
Learning to Predict Extremely Rare Events
Gary M. Weiss* and Haym Hirsh

Department of Computer Science
Rutgers University

New Brunswick, NJ 08903
gmweiss@att.com, hirsh@cs.rutgers.edu

Abstract

This paper describes Timeweaver, a genetic-based machine
learning system that predicts events by identifying temporal
and sequential patterns in data. This paper then focuses on
the issues related to predicting rare events and discusses
how Timeweaver addresses these issues. In particular, we
describe how the genetic algorithm’s fitness function is tai-
lored to handle the prediction of rare events, by factoring in
the precision and recall of each prediction rule.

Introduction

There is currently a great deal of interest in using auto-
mated methods—particularly data mining and machine
learning methods—to analyze the enormous amount of data
that is routinely being collected. An important class of
problems involves predicting future events based on a
history of past events. A particular instance of this class of
problems involves predicting hardware component failures
that occur within 4ESS switches in the AT&T network,
based on sequences of alarms that are reported by the 4ESS
monitoring software. This task, like the majority of fault
prediction tasks, involves predicting an atypical event (i.e.,
fault). Predicting fraudulent credit card purchases from a
history of credit card transactions is another such task.
Event prediction tasks that do not involve faults or failures
still often involve predicting rare events—because rare
events are often interesting events. For example, a stock
market analyst is more likely to be interested in predicting
unusual behavior—such as which stocks will double in
value in the next fiscal quarter—than predicting more
typical behavior, like which stocks will appreciate 10%.

This paper begins by describing Timeweaver, a genetic-
based machine learning system for predicting events, and
then discusses the issues related to predicting rare events
and how Timeweaver addresses these issues. For a more
detailed description of Timeweaver, see Weiss and Hirsh
(1998) or Weiss (1999).

The Event Prediction Problem

In this section we provide a formal description of the event
prediction problem. An event Et is a timestamped observa-

*Also AT&T Labs, 20 Knightsbridge Road, Piscataway NJ 08854
 Copyright ©2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

tion occurring at time t that is described by a set of feature-
value pairs. An event sequence is a time-ordered sequence
of events, S = Et1, Et2, ..., Etn. The target event is the
specific event to be predicted. The event prediction prob-
lem is to learn a prediction procedure that, given a sequence
of timestamped events, correctly predicts whether the target
event will occur in the “near future”. For this paper we
assume the prediction procedure involves matching a set of
learned patterns against the data and predicting the occur-
rence of a target event if the match succeeds. A prediction
occurring at time t, Pt, is said to be correct if a target event
occurs within its prediction period. Note that we do not
explicitly predict that a target event will not occur. As
shown below, the prediction period is defined by a warning
time, W, and a monitoring time, M.

The warning time is the “lead time” necessary for a predic-
tion to be useful and the monitoring time determines how
far into the future the prediction extends. Thus, the moni-
toring time controls the specificity of the prediction (the
larger the monitoring time, the easier the prediction prob-
lem, but the less meaningful the prediction). A target event
is correctly predicted if at least one prediction is made
within its prediction period. The prediction period of target
event X, occurring at time t, is shown below:

Before we can attempt to solve the event prediction prob-
lem, it is necessary to have a way of evaluating a potential
solution. Predictive accuracy is the most common evalua-
tion metric for prediction (as well as classification) prob-
lems. However, because the target event is expected to
occur very infrequently, accuracy is not an appropriate
evaluation measure—a solution that never predicts the
target event could have high accuracy. Instead, we use
precision and recall to evaluate a solution. In the context of
this problem, recall is the percentage of target events
correctly predicted and precision is the percentage of times
that a target event is predicted and actually occurs. By
using these measures, we can focus on the performance of a
potential solution at making predictions in the situation
where a target event does occur. The specific way in which

t - Wt - M

prediction period

t + WPt

prediction period

t + M

Xt

the precision and recall metrics are combined to form a
single evaluation function for directing the search process is
described later in this paper.

The General Approach

Our approach toward solving the event prediction problem
involves two steps. In the first step, a genetic algorithm
(GA) is used to search the space of prediction patterns, in
order to identify a set of patterns that individually do well
at predicting a subset of the target events and collectively
predict most of the target events. This is a Michigan-style
GA, since each individual in the population is only part of a
complete solution. A second step is used to generate a
family of prediction strategies, by ordering the patterns
from best to worst (based primarily on precision) and then
incrementally adding one pattern at a time. The perform-
ance of the resulting family of prediction strategies is easily
represented using a precision/recall curve. A user can then
use this curve to help determine a good prediction strategy.

The Genetic Algorithm

The genetic algorithm is responsible for identifying patterns
that predict the future occurrence of a target event. The
basic steps in our (steady-state) GA are shown below:

1. Initialize population
2. while stopping criteria not met
3. select 2 individuals from the population
4. apply the crossover operator with probability PC

and mutation operator with probability PM

5. evaluate the 2 newly formed individuals
6. replace 2 existing individuals with the new ones
7. done

Each individual in the GA is a prediction pattern—a pattern
used to predict target events. The language used to de-
scribe these patterns is straightforward and is similar to the
language used to represent the raw event sequences. A
prediction pattern is simply a sequence of events, but with
three extensions. First, each feature value within an event
may take on the wildcard value, so that it will match any
feature value. Secondly, ordering constraints are specified
between consecutive events, so that we can require that one
event occur before another, or that the two events can occur
in any order. Finally, each pattern has a pattern duration,
so that the pattern can only match a sequence of events if
all events involved in the match occur within a time period
that does not exceed the pattern duration. This language
enables flexible and noise-tolerant prediction rules to be
constructed, such as the rule: if 2 (or more) A events and 3
(or more) B events occur within an hour, then predict the
target event.

The population is initialized by creating prediction pat-
terns containing a single event, with the feature values set
50% of the time to the wildcard value and the remaining
time to a randomly selected feature value. The GA contin-

ues until either a pre-specified number of iterations are
executed or the performance of the population peaks. The
mutation operator randomly modifies a prediction pattern,
changing the feature values, ordering primitives, and/or the
pattern duration. Crossover is accomplished via a variable
length crossover operator, so that the offspring of two
patterns may have a different number of events than their
parents. This ensures that over time prediction patterns of
any size can be generated.

The Selection and Replacement Strategy
The GA’s selection and replacement strategies must balance
two opposing criteria: they must focus the search in the
most profitable areas of the search space but also maintain
a diverse population, to avoid premature convergence and
to ensure that the individuals in the population collectively
cover most of the target events. An additional challenge in
our case is to make sure that the GA effectively handles the
case where the target events occur very infrequently.

As described earlier, our evaluation function is based on
both precision and recall. In a genetic algorithm the fitness
function, which controls which individuals are allowed to
reproduce, serves as the evaluation function. Timeweaver’s
fitness function combines precision and recall into a single
value using the F-measure, which is used in information
retrieval. The F-measure is defined below in equation 1
(Van Rijsbergen 1979).

 fitness =
(β

β

2

2

 + 1) precision recall

precision + recall

⋅
 (1)

The value of β, which controls the relative importance of
precision to recall, is changed each iteration of the GA, so
that it cycles through the values 0 to 1 using a step-size of
0.10. By varying this parameter, the GA is able to maintain
patterns that are quite general as well as those that are quite
specific but highly precise. The importance of this fitness
function is discussed later in the next section.

To encourage diversity, we use a niching strategy called
sharing that rewards individuals based on how different
they are from other individuals in the population (Goldberg
1989). Individuals are selected proportional to their shared
fitness, which is defined as fitness divided by niche count.
The niche count, defined in equation 2, measures the degree
of similarity of individual i to the n individuals comprising
the population.

 niche counti =
j

n

=
∑

1

(1 - distance(i,j))
3
 (2)

The similarity of two individuals is measured using a
phenotypic distance metric that measures the distance based
on the performance of the individuals at predicting the
target event. Each individual prediction rule has associated
with it a prediction vector, which contains one bit for each
target event in the training set. Each bit is set to 1 if the
rule successfully predicts the corresponding target event;
otherwise it is set to 0. The distance between two individu-
als is simply the fraction of bit positions in the two predic-
tion vectors that differ. The more similar an individual to

the rest of the individuals in the population, the smaller the
distances and the greater the niche count value; if an
individual is identical to every other individual in the
population, then the niche count will be equal to the popu-
lation size. Note that because the target events are rare, the
prediction vectors do not require much space and the
number of computations required to compute the niche
count is proportional to the number of target events, not to
the overall dataset size.

The replacement strategy also uses shared fitness. Indi-
viduals are chosen for deletion inversely proportional to
their shared fitness, where the fitness component is com-
puted by averaging together the F-measure of equation 1
with β values of 0, ½, and 1, so the patterns that perform
poorly on precision and recall are most likely to be deleted.

Results

This section shows the results of using Timeweaver to
solve the telecommunication fault prediction problem, and
then compares its performance to three other machine
learning methods.

Results from Timeweaver
Timeweaver was applied to the problem of predicting
telecommunication equipment failures from historical
alarm data. The data contains 250,000 alarms reported
from 75 4ESS switches, of which 1,200 of the alarms
indicate distinct equipment failures. The training set
includes 75% of the alarms and the test set the remaining
25% (from different 4ESS switches). The results shown in
Figure 2 are using a 20-second warning time and an 8-hour
monitoring time, and show the performance of the learned
prediction rules, generated at different points during the
execution of the GA. The curve labeled “Best 2000” was
generated by combining the “best” prediction patterns
(evaluated on the training set) from the first 2000 iterations.

0

20

40

60

80

100

0 10 20 30 40 50 60
Recall

 P
re

ci
si

on

Iteration 0
Iteration 500
Iteration 1000
Best 2000

(4.4,90.0)

Figure 2: Learning to Predict Equipment Failures

The results shown in Figure 2 can be compared with the
strategy of predicting a failure every warning time (20
seconds), which yields a precision of 3% and a recall of
63% (note that the curves generated by Timeweaver con-
verge to this value). A recall greater than 63% is never

achieved since 37% of the failures have no events within
their prediction period and hence cannot be predicted
within our framework.

Comparison with Other Methods
Timeweaver’s performance on the equipment failure
prediction problem was compared against two rule induc-
tion systems, C4.5rules (Quinlan, 1993) and RIPPER
(Cohen, 1995), and FOIL, a system that learns Horn clauses
from ground literals (Quinlan, 1990). In order to use the
“example-based” rule induction systems, the event se-
quence data is transformed into labeled examples by sliding
a window of size n over the data and combining the n
events within the window into a single example by viewing
the events as a single, long event (Dietterich and Michalski
1985). The example is assigned a label based on whether a
target event occurs within the prediction period associated
with the events within the window.
 Since equipment failures are so rare, the generated exam-
ples have an extremely skewed class distribution. As a
result, neither C4.5rules nor RIPPER predicts any failures
when their default parameters are used, since they are
designed to optimize for predictive accuracy. To compen-
sate for the skewed distribution, various values of misclas-
sification cost (i.e., the relative cost of false negatives to
false positives) were tried and only the best results are
shown in Figure 3. Note that in Figure 3 the number after
the w indicates the window size and the number after the m
the misclassification cost. FOIL is a more natural learning
system for event prediction problems, since it can represent
sequence information using relations such as successor(E1,
E2) and after(E1, E2), and therefore does not require any
significant transformation of the data. FOIL provides no
way for the user to modify the misclassification cost, so the
“default” value of 1 is used.

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8
Recall

P
re

ci
si

on

 timeweaver
c4.5 (w3 m5)
ripper (w3 m20)
FOIL

Figure 3: Comparison with Other ML Methods

C4.5rules required 10 hours to run for a window size of 3.
RIPPER was significantly faster and could handle a win-
dow size up to 4; however, peak performance was achieved
with a window size of 3. FOIL produced results that were
generally inferior to the other methods, but produced a
meaningful solution without the use of anything analogous
to misclassification cost. All three learning systems
achieved only low levels of recall (note the limited range

on the x-axis), whereas Timeweaver is able to achieve 60%
recall and superior precision. For C4.5rules and RIPPER,
increasing the misclassification cost beyond the values
shown caused a single rule to be generated—a rule that
always predicted the target event. Consequently, neither
C4.5 nor Ripper could generate a solution with recall
greater than 8%.

Discussion
In the remainder of this paper we discuss issues related to
handling rare events and how Timeweaver addresses these
issues. It is important to note that most of the issues we
faced in predicting rare events, and the ways in which we
addressed these issues, apply equally well to classification
problems involving skewed class distributions.

Before we examine these issues, we would like to point
out the importance of the problem formulation. The rarity
of an event is based not only on the number of times it
occurs, but also on the prediction period. If one event is
generated every minute but a target event occurs only once
a day, we might conclude the target event is rare. How-
ever, if the prediction period associated with the prediction
problem is 12 hours, then given the formulation of the
problem, the target event is not rare—the prediction of the
target event is appropriate one-half of the time. Nonethe-
less, for most real-world problems, including our equip-
ment failure prediction problem, even with this formulation
most of the target events are still quite rare.

Issues with Predicting Rare Events
In this section we discuss several issues that arise when
learning to predict rare events.

Issue 1: Predictive Accuracy is not Adequate. Predictive
accuracy, as noted earlier, is a poor evaluation measure
when we are trying to predict rare events, since we are
more interested in the ability to predict when a rare event
will occur, than when it will not. That is, we are willing to
accept solutions with relatively low precision, as long as
they predict many of the target events (i.e., have reasonable
recall). One reason we are willing to accept relatively low
levels of precision is that many real-world event prediction
problems are extremely difficult (partly because the event
to be predicted is rare), so that precision levels that would
normally be considered to be quite poor may actually be
acceptable. For example, predicting the occurrence of a
fault within a 4ESS switch with 30% precision is actually
quite impressive, since faults are extremely rare.

The most common methods for handling this issue in-
volves either sampling the examples non-uniformly or
using some cost-sensitive evaluation function. The sam-
pling method involves either oversampling the minority
class or undersampling the majority class. First, note that
applying the sampling method to the event prediction
problem is not completely straightforward, since our
dataset is not made up of unordered examples. Nonethe-
less, this method can be applied by oversampling the

subsequences of events that occur before the target events
(i.e., within the prediction period associated with the target
event) or undersampling the other subsequences of events.
However, there are many issues involved in doing this,
such as how to best divide the events into examples. It is
preferable to avoid these issues entirely.

It is important to note that the undersampling method is
quite disadvantageous, since the (numerous) subsequences
of events not associated with a target event still serve an
important function—they help us distinguish between
spurious correlations in the data and patterns that are
actually predictive. We are especially susceptible to the
problem of finding spurious correlations given our expres-
sive concept description language and the fact that we may
only have a small number of target events (in an absolute
sense). Oversampling the majority class or using a cost-
sensitive evaluation function do not have this problem, but
both require us to determine the most appropriate sampling
ratio or cost function, which is often not known. This leads
to the next issue.

Issue 2: Tuning the Solution. The user of the learning
system will often not know, a priori, how to determine or
identify the best prediction strategy. Consequently, most
users would prefer to be given a set of solutions, such as
those described by the precision/recall curve in Figure 2,
and be able to choose one, rather than to specify misclassi-
fication costs or sampling rates and then accept the one
solution that is then generated. In order to generate multi-
ple solutions using these other methods, the learner would
have to be run repeatedly with different parameters. We
prefer a method that can generate multiple solutions in a
single run.

Issue 3: Problems with Search. Many learning methods
employ a greedy search in order to ensure that the learning
problem is tractable. For example, a program like C4.5
evaluates the result of splitting on each feature, and then
chooses the best feature to split on. For those cases where
the learning problem is relatively easy, a greedy search is
likely to produce results that are quite good. However, a
greedy search is less appropriate for the problems we are
interested in because 1) the patterns we are looking for may
be a combination of several events and 2) high precision
may not be achievable and 3) the target events are rare. It
is the combination of these three conditions that make the
problem so difficult, and make it less likely that looking at
a single feature will direct the search toward the correct
solution.

Another, somewhat related problem is that search meth-
ods that employ a divide-and-conquer approach often do
not make the best use of limited data. To see this, imagine
we have 10,000 negative examples and 100 positive exam-
ples, and a decision tree method is used to split the data.
Assuming the problem is difficult, even using binary splits,
after the first split there may only be 40 positive examples
in one internal node and 60 in the other. Once this split
occurs, the learning algorithm will have at most 60 positive
examples to work with. Algorithms that do not use a

divide-and-conquer approach are not subject to this specific
problem.

Using a GA to Predict Rare Events
We chose to use a genetic algorithm to predict rare events
because it successfully addresses the three issues described
in the previous section. Specifically, it permits us to use an
evaluation function based on precision and recall, and, by
allowing us simultaneously evolve prediction rules that are
optimized for different weightings of precision and recall,
allowed us to generate a family of solutions within one run.
Furthermore, a genetic algorithm is a powerful search
method that is not greedy (it is good at finding optimal
values for multiple features) and does not employ a divide-
and-conquer approach. However, we need to acknowledge
that our decision was also influenced by the fact that
existing classification systems were not readily applicable.
If it were possible to effectively represent the prediction
problem as a classification problem, or if there were
prediction methods that could handle the notion of a pre-
diction period, we might have tried to adapt existing meth-
ods by employing a sampling strategy or by using misclas-
sification costs.

The single most important decision in our GA was the
choice of the fitness function, which is responsible for
directing the search process. Once the decision was made
to base the fitness function on precision and recall, various
schemes of weighting the two were tried. Some of these
schemes weighted the two factors in a static manner (e.g.,
precision was valued twice as much as recall). None of
these schemes performed well, no matter what the relative
weighting of the two components. In virtually all cases the
GA quickly converged to (and got stuck at) one of two
extremes: a population with many precise, highly specific
patterns with low recall, or a population with many general
patterns with low precision. It appears that to make the
most progress, the population quickly moves to one of these
extremes, and once there it is difficult to make a change
that leads to a better prediction pattern. We also tried an
approach reminiscent of simulated annealing by beginning
with a fitness function that placed more emphasis on recall,
and gradually increased the relative importance of preci-
sion. This approach suffered from the same problem as the
approach using a static weighting of precision and recall.

We finally tried a fitness function based on the F-
measure, as defined previously in equation 1. This did not
yield significantly better results, until we varied the relative
importance of precision and recall each cycle of the GA.
This ensured that a diverse set of patterns were main-
tained—some which were general, some which were
specific, and some which were in between. This strategy
led to good results and also allowed us to generate a family
of solutions (by combining different numbers of patterns)
which spanned a wide range of recall values. We believe
this way of searching the search space was essential in
learning to predict the rare events.

Conclusion

In this paper we described how a genetic algorithm, with an
appropriately engineered fitness function, can identify rules
for predicting extremely rare events. We discussed advan-
tages of this approach and why we feel it is appropriate for
many real-world problems involving unbalanced datasets.
We would like to point out that having the ability to specify
the evaluation function for a learning system provides a lot
of flexibility, and enabled us not only to handle the unbal-
anced data problem, but also to handle other aspects of the
problem (Weiss and Hirsh 1998). We believe that the key
issue in designing our genetic algorithm was to develop a
fitness function that appropriately factored in precision and
recall, so that extremely rare events could be predicted.

References

Cohen, W. 1995. Fast effective rule induction. In Proceed-
ings of the Twelfth International Conference on Machine
Learning, 115-123.

Dietterich, T., and Michalski, R. 1985. Discovering patterns
in sequences of events, Artificial Intelligence, 25:187-232.

Goldberg, D. 1989. Genetic Algorithms in Search, Optimi-
zation and Machine Learning, Addison-Wesley.

Quinlan, J. R., 1990. Learning logical definitions from
relations, Machine Learning, 5: 239-266.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learn-
ing. San Mateo, CA: Morgan Kaufmann.

Van Rijsbergen, C. J. 1979. Information Retrieval, Butter-
worth, London, second edition.

Weiss, G. M. 1999. Timeweaver: A Genetic Algorithm for
Identifying Predictive Patterns in Sequences of Events. In
Proceedings of the Genetic and Evolutionary Computation
Conference, 718-725. San Francisco, Calif.: Morgan
Kaufmann

Weiss, G. M. and Hirsh, H. 1998. Learning to Predict Rare
Events in Event Sequences. In Proceedings of the Fourth
International Conference on Knowledge Discovery and
Data Mining, 359-363. Menlo Park, Calif: AAAI Press.

