
Cost-Sensitive Learning vs. Sampling: Which is Best for
Handling Unbalanced Classes with Unequal Error Costs?

Gary M. Weiss, Kate McCarthy, and Bibi Zabar
Department of Computer and Information Science

Fordham University
Bronx, NY, USA

Abstract - The classifier built from a data set with a
highly skewed class distribution generally predicts the
more frequently occurring classes much more often than
the infrequently occurring classes. This is largely due to
the fact that most classifiers are designed to maximize
accuracy. In many instances, such as for medical diagno-
sis, this classification behavior is unacceptable because
the minority class is the class of primary interest (i.e., it
has a much higher misclassification cost than the majority
class). In this paper we compare three methods for dealing
with data that has a skewed class distribution and non-
uniform misclassification costs. The first method incorpo-
rates the misclassification costs into the learning algo-
rithm while the other two methods employ oversampling or
undersampling to make the training data more balanced.
In this paper we empirically compare the effectiveness of
these methods in order to determine which produces the
best overall classifier—and under what circumstances.

Keywords: Cost-sensitive learning, sampling, classifica-
tion, decision trees, class imbalance.

1 Introduction
 In many real-world domains, such as fraud detection
and medical diagnosis, the class distribution of the data is
skewed and the cost of misclassifying a minority-class
example is substantially greater than the cost of misclassi-
fying a majority-class example. In these cases it is impor-
tant to create a classifier that minimizes the overall mis-
classification cost. This tends to cause the classifiers to
perform better on the minority class than if the
misclassification costs were equal. For highly skewed class
distribution, this also ensures that the classifier does not
always predict the majority class.
 There are several methods that can be of use when
dealing with skewed class distributions with unequal mis-
classification costs. The methods we analyze in this paper
all can be considered a form of cost-sensitive learning. The
most direct method is to use a learning algorithm that is
itself cost-sensitive. What we mean by this is that the learn-
ing algorithm factors in the costs when building the classi-
fier. Throughout this paper, the term “cost-sensitive learn-
ing algorithm” will refer to this type of learner.

 An alternate strategy for dealing with skewed data
with non-uniform misclassification costs is to use sampling
to alter the class distribution of the training data. As we
will show in Section 2, this method can be used to effec-
tively impose, or simulate, non-uniform misclassification
costs. Assuming that the cost of misclassifying a minority-
class example is greater than the cost of misclassifying a
majority-class example, the sampling method will make the
class distribution of the training data more balanced (this
effectively places more importance on the minority class).
 There are two basic sampling methods that can be
used: oversampling and undersampling. In this context
oversampling replicates minority-class examples while
undersampling discards majority-class examples. Note that
sampling is a wrapper-based method that can make any
learning algorithm cost-sensitive, whereas the cost-
sensitive learning algorithm referred to earlier is not a
wrapper-based method since the cost-sensitivity is embed-
ded in the algorithm.
 This paper compares the effectiveness of a cost-
sensitive learning algorithm, oversampling, and undersam-
pling. We use C5.0 [18], a more advanced version of Quin-
lan’s popular C4.5 program [14], as our cost-sensitive
learning algorithm. We believe that our results are note-
worthy because all three methods are used in practice for
handling imbalanced data sets. Our original conjecture was
that a cost-sensitive learning algorithm should outperform
both oversampling and undersampling because of the well-
known problems (described in the next section) with these
sampling methods—but our results do not support this
conjecture. In this paper we also evaluate the efficacy of
these three methods on data sets that are not skewed but
may have non-uniform misclassification costs, in order to
broaden the scope of our study.

2 Background
 In this section we provide basic background informa-
tion on cost-sensitive learning, sampling, and the connec-
tion between the two. Some related work is also described.

2.1 Cost-Sensitive Learning
 The performance of a classifier for a two-class prob-
lem can be described by the confusion matrix described in
Figure 1. Holding with the established practice, the minor-

ity class is designated the positive class and the majority
class is designated the negative class.

 ACTUAL

 Positive class Negative class

Positive
class

True positive
(TP)

False positive
(FP) PREDICTED

Negative
class

False negative
(FN)

True negative
(TN)

Figure 1: A Confusion Matrix

 Corresponding to a confusion matrix is a cost matrix.
The cost matrix will provide the costs associated with the
four outcomes shown in the confusion matrix, which we
refer to as CTP, CFP, CFN, and CTN. As is often the case in
cost-sensitive learning, we assign no costs to correct classi-
fications, so CTP and CTN are set to 0. Since the positive
(minority) class is often more interesting than the negative
(majority) class, typically CFN > CFP (note that a false nega-
tive means that a positive example was misclassified). As
discussed earlier, cost-sensitive learning can be imple-
mented in a variety of ways, by using the cost information
in the classifier-building process or by using a wrapper-
based method such as sampling.
 When misclassification costs are known the best
metric for evaluating classifier performance is total cost.
Total cost is the only evaluation metric used in this paper
and is used to evaluate all three cost-sensitive learning
methods. The formula for total cost is shown in equation 1.

Total Cost = (FN × CFN) + (FP × CFP) (1)

2.2 Sampling
 Oversampling and undersampling can be used to alter
the class distribution of the training data and both methods
have been used to deal with class imbalance [1, 2, 3, 6, 10,
11]. The reason that altering the class distribution of the
training data aids learning with highly-skewed data sets is
that it effectively imposes non-uniform misclassification
costs. For example, if one alters the class distribution of the
training set so that the ratio of positive to negative exam-
ples goes from 1:1 to 2:1, then one has effectively assigned
a misclassification cost ratio of 2:1. This equivalency
between altering the class distribution of the training data
and altering the misclassification cost ratio is well known
and was formally described by Elkan [9].
 There are known disadvantages associated with the
use of sampling to implement cost-sensitive learning. The
disadvantage with undersampling is that it discards poten-
tially useful data. The main disadvantage with oversam-
pling, from our perspective, is that by making exact copies
of existing examples, it makes overfitting likely. In fact,
with oversampling it is quite common for a learner to gen-
erate a classification rule to cover a single, replicated, ex-

ample. A second disadvantage of oversampling is that it
increases the number of training examples, thus increasing
the learning time.

2.3 Why Use Sampling?
 Given the disadvantages with sampling, it is worth
asking why anyone would use it rather than a cost-sensitive
learning algorithm for dealing with data with a skewed
class distribution and non-uniform misclassification costs.
There are several reasons for this. The most obvious reason
is there are not cost-sensitive implementations of all learn-
ing algorithms and therefore a wrapper-based approach
using sampling is the only option. While this is certainly
less true today than in the past, many learning algorithms
(e.g., C4.5) still do not directly handle costs in the learning
process.
 A second reason for using sampling is that many
highly skewed data sets are enormous and the size of the
training set must be reduced in order for learning to be
feasible. In this case, undersampling seems to be a reason-
able, and valid, strategy. In this paper we do not consider
the need to reduce the training set size. We would point
out, however, that if one needs to discard some training
data, it still might be beneficial to discard some of the ma-
jority class examples in order to reduce the training set size
to the required size, and then also employ a cost-sensitive
learning algorithm, so that the amount of discarded training
data is minimized.
 A final reason that may have contributed to the use of
sampling rather than a cost-sensitive learning algorithm is
that misclassification costs are often unknown. However,
this is not a valid reason for using sampling over a cost-
sensitive learning algorithm, since the analogous issue
arises with sampling—what should the class distribution of
the final training data be? If this cost information is not
known, a measure such as the area under the ROC curve
could be used to measure classifier performance and both
approaches could then empirically determine the proper
cost ratio/class distribution.

3 Data Sets
 We employed fourteen data sets in our experiments.
Twelve of the data sets were obtained from the UCI Re-
pository and two of the data sets came from AT&T and
were used in previously published work done by Weiss and
Hirsh [16]. A summary of these data sets is provided in
Table 1. The data sets are listed in descending order ac-
cording to the degree of class imbalance, with the most
imbalanced data sets listed first. The data sets marked with
an asterisk (*) were originally multi-class data sets that
were previously mapped into two classes for work done by
Weiss and Provost [17]. The letter-a and letter-vowel data
sets are derived from the letter recognition data set that is
available from the UCI Repository. In order to simplify the
analysis of our results, all data sets contain only two
classes.

Table 1: Data Set Summary

Data Set % Minority
Total

Examples
Letter-a* 4% 20,000
Pendigits* 8% 13,821
Connect-4* 10% 11,258
Bridges1 15% 102
Letter-vowel* 19% 20,000
Hepatitis 21% 155
Contraceptive 23% 1,473
Adult 24% 21,281
Blackjack 36% 15,000
Weather 40% 5,597
Sonar 47% 208
Boa1 50% 11,000
Promoters 50% 106
Coding 50% 20,000

 The data sets were chosen on the basis of their class
distributions and data set sizes. Although the main focus of
our research concerns classifying rare classes with unequal
misclassification costs, in order to broaden the scope of our
study we also include several data sets with relatively bal-
anced class distributions. The boa1, promoters, and coding
data sets each have an evenly balanced “50-50” distribu-
tion, so they are used for the sake of comparison. We used
data sets of varying sizes to see how this would affect our
results. One conjecture to be evaluated is that undersam-
pling will do relatively poorly for small data sets, since
discarding data in these cases should be extremely harmful
(i.e., more so than for large data sets).

4 Experimental Methodology
 The experiments conducted in our study are described
in this section. All experiments utilize C5.0 [18], which is
a more advanced version of Quinlan’s popular C4.5 and
ID3 decision tree induction programs[14, 15]. Unlike its
predecessors, C5.0 is a cost-sensitive learning algorithm,
which considers the cost information when building and
pruning the induced decision tree.
 The experiments in this paper assume that cost infor-
mation is provided. Since the data sets described in Table 1
do not have this cost information, we instead investigate a
variety of cost ratios. This actually increases the generality
of our results since we evaluate more than one cost ratio
per data set. Because we are primarily interested in the case
where the cost of misclassifying minority-class (positive)
examples is higher than that of misclassifying majority-
class examples, we set CFN > CFP. For our experiments, a
false positive prediction, CFP, is assigned a unit cost of 1.
For the majority of experiments CFN is evaluated for the

values: 1, 2, 3, 4, 6, and 10, although for some experiments
the costs were allowed to increase beyond this point.
 Oversampling and undersampling were also em-
ployed to implement the desired misclassification cost
ratios, by altering the class distribution of the training data
as described in Section 2.2. When this was done, no cost
information was passed to C5.0 since we were not relying
on the algorithm to implement the cost-sensitive learning.
Since C5.0 does not provide support for sampling, we used
scripts to implement the sampling prior to invoking C5.0.
 For all experiments, 75% of the data is made available
for training and 25% for testing. However, when using
undersampling to implement cost-sensitive learning, some
of the training examples are discarded. All experiments
were run ten times, using random sampling to partition the
data into the training and test sets. All results shown in this
paper are the averages of these ten runs and all classifiers
are evaluated using total cost, which was defined earlier in
equation 1.

5 Results
 Classifiers were generated for each data set and for a
variety of misclassification cost ratios, using oversampling,
undersampling, and C5.0’s cost-sensitive learning capabili-
ties. A figure was generated for each of the fourteen data
sets, showing how the total cost varies when implementing
cost-sensitive learning using the three schemes. Many of
these figures are included in this section, although some are
omitted due to space limitations. After presenting some of
these detailed results, we provide summary statistics which
make it easy to compare and contrast the performance of
the three cost-sensitive learning schemes.
 The results in Figure 2 for the letter-a data set show
that the cost-sensitive learning algorithm and oversampling
methods perform similarly, whereas undersampling per-
forms much worse in essentially all cases (all methods will
always perform identically for the 1:1 cost ratio). The re-
sults for the letter-vowel data set (not shown) are nearly
identical, except that the cost-sensitive algorithm performs
slightly better than oversampling for most cost ratios (both
still outperform undersampling).

0

200

400

600

800

1000

1200

1:1 1:2 1:3 1:4 1:6 1:10 1:25 1:50
Misclassification Cost Ratio

To
ta

l C
os

t

Oversampling
Undersampling
Cost-sensitive

Figure 2: Results for Letter-a

 The results for the weather data set, provided in Fig-
ure 3, show that oversampling consistently performs much
worse than undersampling and the cost-sensitive algorithm,
both of which performed similarly. This exact same pattern
occurs in the results (not shown) for the adult and boa1
data sets.

0

500

1000

1500

2000

2500

1:1 1:2 1:3 1:4 1:6 1:10
Misclassification Cost Ratio

To
ta

l C
os

t

Oversampling
Undersampling
Cost-sensitive

Figure 3: Results for Weather

 The results for the coding data set in Figure 4 show
that cost-sensitive learning outperforms both sampling
methods, although the difference in total cost is much
greater when compared to oversampling. However, as we
shall see shortly in Figure 7, the cost-sensitive algorithm
still outperforms undersampling by about 9%, a substantial
amount (it outperforms oversampling by about 28%).

0

1000

2000

3000

4000

5000

1:1 1:2 1:3 1:4 1:6 1:10
Misclassification Cost Ratio

To
ta

l C
os

t

Oversampling
Undersampling
Cost-sensitive

Figure 4: Results for Coding

 The blackjack data set, shown in Figure 5, is the only
data set for which all three methods yielded nearly identical
performance for all cost ratios. The three methods also
yielded nearly identical performance for the connect-4 data
set (not shown), except for the highest cost ratio, 1:25, in
which case oversampling performed the worst.

0

500

1000

1500

2000

2500

3000

1:1 1:2 1:3 1:4 1:6 1:10
Misclassification Cost Ratio

To
ta

l C
os

t

Oversampling
Undersampling
Cost-sensitive

Figure 5: Results for Blackjack

 There were three data sets for which the cost-sensitive
method underperformed the two sampling methods for
most cost ratios. This occurred for the contraceptive, hepa-
titis, and bridges1 data sets. The results for the contracep-
tive data set are shown in Figure 6.

0

50

100

150

200

250

300

350

400

1:1 1:2 1:3 1:4 1:6 1:10
Misclassification Cost Ratio

To
ta

l C
os

t

Oversampling
Undersampling
Cost-sensitive

Figure 6: Results for Contraceptive

 The charts for the promoters, sonar, and pendigits
data sets are not provided, although their performance will
be summarized shortly (in Table 2 and Figure 7). The re-
sults for the promoters data set are notable in that it is the
only data set for which oversampling outperforms the other
two methods for all misclassification cost ratios above 1:1
(significantly, this is a very small data set).
 Table 2 summarizes the performance of the three
methods over all fourteen data sets. This table specifies the
first/second/third place finishes over the five cost ratios
which were evaluated for each data set and method. For
example, the entry for the letter-a data set in Table 2 shows
that oversampling generates the best results for 3 of the 5
evaluated cost ratios, the second best results once, and the
worst results once. The last row of the table totals the
first/second/third place finishes for each method.

Table 2: First/Second/Third Place Finishes

Data Set
Over

Sampling
Under

Sampling
Cost-

Sensitive
Letter-a 3/1/1 0/1/4 2/3/0
Pendigits 3/1/1 0/1/4 2/3/0
Connect-4 2/0/3 0/3/2 3/2/0
Bridges1 5/0/0 0/2/3 0/3/2
Letter-vowel 4/1/0 0/0/5 1/4/0
Hepatitis 3/1/1 2/2/1 0/2/3
Contraceptiv 3/1/1 2/3/0 0/1/4
Adult 2/0/3 3/1/1 0/4/1
Blackjack 1/1/3 1/2/2 3/2/0
Weather 0/0/5 4/1/0 1/4/0
Sonar 2/1/2 3/2/0 0/2/3
Boa1 0/0/5 3/2/0 2/3/0
Promoters 5/0/0 0/2/3 0/3/2
Coding 0/2/3 0/3/2 5/0/0
Total 33/9/28 18/25/27 19/36/15

 Table 2 shows that it is quite rare—even for a single
data set—for one method to consistently outperform, or
“dominate”, the other two. We do see that it does occur
occasionally, since oversampling dominates in two cases
(for Bridges1 and Promoters) and the cost-sensitive algo-
rithm dominates in one case (for Coding). The last row of
Table 2 indicates that undersampling performs the worst,
but does not make it clear whether oversampling or the
cost-sensitive algorithm performs best, since that would
depend on the relative value of a first versus second place
finish.
 An issue with Table 2 is that it does not quantify the
improvements in total cost—it treats all “wins” as equal
even if the difference in total cost between methods is quite
small. Figure 7 remedies this by displaying the relative
reduction in total costs. This figure compares the perform-
ance of both sampling methods to the cost-sensitive learn-
ing algorithm. The figure was generated as follows. First,
the total costs for each method, for a specific data set, are
summed over the five misclassification cost ratios common
to all of the experiments. These sums, for each of the two
sampling methods, are then divided by the summed total
cost for the cost-sensitive learning algorithm. This yields a
normalized total cost, where a value greater than 1.0 indi-
cates that the sampling method performs worse than the
cost-sensitive algorithm (i.e., has a higher total cost) and a
value less than 1.0 indicates that it performs better than the
cost-sensitive algorithm.
 As an example, Figure 7 indicates that for the letter-a
data set, undersampling yields a total cost that is about 1.7
times that of the cost-sensitive algorithm whereas over-
sampling performs just slightly worse than the cost-
sensitive algorithm. Because many of the data points are
further above the line y=1.0 than below, the figure suggests
that overall the cost-sensitive learning algorithm beats each
of the other two methods. If we average the values in Fig-

ure 7 for each of the 14 datasets, we find that the average
value for oversampling is 1.05 and the average value for
undersampling is 1.04, which confirms the fact that the
cost-sensitive learning algorithm has an edge over the other
two methods.

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Le
tte

r-
a

P
en

di
gi

ts
C

on
ne

ct
-4

B
rid

ge
s1

Le
tte

r-
vo

w
el

H
ep

at
iti

s
C

on
tra

ce
pt

iv
e

Ad
ul

t
B

la
ck

ja
ck

W
ea

th
er

So
na

r
B

oa
1

Pr
om

ot
er

s
C

od
in

g

N
or

m
al

iz
ed

 T
ot

al
 C

os
t Oversampling

Undersampling

Figure 7: Performance Comparison for the Three Methods

 Figure 7 can also be used to compare the performance
of the two sampling methods, since one can compare the
relative position of the relevant data points for each of the
data sets. Overall, there does not seem to be a consistent
winner. If we compute the total cost over all 14 data sets
for oversampling versus undersampling, we find that on
average oversampling has a total cost 1.03 times that of
undersampling.
 The results from Table 2 and Figure 7 show that the
cost-sensitive learning algorithm does not consistently beat
both, or either, of the sampling methods, although overall it
does perform better (in the next section we shall see that
there are some circumstances under which the advantage is
relatively clear). One interesting thing to note is that the
cost-sensitive algorithm rarely is the worst method. There
is also no consistent winner between the two sampling
methods, with undersampling performing better on some
data sets and oversampling performing better on others.

6 Discussion
 Based on the results from all of the data sets, there is
no definitive winner between cost-sensitive learning, over-
sampling and undersampling. Given this, the logical ques-
tion to ask is whether we can characterize the circum-
stances under which each method performs best.
 We begin by analyzing the impact of data set size.
Our study included four data sets (bridges1, hepatitis, so-
nar, and promoters) that are substantially smaller than the
rest. If we compute the first/second/third place records for
these four data sets from Table 2, we get the following
results: oversampling 15/5/0, undersampling 5/12/3 and
cost-sensitive learning algorithm 0/13/7. Based on the data
underlying Figure 7, we see that for these four data sets

oversampling and undersampling perform 12% and 8%
better than the cost-sensitive learning algorithm and that
oversampling outperforms undersampling by 3%. It makes
sense that oversampling would outperform undersampling
in these situations, since undersampling discards training
examples, which would seem a poor strategy when dealing
with very small data sets. However, it is not apparent why
oversampling outperforms the cost-sensitive learning algo-
rithm in these cases.
 Next we look at the eight data sets with over 10,000
examples each (letter-a, pendigits, connect-4, letter-vowel,
adult, blackjack, boa1, and coding). For these “large” data
sets our results are as follows for first/second/third place
finishes: oversampling 16/11/17, undersampling 10/11/2,
and cost-sensitive 20/23/1. The data underlying Figure 7
shows that over these eight data sets the average increase in
total cost when using the sampling methods versus the
cost-sensitive learning algorithm is 9% for oversampling
and 13% for undersampling. Furthermore, in only one case
out of these 16 comparisons does either sampling method
outperform the cost-sensitive method by more than 1% (for
the letter-vowel data set oversampling provides a 5% im-
provement). Thus, for the large data sets, the cost-sensitive
learning algorithm does consistently yield the best results.
Why might the cost-sensitive learning algorithm perform
poorly for small data sets and well for good data sets? One
possible explanation is that with very little training data the
classifier cannot accurately estimate the class-membership
probabilities—something that is critical in order to properly
assign the correct classification based on the cost informa-
tion. This explanation warrants further study.
 Another factor worth considering is the degree to
which the class distribution of the data set is unbalanced.
This will impact the extent to which sampling must be used
to get the desired distribution. However, the results in
Tables 2 and Figure 7, which are ordered by decreasing
class imbalance, show no obvious pattern and hence we
cannot conclude that the degree of class imbalance favors
one method over another.

7 Related Work
 Previous research has compared cost-sensitive learn-
ing algorithms and sampling. The experiments that we
performed are similar to the work that was done by Chen,
Liaw, and Breiman [6], who proposed two methods of
dealing with highly-skewed class distributions based on the
Random Forest algorithm. Balanced Random Forest (BRF)
uses undersampling of the majority class to create a train-
ing set with a more equal distribution between the two
classes, whereas Weighted Random Forest (WRF) uses the
idea of cost-sensitive learning. By assigning a higher mis-
classification cost to the minority class, WRF improves
classification performance of the minority class and also
reduces the total cost. However, although both BRF and
WRF outperform existing methods, the authors found that
neither one is consistently superior to the other. Thus, the

cost-sensitive version of the Random Forest does not out-
perform the version than employs undersampling.
 Drummond and Holte [8] found that undersampling
outperforms oversampling for skewed class distributions
and non-uniform cost ratios. Their results indicate that this
is because oversampling shows little sensitivity to changes
in misclassification cost, while undersampling shows rea-
sonable sensitivity to these changes. Breiman et al. [2]
analyzed classifiers produced by sampling and by varying
the cost matrix and found that these classifiers were indeed
similar. Japkowicz and Stephen [10] found that cost-
sensitive learning algorithms outperform under-sampling
and over-sampling, but only on artificially generated data
sets. Maloof [12] also compared cost-sensitive learning
algorithms to sampling but found that the cost-sensitive
learning algorithm, oversampling and undersampling per-
formed nearly identically. However, because only a single
data set was analyzed, one can not draw any general con-
clusions from those results. Since we analyzed fourteen
real-world data sets, we believe our research extends this
earlier work and gives more weight to our conclusions.
 Recent research [7] has analyzed C5.0’s implementa-
tion of cost-sensitive learning and has shown that it does
not always produce the desired, and expected, results.
Specifically, this research showed that one can achieve
lower total cost by passing into C5.0 cost information that
differs from the “actual” cost information used to evaluate
the classifier. In this case, the “best” cost ratio to use for
learning was determined empirically, using a validation set.
Clearly these results are surprising since one would expect
the actual cost ratio to produce the best results. This seems
to indicate that C5.0’s cost-sensitive learning implementa-
tion may not be operating optimally. However, we suspect
a similar phenomenon would exist with sampling—that the
best class distribution for learning would not always be the
one that effectively “imposes” the actual misclassification
costs. This is supported by some empirical results that
show that the best class distribution for learning is typically
domain dependent [17].

8 Conclusion
 The results from this study indicate that for data sets
with class imbalance and unequal misclassification costs,
there is no clear winner when comparing the performance
of oversampling, undersampling and a cost-sensitive learn-
ing algorithm. However, if we focus exclusively on data
sets with more than 10,000 examples, then the cost-
sensitive learning algorithm consistently outperforms the
sampling methods (oversampling appears to be the best
method for small data sets). Note that in this study our
focus was on using the cost information to improve the
performance of the minority class, but in fact our results
are much more general; they can be used to assess the
relative performance of the three methods for implement-
ing cost-sensitive learning. Our results also allow us to
compare the performance of oversampling to undersam-

pling, which is of significance because, as described in
Section 7, previous research studies have come to contra-
dictory conclusions about the relative effectiveness of these
two sampling strategies. We found that which sampling
method performs best is highly dependent on the data set,
with neither method a clear winner over the other. This
explains why previous studies, which typically only looked
at a few data sets, came to contradictory conclusions.
 There are a variety of enhancements that people have
made to improve the effectiveness of sampling. Some of
these enhancements include introducing new “synthetic”
examples when oversampling [5], deleting less useful ma-
jority-class examples when undersampling [11] and using
multiple sub-samples when undersampling such than each
example is used in at least one sub-sample [3]. While these
techniques have been compared to oversampling and un-
dersampling, they generally have not been compared to
cost-sensitive learning algorithms. This would be worth
studying in the future.
 In our research, we evaluated classifier performance
using a variety of cost ratios. We did this based on the
assumption that the actual cost information will be known
or can be estimated. However, this is not always the case
and it would be interesting to repeat our experiments and
use other measures, such as the area under the ROC curve,
to compare the effectiveness of the three methods when
specific cost information is not known.
 The implications of this research are significant. The
fact that sampling, a wrapper-based approach, performs
competitively—if not better—than a commercial tool that
implements cost-sensitivity raises several important ques-
tions. These questions are: 1) why doesn’t the cost-
sensitive learning algorithm perform better given the
known drawbacks with sampling, 2) are there ways to
improve the effectiveness of cost-sensitive learning algo-
rithms and 3) are we better off not using the cost-sensitivity
features of a learner and using sampling instead. We hope
to address these questions in future research.

9 References
[1] N. Abe, B. Zadrozny, and J. Langford. An iterative

method for multi-class cost-sensitive learning. KDD
’04, August 22-25, 2004, Seattle, Washington, USA,
2004.

[2] E. Breiman, J. Friedman, R. Olshen and C. Stone.
Classification and Regression Trees. Belmont, CA:
Wadsworth International Group, 1984.

[3] P. Chan and S. Stolfo. Toward scalable learning with
non-uniform cost and class distributions: a case study
in credit card fraud detection. American Association
for Artificial Intelligence, 1998.

[4] N. Chawla. C4.5 and imbalanced datasets: investigat-
ing the effect of sampling method, probabilistic esti-
mate, and decision tree structure. ICML 2003 Work-
shop on Imbalanced Datasets.

[5] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer.
SMOTE: synthetic minority over-sampling technique.
Journal of Artificial Intelligence Research, Volume
16, 321-357, 2002.

[6] C. Chen, A. Liaw, and L. Breiman. Using random
forest to learn unbalanced data. Technical Report
666, Department of Statistics, University of Califor-
nia at Berkeley, 2004. <http://www.stat.berkeley.edu/
users/chenchao/666.pdf>

[7] M. Ciraco, M. Rogalewski, and G. M. Weiss. Im-
proving classifier utility by altering the misclassifica-
tion cost ratio. Proceedings of the KDD-2005 Work-
shop on Utility-Based Data Mining.

[8] C. Drummond and R. Holte. C4.5, class imbalance,
and cost sensitivity: why under-sampling beats over-
sampling. Workshop on Learning from Imbalanced
Data sets II, ICML, Washington DC, 2003.

[9] C. Elkan. The foundations of cost-sensitive learning.
Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, 2001.

[10] N. Japkowicz and S. Stephen, The class imbalance
problem: a systematic study. Intelligent Data Analy-
sis Journal, 6(5), 2002.

[11] M. Kubat and S. Matwin. Addressing the curse of
imbalanced training sets: one-sided selection. Pro-
ceedings of the Fourteenth International Conference
on Machine Learning, 179-186, 1997.

[12] M. Maloof. Learning when data sets are imbalanced
and when costs are unequal and unknown. ICML
2003 Workshop on Imbalanced Datasets.

[13] E. Pednault, B. Rosen and C. Apte. The importance of
estimation errors in cost-sensitive learning. IBM Re-
search Report RC-21757, May 30, 2000.

[14] J. R. Quinlan. C4.5: programs for machine learning.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, 1993.

[15] J. R. Quinlan. Induction of decision trees. Machine
Learning 1: 81-106, 1986.

[16] G. M. Weiss and H. Hirsh. A quantitative study of
small disjuncts. Proceedings of the Seventeenth Na-
tional Conference on Artificial Intelligence, 2000.

[17] G. M. Weiss and F. Provost. Learning when training
data are costly: the effect of class distribution on tree
induction. Journal of Artificial Intelligence Research,
2003.

[18] “Data Mining Tools See5 and C5.0. RuleQuest Re-
search. <http://www.rulequest.com/see5-info.html>

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

