif-

ferent moment equations. We observe that third-order ODEs gives similar result as

first-order ODEs, with slight improved match with simulation results. Like first and

third order ODEs, lognormal equations under estimates the covariance, and there-

fore over predicts the infection spreading process, and under predicts the delivery

delay. On the other hand, MVN method over estimates the covariance, and under

estimates the spread of the infection (as Figure A.2.(a) shows). For this case, MVN

method performs best in prediction of delivery delay as shown also in the Figure 2.1

in Section 2.2.

However, MVN method has a drawback. For P in the range [0.01, 0.3], the MVN

ODEs have no stable equilibrium, i.e., the solution diverges. [83] observed this draw-
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back of MVN method (under a different model), and attributed it to the large vari-

ability under the scenario considered.
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APPENDIX B

DERIVATION OF DELAY ASYMPTOTIC RESULTS

Here we are going to derive the different bounds and asymptotic values we pre-

sented in the paper. For each of the following forwarding schemes, closed-form ex-

pressions can be derived for the number of infected nodes I(t) and the cumulative

distribution of delay P (t) = Pr(Td < t) = 1 − Q(t). The expected delay can be

evaluated as E[Td] =
∫ ∞
0

Q(t)dt, so we are going to show how this integral can be

approximated for the different schemes.

• 2-hop forwarding (Section 2.3.1.1)

The expected delay is equal to:

E[Td] =
1

β

∫ ∞

0

e−te(N−1)(1−t−e−t)dt

e(N−1)(1−t−e−t) has a single maximum for t = 0, hence according to the saddle

point approximation when N → ∞ we can consider:

e−te(N−1)(1−t−e−t) ≈ e−0e−(N−1)t2/2

hence

E[Td] ≈ 1

β

∫ ∞

0

e−(N−1)t2/2dt =
1

β

√

π

2

1√
N − 1
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• Probabilistic routing (Section 2.3.1.3). In this case

Q(t) =

(

N

eNβpt + N − 1

)
1
p

.

This expression can be easily bounded:

N

eNβt + N − 1
≤ Q(t) ≤ N

eNβpt + N − 1
.

Note that these bounds correspond to the comparison of the probabilistic for-

warding with epidemic routing with inter-meeting rates of β and βp respectively:

probabilistic forwarding is slower than the first one, but faster than the second

one.

If we integrate the previous inequality, we get:

ln(N)

β(N − 1)
≤ E[Td] ≤

ln(N)

βp(N − 1)

• Limited-time scheme with reinfection (Section 2.3.1.3) In this case:

Q(t) =
(a2 − a1)e

−a1βt

(a2 − 1) + (1 − a1)e(a2−a1)βt
,

where a2 and a1 are respectively the positive and the negative solution of the

equation βI(N − I) − µ(I − 1) = 0 (to be solved for I), obtained by imposing

dI
dt

= 0.

We consider three different asymptotic values: for N → ∞, for µ → ∞ and for

N = µ
β
→ ∞.

As regards the first bound, we proceeded in the following way: we considered

a function Qa,N (t) > 0 which approximates QN(t) (we have stressed the depen-

dence from N), and for which we can closely evaluate
∫ ∞
0

Qa,N (t)dt. This is an

asymptotic value for the expected delay if:
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lim
N→∞

∫ ∞
0

QN(t)dt −
∫ ∞
0

Qa,N(t)dt
∫ ∞
0

Qa,N (t)dt
→ 0

In order to prove it, we proved that
QN (t)−Qa,N (t)

Qa,N(t)
converges uniformly to zero in

R+ as N diverges:

QN (t) − Qa,N (t)

Qa,N(t)

u−→
N,∞

0.

In fact in this case ∀ε > 0, ∃nε ∈ N such that ∀t ∈ R+ and ∀N > nε

|QN(t) − Qa,N (t)|
|Qa,N(t)| < ε

hence:

|
∫ ∞
0

QN (t) − Qa,N(t)dt|
|
∫ ∞
0

Qa,N (t)| ≤ ε.

The asymptotical behavior of a2 and a1 as N → ∞ (limN→∞ a2 = +∞,

limN→∞ a1 = 0) suggests to consider:

Qa,N (t) =
a2 − a1

(a2 − 1) + (1 − a1)ea2βt

which can be easily integrated.

∣

∣

∣

∣

QN (t) − Qa,N(t)

Qa,N (t)

∣

∣

∣

∣

=
(1 − ea1βt)

ea1βt + (1−a1)
a2−1

ea2βt
≤ (1 − ea1βt)

(1−a1)
a2−1

ea2βt

We can easily evaluate the maximum of the right expression, and we get:

∣

∣

∣

∣

Q(t)N − Qa,N (t)

Qa,N(t)

∣

∣

∣

∣

≤ −a1(a2 − 1)

(1 − a1)(a2 − a1)

(

a2

a2 − a1

)−a2
a1

The maximum converges to 0 when N diverges, hence the convergence is uni-

form.

125



The asymptotic value is:

∫ ∞

0

Qa,N (t)dt = 1/β
a2 − a1

(a2 − 1)a2
ln

(

a2 − a1

1 − a1

)

which behaves asymptotically as:

1

β

ln(N − µ
β
)

N − µ
β

In the same way we have found the second bound as µ → ∞. In this case

limµ→∞ a2 = 1, limµ→∞ a1 = −∞, and we consider

Qa,µ(t) = e−a2βt.

∣

∣

∣

∣

QN (t) − Qa,N (t)

Qa,N(t)

∣

∣

∣

∣

=
1

a2−a1

(a2−1)(1−e−(a2−a1)βt)
− 1

The supremum is achieved for t → ∞ and is equal to:

a2 − 1

1 − a1

which converges to 0 as µ diverges.

The asymptotic value is:

∫ ∞

0

Qa,µ(t)dt =
1

βa2
∼

µ→∞

µ − Nβ

βµ

Finally, as regards the third bound, a closed-form expression can be found for

E[Td], considering N = µ/β:

E[Td] =
2 arccot

√√
N−1+1√
N−1−1

β
√

N − 2
,
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and

E[Td] ∼
N→∞

π

2β
√

N − 2
.
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APPENDIX C

EM ALGORITHM FOR MEAN-RESTRICTED MIXTURE

NORMAL MODEL

In this section, we outline the EM algorithm for the mean-restricted mixture

normal model Eq.(4.2) proposed in Section 4.5.3.

Suppose that we have N fully observed inter-contact times: xi, i = 1, 2, ..., N . The

following EM algorithm is used to iteratively estimate µ, σ2, and wl, ∀l ∈ 1, 2, ..., G

from these fully observed inter-contact times:

wt+1,l = (1/N)

N
∑

i=1

p(l|xi, Θt) (C.1)

µt+1 =

∑G
l=1 l

∑N
i=1 xip(l|xi, Θt)

∑G
l=1 l2

∑N
i=1 p(l|xi, Θt)

(C.2)

(σ2)t+1 =

∑G
l=1

∑N
i=1(xi − lµt+1)

2p(l|xi, Θt)
∑G

l=1

∑n
i=1 p(l|xi, Θt)

(C.3)

where t = 1, 2, ... is the iterative step, Θt = {µt, (σ
2)t, wl,t, l = 1, 2, ..., G} is the

current estimate of the parameters, and p(l|xi, Θt) is the probability that the random

sample xi comes from component l given the model parameter vector Θt. By Bayes’

Rule, we have:

p(l|xi, Θt) =
p(l, xi|Θt)

p(xi|Θt)
=

pl−1
t (1 − pt)fN(xi, lut, σ

2
t )

Σ∞
j=1p

j−1
t (1 − pt)fN(xi, jµt, σ2

t )
,

here the function fN(x, µ, σ2) represents the PDF of normal distribution with mean

µ and variance σ2.
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APPENDIX D

EM ALGORITHM FOR ONE-BASE-MEAN MODEL

In this section, we first outline the derivation of Expectation-Maximization algo-

rithm for the One-Base-Mean model (Eq.(4.3) in Section 4.5.4), and then give the

EM algorithm for model given by Eq.(4.4) and Two-Base-Mean model.

One-Base-Mean Model. We start by outlineing the derivation of EM algorithm

for the following model:

fGEO 1P 1BM (x) =

∞
∑

i=1

pi−1(1 − p)fN(x|iµ, σ2).

Our goal is to derive the maximum likelihood estimate for the model parameters

Θ = (p, µ, sigma2), based all observations of the inter-contact times. Assume that

we have N fully observed inter-contact time, xi, (i = 1, ..., N), Ns start-censored

inter-contact time observations, Si,(i = 1, ..., Ns), Ne end-censored inter-contact time

observations, Ei,(i = 1, ..., Ne), and Nn no-meeting observations, Ni,(i = 1, ..., Nn).

We assume that the fully inter-contact time xi’s are independent and identically

distributed (i.i.d.) with PDF given by above model, and the distributions of the

censored observations relate to the above model as to our discussion in Section 4.5.4.

We denote the whole data set as:

X = (x1, ..., xN , S1, ..., SNs, E1, ..., ENe , N1, ..., NNn).

Due to the complex form of the model, we resort to EM algorithm to obtain the

maximum likelihood estimate.
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First, we introduce hidden variables for each observations (i.e., samples) of the

inter-contact time, representing the number of physical meetings within that inter-

contact time. We denote the whole set of hidden variables as Y .

Next, in the Expectation-step, we derive p(l|xi, Θt) (p(l|Si, Θt), p(l|Ei, Θt), p(l|Ni, Θt)),

i.e., the distribution of the hidden variable (the number of physical meetings within

the inter-contact time), given the fully observed data (started-censored data, end-

censored data, no-meeting observations) and the current estimates of model parame-

ters, Θt = (pt, µt, σ
2
t ).

(1) Fully observed inter-contact times. By Bayes’ Rule, we have:

p(l|xi, Θt) =
p(l, xi|Θt)

p(xi|Θt)

=
pl−1

t (1 − pt)fN(xi, lut, σ
2
t )

Σ∞
j=1p

j−1
t (1 − pt)fN(xi, jµt, σ2

t )

for i = 1, ..., N , l = 1, 2, ....

(2) Start-censored observations. As discussed in Section 4.5.4, we assume such

observation is the residual lifetime, and its PDF is given by fY (x) = 1−FX(x)
EX

, where

FX(x), EX is the CDF and mean of the inter-contact time respectively. We have:

gl(Si) := p(Si|l, Θt) =

∫ ∞

Si

fN (x, lµt, σ
2
t )dx/lµt. (D.1)

The conditional distribution for the number of physical meetings given the start-

censored observation is given by:

p(l|Si, Θt) =
p(l, Si|Θt)

p(Si|Θt)

=

∫ ∞
Si

pl−1
t (1 − pt)fN(x, lµt, σ

2
t )dx/lµt

∑∞
j=1 pj−1

t (1 − pt)
∫ ∞

Si
fN(x, jµt, σ

2
t )dx/jµt

for Si, i = 1, ..., Ns, l = 1, 2, ....
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(3) No-meeting observations. Assume the CDF corresponding to the PDF

gl(x), i.e., Eq.(D.1), is Gl(x), i.e., Gl(x) =
∫ x

−∞ gl(y)dy. We have

p(l|Ni, Θt) =
p(l, Ni|Θt)

p(Ni|Θt)
=

pl−1
t (1 − pt)(1 − Gl(Ni))

∑∞
j=1 pj−1

t (1 − pt)(1 − Gj(Ni))
,

for i = 1, ..., Nn, l = 1, 2, ....

(4) End-censored observations. We have

p(l|Ei, Θt) =
p(l, Ei|Θt)

p(Ei|Θt)

=

∫ ∞
Ei

pl−1
t (1 − pt)fN (x, lµt, σ

2
t )dx

∑∞
j=1 pj−1

t (1 − pt)
∫ ∞

Ei
fN(x, jµt, σ2

t )dx

for i = 1, ..., Ne, l = 1, 2, ....

Last, in the Maximization-step, we derive the expectation of log complete data

likelihood function, conditioned on the observations and the current estimates of

model parameters, as follows:

Q(Θ, Θt) := E[log(P (X, Y |Θ)|X, Θt],

and obtain new estimates for the model parameters by setting:

Θt+1 = argmaxΘQ(Θ, Θt).

Omitting the derivations (which is similar to that in [14]), we get the following up-

dating rule:

pt+1 = nump/denomp
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µt+1 =

∑N
i=1

∑∞
l=1 xilp(l|xi, Θt)

∑N
i=1

∑∞
l=1 l2p(l|xi, Θt)

(σ2)t+1 =

∑N
i=1

∑∞
l=1(xi − lµt+1)

2p(l|xi, Θ
t)

∑N
i=1

∑∞
l=1 p(l|xi, Θt)

where t = 1, 2, .. is the iterative step, and

nump =

N
∑

i=1

∞
∑

l=1

(l − 1)p(l|xi, Θt) +

Ns
∑

i=1

∞
∑

l=1

(l − 1)p(l|Si, Θt)

+

Ne
∑

i=1

∞
∑

l=1

(l − 1)p(l|Ei, Θt) +

Nn
∑

i=1

∞
∑

l=1

(l − 1)p(l|Ni, Θt)

denomp =
N

∑

i=1

∞
∑

l=1

lp(l|xi, Θt) +
Ns
∑

i=1

∞
∑

l=1

lp(l|Si, Θt)

+

Ne
∑

i=1

∞
∑

l=1

lp(l|Ei, Θt) +

Nn
∑

i=1

∞
∑

l=1

lp(l|Ni, Θt)

Note that we assume the censored observations only affect the estimate of p, and

ignored them while updating µ, σ2.

One-Base-Mean-Multi-FailureProb Model. Here we outline the EM algo-

rithm for the model Eq.(4.4) as follows:

fGEO MP 1BM (x) =
C

∑

i=1

wi

∞
∑

l=1

pl−1
i (1 − pi)fN(x|lµ, σ2).

To derive EM algorithm for this model, we consider the following two hidden vari-

ables for each data samples. One hidden variable, denoted as c, 1 ≤ c ≤ C, designates

the failure probability (pc) governed the observed inter-contact time; another hidden

variable, denoted as l, 1 ≤ l ≤ ∞, is the number of physical inter-meeting times

within the observed sample.

We have the following updating rules, here Θ = (w1, ..., wC, p1, ..., pC, µ, σ2).

(wj)t+1 =
1

N

N
∑

i=1

p(c = j|xi, Θt) +
1

Ns

Ns
∑

i=1

p(c = j|Si, Θt)
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+
1

Ne

Ns
∑

i=1

p(c = j|Ei, Θt) +
1

Nn

Ns
∑

i=1

p(c = j|Ni, Θt)

µt+1 =

∑N
i=1

∑∞
l=1 xilp(l|xi, Θt)

∑N
i=1

∑∞
l=1 l2p(l|xi, Θt)

(σ2)t+1 =

∑N
i=1

∑∞
l=1(xi − lµt+1)

2p(l|xi, Θ
t)

∑N
i=1

∑∞
l=1 p(l|xi, Θt)

(pj)t+1 = numpj/denompj

where j = 1, ..., C. The updating rules for pj, j = 1, ..., C, µ and σ2 are the same

as those of the previous model, with the only difference is the evaluation of the

conditional distribution of hidden variables given the data and the current estimates

of model parameters. By Bay’s rule, we have:

p(c, l|xi, Θt) =
p(xi, c, l|Θt)

p(xi|Θt)

=
(wc)t(pc)

l−1
t (1 − (pc)t)fN(xi, lµt, σ

2
t )

∑2
j=1

∑∞
k=1(wj)t(pj)

k−1
t (1 − (pj)t)fN(xi|jkµt, σ2

t )
,

and

p(c|xi, Θt) =

∞
∑

l=1

p(c, l|xi, Θt),

p(l|xi, Θt) =
C

∑

c=1

p(c, l|xi, Θt).

We have:

numpj =
N

∑

i=1

∞
∑

l=1

(l − 1)p(c = j, l|xi, Θt) +
Ns
∑

i=1

∞
∑

l=1

(l − 1)p(c = j, l|Si, Θt)

+

Ne
∑

i=1

∞
∑

l=1

(l − 1)p(c = j, l|Ei, Θt) +

Nn
∑

i=1

∞
∑

l=1

(l − 1)p(c = j, l|Ni, Θt)

denompj =
N

∑

i=1

∞
∑

l=1

lp(c = j, l|xi, Θt) +
Ns
∑

i=1

∞
∑

l=1

lp(c = j, l|Si, Θt)
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+

Ne
∑

i=1

∞
∑

l=1

lp(c = j, l|Ei, Θt) +

Nn
∑

i=1

∞
∑

l=1

lp(c = j, l|Ni, Θt)

Similar to the One-Base-Mean model, we derive the conditional distribution of

the hidden variables given the censored observations.

Two-Base-Mean Model. We now briefly describe the EM algorithm used for

the following model:

fGEO 2BM (x) =

2
∑

i=1

wi

∞
∑

l=1

pl−1
i (1 − pi)fN(x|liµ, σ2).

Here we have Θ = (w1, w2, p1, p2, µ, σ2). The derivation of the EM algorithm is

similar to the One-base-mean model, except that for this model, we introduce two

random variables for each data sample (i.e., observation): one, c denotes the class of

the inter-contact time, another, l, denotes the number of physical inter-meeting times

within the observed inter-contact time. We evaluate the conditional distribution of

the hidden variables as follows:

p(c, l|xi, Θt) =
p(xi, c, l|Θt)

p(xi|Θt)

=
(wc)t(pc)

l−1
t (1 − (pc)t)fN(xi, lµt, σ

2
t )

∑2
j=1

∑∞
k=1(wj)t(pj)

k−1
t (1 − (pj)t)fN(xi|jkµt, σ2

t )

Similarly, we evaluate the conditional distrbution of the hidden variables for the

censored observations.

The updating rules are as follows:

(wj)t =
∞

∑

l=1

(
N

∑

i=1

p(j, l|xi, Θt) +
Ns
∑

i=1

p(j, l|Si, Θt) +
Ne
∑

i=i

p(j, l|Ei, Θt) +
Nn
∑

i=1

p(j, l|Ni, Θt),

for j = 1, ..., C

(pj)t =

∑∞
l=1

∑N
i=1(l − 1)p(j, l|xi, Θt)

∑∞
1=1

∑N
i=1 lp(j, l|xi, Θt)

, for j = 1, ..., C
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µt =

∑C
j=1

∑∞
l=1

∑N
i=1 ljxip(j, l|xi, Θt)

∑C
j=1

∑∞
l=1

∑N
i=1 l2j2p(j, l|xi, Θt)

σ2
t =

∑C
j=1

∑∞
l=1

∑N
i=1(xi − clµt)

2p(j, l|xi, Θt)
∑C

j=1

∑∞
l=1

∑N
i=1 p(j, l|xi, Θt)
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