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Abstract - The classifier built from a data set with a 
highly skewed class distribution generally predicts the 
more frequently occurring classes much more often than 
the infrequently occurring classes. This is largely due to 
the fact that most classifiers are designed to maximize 
accuracy. In many instances, such as for medical diagno-
sis, this classification behavior is unacceptable because 
the minority class is the class of primary interest (i.e., it 
has a much higher misclassification cost than the majority 
class). In this paper we compare three methods for dealing 
with data that has a skewed class distribution and non-
uniform misclassification costs. The first method incorpo-
rates the misclassification costs into the learning algo-
rithm while the other two methods employ oversampling or 
undersampling to make the training data more balanced. 
In this paper we empirically compare the effectiveness of 
these methods in order to determine which produces the 
best overall classifier—and under what circumstances. 

Keywords: Cost-sensitive learning, sampling, classifica-
tion, decision trees, class imbalance. 

1 Introduction 
 In many real-world domains, such as fraud detection 
and medical diagnosis, the class distribution of the data is 
skewed and the cost of misclassifying a minority-class 
example is substantially greater than the cost of misclassi-
fying a majority-class example. In these cases it is impor-
tant to create a classifier that minimizes the overall mis-
classification cost. This tends to cause the classifiers to 
perform better on the minority class than if the 
misclassification costs were equal. For highly skewed class 
distribution, this also ensures that the classifier does not 
always predict the majority class. 
 There are several methods that can be of use when 
dealing with skewed class distributions with unequal mis-
classification costs. The methods we analyze in this paper 
all can be considered a form of cost-sensitive learning. The 
most direct method is to use a learning algorithm that is 
itself cost-sensitive. What we mean by this is that the learn-
ing algorithm factors in the costs when building the classi-
fier. Throughout this paper, the term “cost-sensitive learn-
ing algorithm” will refer to this type of learner. 

 An alternate strategy for dealing with skewed data 
with non-uniform misclassification costs is to use sampling 
to alter the class distribution of the training data. As we 
will show in Section 2, this method can be used to effec-
tively impose, or simulate, non-uniform misclassification 
costs. Assuming that the cost of misclassifying a minority-
class example is greater than the cost of misclassifying a 
majority-class example, the sampling method will make the 
class distribution of the training data more balanced (this 
effectively places more importance on the minority class). 
 There are two basic sampling methods that can be 
used: oversampling and undersampling. In this context 
oversampling replicates minority-class examples while 
undersampling discards majority-class examples. Note that 
sampling is a wrapper-based method that can make any 
learning algorithm cost-sensitive, whereas the cost-
sensitive learning algorithm referred to earlier is not a 
wrapper-based method since the cost-sensitivity is embed-
ded in the algorithm. 
 This paper compares the effectiveness of a cost-
sensitive learning algorithm, oversampling, and undersam-
pling. We use C5.0 [18], a more advanced version of Quin-
lan’s popular C4.5 program [14], as our cost-sensitive 
learning algorithm. We believe that our results are note-
worthy because all three methods are used in practice for 
handling imbalanced data sets. Our original conjecture was 
that a cost-sensitive learning algorithm should outperform 
both oversampling and undersampling because of the well-
known problems (described in the next section) with these 
sampling methods—but our results do not support this 
conjecture.  In this paper we also evaluate the efficacy of 
these three methods on data sets that are not skewed but 
may have non-uniform misclassification costs, in order to 
broaden the scope of our study. 

2 Background 
 In this section we provide basic background informa-
tion on cost-sensitive learning, sampling, and the connec-
tion between the two.  Some related work is also described. 

2.1 Cost-Sensitive Learning 
 The performance of a classifier for a two-class prob-
lem can be described by the confusion matrix described in 
Figure 1. Holding with the established practice, the minor-



ity class is designated the positive class and the majority 
class is designated the negative class. 

 ACTUAL 

 Positive class Negative class

Positive 
class 

True positive 
(TP) 

False positive
(FP) PREDICTED 

Negative 
class 

False negative 
(FN) 

True negative
(TN) 

Figure 1: A Confusion Matrix 

 Corresponding to a confusion matrix is a cost matrix. 
The cost matrix will provide the costs associated with the 
four outcomes shown in the confusion matrix, which we 
refer to as CTP, CFP, CFN, and CTN. As is often the case in 
cost-sensitive learning, we assign no costs to correct classi-
fications, so CTP and CTN are set to 0. Since the positive 
(minority) class is often more interesting than the negative 
(majority) class, typically CFN > CFP (note that a false nega-
tive means that a positive example was misclassified). As 
discussed earlier, cost-sensitive learning can be imple-
mented in a variety of ways, by using the cost information 
in the classifier-building process or by using a wrapper-
based method such as sampling. 
 When misclassification costs are known the best 
metric for evaluating classifier performance is total cost. 
Total cost is the only evaluation metric used in this paper 
and is used to evaluate all three cost-sensitive learning 
methods. The formula for total cost is shown in equation 1. 

Total Cost = (FN × CFN) + (FP × CFP)                (1) 

2.2 Sampling 
 Oversampling and undersampling can be used to alter 
the class distribution of the training data and both methods 
have been used to deal with class imbalance [1, 2, 3, 6, 10, 
11].  The reason that altering the class distribution of the 
training data aids learning with highly-skewed data sets is 
that it effectively imposes non-uniform misclassification 
costs. For example, if one alters the class distribution of the 
training set so that the ratio of positive to negative exam-
ples goes from 1:1 to 2:1, then one has effectively assigned 
a misclassification cost ratio of 2:1.  This equivalency 
between altering the class distribution of the training data 
and altering the misclassification cost ratio is well known 
and was formally described by Elkan [9]. 
 There are known disadvantages associated with the 
use of sampling to implement cost-sensitive learning. The 
disadvantage with undersampling is that it discards poten-
tially useful data. The main disadvantage with oversam-
pling, from our perspective, is that by making exact copies 
of existing examples, it makes overfitting likely. In fact, 
with oversampling it is quite common for a learner to gen-
erate a classification rule to cover a single, replicated, ex-

ample. A second disadvantage of oversampling is that it 
increases the number of training examples, thus increasing 
the learning time. 

2.3 Why Use Sampling? 
 Given the disadvantages with sampling, it is worth 
asking why anyone would use it rather than a cost-sensitive 
learning algorithm for dealing with data with a skewed 
class distribution and non-uniform misclassification costs. 
There are several reasons for this. The most obvious reason 
is there are not cost-sensitive implementations of all learn-
ing algorithms and therefore a wrapper-based approach 
using sampling is the only option. While this is certainly 
less true today than in the past, many learning algorithms 
(e.g., C4.5) still do not directly handle costs in the learning 
process. 
 A second reason for using sampling is that many 
highly skewed data sets are enormous and the size of the 
training set must be reduced in order for learning to be 
feasible. In this case, undersampling seems to be a reason-
able, and valid, strategy.  In this paper we do not consider 
the need to reduce the training set size. We would point 
out, however, that if one needs to discard some training 
data, it still might be beneficial to discard some of the ma-
jority class examples in order to reduce the training set size 
to the required size, and then also employ a cost-sensitive 
learning algorithm, so that the amount of discarded training 
data is minimized. 
 A final reason that may have contributed to the use of 
sampling rather than a cost-sensitive learning algorithm is 
that misclassification costs are often unknown. However, 
this is not a valid reason for using sampling over a cost-
sensitive learning algorithm, since the analogous issue 
arises with sampling—what should the class distribution of 
the final training data be? If this cost information is not 
known, a measure such as the area under the ROC curve 
could be used to measure classifier performance and both 
approaches could then empirically determine the proper 
cost ratio/class distribution. 

3 Data Sets 
 We employed fourteen data sets in our experiments.  
Twelve of the data sets were obtained from the UCI Re-
pository and two of the data sets came from AT&T and 
were used in previously published work done by Weiss and 
Hirsh [16].  A summary of these data sets is provided in 
Table 1.  The data sets are listed in descending order ac-
cording to the degree of class imbalance, with the most 
imbalanced data sets listed first.  The data sets marked with 
an asterisk (*) were originally multi-class data sets that 
were previously mapped into two classes for work done by 
Weiss and Provost [17].  The letter-a and letter-vowel data 
sets are derived from the letter recognition data set that is 
available from the UCI Repository. In order to simplify the 
analysis of our results, all data sets contain only two 
classes. 



Table 1:  Data Set Summary 

Data Set % Minority 
Total 

Examples 
Letter-a* 4% 20,000 
Pendigits* 8% 13,821 
Connect-4* 10% 11,258 
Bridges1 15% 102 
Letter-vowel* 19% 20,000 
Hepatitis 21% 155 
Contraceptive 23% 1,473 
Adult 24% 21,281 
Blackjack 36% 15,000 
Weather 40% 5,597 
Sonar 47% 208 
Boa1 50% 11,000 
Promoters 50% 106 
Coding 50% 20,000 

 The data sets were chosen on the basis of their class 
distributions and data set sizes. Although the main focus of 
our research concerns classifying rare classes with unequal 
misclassification costs, in order to broaden the scope of our 
study we also include several data sets with relatively bal-
anced class distributions. The boa1, promoters, and coding 
data sets each have an evenly balanced “50-50” distribu-
tion, so they are used for the sake of comparison. We used 
data sets of varying sizes to see how this would affect our 
results. One conjecture to be evaluated is that undersam-
pling will do relatively poorly for small data sets, since 
discarding data in these cases should be extremely harmful 
(i.e., more so than for large data sets). 

4 Experimental Methodology 
 The experiments conducted in our study are described 
in this section. All experiments utilize C5.0 [18],  which is 
a more advanced version of Quinlan’s popular C4.5 and 
ID3 decision tree induction programs[14, 15]. Unlike its 
predecessors, C5.0 is a cost-sensitive learning algorithm, 
which considers the cost information when building and 
pruning the induced decision tree. 
 The experiments in this paper assume that cost infor-
mation is provided. Since the data sets described in Table 1 
do not have this cost information, we instead investigate a 
variety of cost ratios. This actually increases the generality 
of our results since we evaluate more than one cost ratio 
per data set. Because we are primarily interested in the case 
where the cost of misclassifying minority-class (positive) 
examples is higher than that of misclassifying majority-
class examples, we set CFN > CFP. For our experiments, a 
false positive prediction, CFP, is assigned a unit cost of 1. 
For the majority of experiments CFN is evaluated for the 

values: 1, 2, 3, 4, 6, and 10, although for some experiments 
the costs were allowed to increase beyond this point. 
 Oversampling and undersampling were also em-
ployed to implement the desired misclassification cost 
ratios, by altering the class distribution of the training data 
as described in Section 2.2. When this was done, no cost 
information was passed to C5.0 since we were not relying 
on the algorithm to implement the cost-sensitive learning. 
Since C5.0 does not provide support for sampling, we used 
scripts to implement the sampling prior to invoking C5.0.  
 For all experiments, 75% of the data is made available 
for training and 25% for testing. However, when using 
undersampling to implement cost-sensitive learning, some 
of the training examples are discarded. All experiments 
were run ten times, using random sampling to partition the 
data into the training and test sets. All results shown in this 
paper are the averages of these ten runs and all classifiers 
are evaluated using total cost, which was defined earlier in 
equation 1. 

5 Results 
 Classifiers were generated for each data set and for a 
variety of misclassification cost ratios, using oversampling, 
undersampling, and C5.0’s cost-sensitive learning capabili-
ties. A figure was generated for each of the fourteen data 
sets, showing how the total cost varies when implementing 
cost-sensitive learning using the three schemes. Many of 
these figures are included in this section, although some are 
omitted due to space limitations. After presenting some of 
these detailed results, we provide summary statistics which 
make it easy to compare and contrast the performance of 
the three cost-sensitive learning schemes. 
 The results in Figure 2 for the letter-a data set show 
that the cost-sensitive learning algorithm and oversampling 
methods perform similarly, whereas undersampling per-
forms much worse in essentially all cases (all methods will 
always perform identically for the 1:1 cost ratio). The re-
sults for the letter-vowel data set (not shown) are nearly 
identical, except that the cost-sensitive algorithm performs 
slightly better than oversampling for most cost ratios (both 
still outperform undersampling). 
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Figure 2: Results for Letter-a 



 The results for the weather data set, provided in Fig-
ure 3, show that oversampling consistently performs much 
worse than undersampling and the cost-sensitive algorithm, 
both of which performed similarly. This exact same pattern 
occurs in the results (not shown) for the adult and boa1 
data sets. 
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Figure 3: Results for Weather 

 The results for the coding data set in Figure 4 show 
that cost-sensitive learning outperforms both sampling 
methods, although the difference in total cost is much 
greater when compared to oversampling. However, as we 
shall see shortly in Figure 7, the cost-sensitive algorithm 
still outperforms undersampling by about 9%, a substantial 
amount (it outperforms oversampling by about 28%). 
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Figure 4: Results for Coding 

 The blackjack data set, shown in Figure 5, is the only 
data set for which all three methods yielded nearly identical 
performance for all cost ratios. The three methods also 
yielded nearly identical performance for the connect-4 data 
set (not shown), except for the highest cost ratio, 1:25, in 
which case oversampling performed the worst. 
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Figure 5: Results for Blackjack 

 There were three data sets for which the cost-sensitive 
method underperformed the two sampling methods for 
most cost ratios. This occurred for the contraceptive, hepa-
titis, and bridges1 data sets.  The results for the contracep-
tive data set are shown in Figure 6. 
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Figure 6: Results for Contraceptive 

 The charts for the promoters, sonar, and pendigits 
data sets are not provided, although their performance will 
be summarized shortly (in Table 2 and Figure 7). The re-
sults for the promoters data set are notable in that it is the 
only data set for which oversampling outperforms the other 
two methods for all misclassification cost ratios above 1:1 
(significantly, this is a very small data set).  
 Table 2 summarizes the performance of the three 
methods over all fourteen data sets. This table specifies the 
first/second/third place finishes over the five cost ratios 
which were evaluated for each data set and method. For 
example, the entry for the letter-a data set in Table 2 shows 
that oversampling generates the best results for 3 of the 5 
evaluated cost ratios, the second best results once, and the 
worst results once. The last row of the table totals the 
first/second/third place finishes for each method. 



Table 2: First/Second/Third Place Finishes 

Data Set 
Over 

Sampling 
Under 

Sampling 
Cost-

Sensitive 
Letter-a 3/1/1 0/1/4 2/3/0
Pendigits 3/1/1 0/1/4 2/3/0
Connect-4 2/0/3 0/3/2 3/2/0
Bridges1 5/0/0 0/2/3 0/3/2
Letter-vowel 4/1/0 0/0/5 1/4/0
Hepatitis 3/1/1 2/2/1 0/2/3
Contraceptiv 3/1/1 2/3/0 0/1/4
Adult 2/0/3 3/1/1 0/4/1
Blackjack 1/1/3 1/2/2 3/2/0
Weather 0/0/5 4/1/0 1/4/0
Sonar 2/1/2 3/2/0 0/2/3
Boa1 0/0/5 3/2/0 2/3/0
Promoters 5/0/0 0/2/3 0/3/2
Coding 0/2/3 0/3/2 5/0/0
Total 33/9/28 18/25/27 19/36/15

 Table 2 shows that it is quite rare—even for a single 
data set—for one method to consistently outperform, or 
“dominate”, the other two.  We do see that it does occur 
occasionally, since oversampling dominates in two cases 
(for Bridges1 and Promoters) and the cost-sensitive algo-
rithm dominates in one case (for Coding). The last row of 
Table 2 indicates that undersampling performs the worst, 
but does not make it clear whether oversampling or the 
cost-sensitive algorithm performs best, since that would 
depend on the relative value of a first versus second place 
finish.  
 An issue with Table 2 is that it does not quantify the 
improvements in total cost—it treats all “wins” as equal 
even if the difference in total cost between methods is quite 
small.  Figure 7 remedies this by displaying the relative 
reduction in total costs. This figure compares the perform-
ance of both sampling methods to the cost-sensitive learn-
ing algorithm. The figure was generated as follows. First, 
the total costs for each method, for a specific data set, are 
summed over the five misclassification cost ratios common 
to all of the experiments. These sums, for each of the two 
sampling methods, are then divided by the summed total 
cost for the cost-sensitive learning algorithm. This yields a 
normalized total cost, where a value greater than 1.0 indi-
cates that the sampling method performs worse than the 
cost-sensitive algorithm (i.e., has a higher total cost) and a 
value less than 1.0 indicates that it performs better than the 
cost-sensitive algorithm. 
 As an example, Figure 7 indicates that for the letter-a 
data set, undersampling yields a total cost that is about 1.7 
times that of the cost-sensitive algorithm whereas over-
sampling performs just slightly worse than the cost-
sensitive algorithm. Because many of the data points are 
further above the line y=1.0 than below, the figure suggests 
that overall the cost-sensitive learning algorithm beats each 
of the other two methods. If we average the values in Fig-

ure 7 for each of the 14 datasets, we find that the average 
value for oversampling is 1.05 and the average value for 
undersampling is 1.04, which confirms the fact that the 
cost-sensitive learning algorithm has an edge over the other 
two methods. 

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Le
tte

r-
a

P
en

di
gi

ts
C

on
ne

ct
-4

B
rid

ge
s1

Le
tte

r-
vo

w
el

H
ep

at
iti

s
C

on
tra

ce
pt

iv
e

Ad
ul

t
B

la
ck

ja
ck

W
ea

th
er

So
na

r
B

oa
1

Pr
om

ot
er

s
C

od
in

g

N
or

m
al

iz
ed

 T
ot

al
 C

os
t Oversampling

Undersampling

 
Figure 7: Performance Comparison for the Three Methods 

 Figure 7 can also be used to compare the performance 
of the two sampling methods, since one can compare the 
relative position of the relevant data points for each of the 
data sets. Overall, there does not seem to be a consistent 
winner. If we compute the total cost over all 14 data sets 
for oversampling versus undersampling, we find that on 
average oversampling has a total cost 1.03 times that of 
undersampling. 
 The results from Table 2 and Figure 7 show that the 
cost-sensitive learning algorithm does not consistently beat 
both, or either, of the sampling methods, although overall it 
does perform better (in the next section we shall see that 
there are some circumstances under which the advantage is 
relatively clear). One interesting thing to note is that the 
cost-sensitive algorithm rarely is the worst method. There 
is also no consistent winner between the two sampling 
methods, with undersampling performing better on some 
data sets and oversampling performing better on others. 

6 Discussion 
 Based on the results from all of the data sets, there is 
no definitive winner between cost-sensitive learning, over-
sampling and undersampling. Given this, the logical ques-
tion to ask is whether we can characterize the circum-
stances under which each method performs best. 
 We begin by analyzing the impact of data set size. 
Our study included four data sets (bridges1, hepatitis, so-
nar, and promoters) that are substantially smaller than the 
rest. If we compute the first/second/third place records for 
these four data sets from Table 2, we get the following 
results: oversampling 15/5/0, undersampling 5/12/3 and 
cost-sensitive learning algorithm 0/13/7. Based on the data 
underlying Figure 7, we see that for these four data sets 



oversampling and undersampling perform 12% and 8% 
better than the cost-sensitive learning algorithm and that 
oversampling outperforms undersampling by 3%. It makes 
sense that oversampling would outperform undersampling 
in these situations, since undersampling discards training 
examples, which would seem a poor strategy when dealing 
with very small data sets. However, it is not apparent why 
oversampling outperforms the cost-sensitive learning algo-
rithm in these cases. 
 Next we look at the eight data sets with over 10,000 
examples each (letter-a, pendigits, connect-4, letter-vowel, 
adult, blackjack, boa1, and coding). For these “large” data 
sets our results are as follows for first/second/third place 
finishes: oversampling 16/11/17, undersampling 10/11/2, 
and cost-sensitive 20/23/1. The data underlying Figure 7 
shows that over these eight data sets the average increase in 
total cost when using the sampling methods versus the 
cost-sensitive learning algorithm is 9% for oversampling 
and 13% for undersampling.  Furthermore, in only one case 
out of these 16 comparisons does either sampling method 
outperform the cost-sensitive method by more than 1% (for 
the letter-vowel data set oversampling provides a 5% im-
provement). Thus, for the large data sets, the cost-sensitive 
learning algorithm does consistently yield the best results. 
Why might the cost-sensitive learning algorithm perform 
poorly for small data sets and well for good data sets? One 
possible explanation is that with very little training data the 
classifier cannot accurately estimate the class-membership 
probabilities—something that is critical in order to properly 
assign the correct classification based on the cost informa-
tion. This explanation warrants further study.  
 Another factor worth considering is the degree to 
which the class distribution of the data set is unbalanced. 
This will impact the extent to which sampling must be used 
to get the desired distribution. However, the results in 
Tables 2 and Figure 7, which are ordered by decreasing 
class imbalance, show no obvious pattern and hence we 
cannot conclude that the degree of class imbalance favors 
one method over another. 

7 Related Work 
 Previous research has compared cost-sensitive learn-
ing algorithms and sampling. The experiments that we 
performed are similar to the work that was done by Chen, 
Liaw, and Breiman [6], who proposed two methods of 
dealing with highly-skewed class distributions based on the 
Random Forest algorithm. Balanced Random Forest (BRF) 
uses undersampling of the majority class to create a train-
ing set with a more equal distribution between the two 
classes, whereas Weighted Random Forest (WRF) uses the 
idea of cost-sensitive learning. By assigning a higher mis-
classification cost to the minority class, WRF improves 
classification performance of the minority class and also 
reduces the total cost. However, although both BRF and 
WRF outperform existing methods, the authors found that 
neither one is consistently superior to the other. Thus, the 

cost-sensitive version of the Random Forest does not out-
perform the version than employs undersampling. 
 Drummond and Holte [8] found that undersampling 
outperforms oversampling for skewed class distributions 
and non-uniform cost ratios. Their results indicate that this 
is because oversampling shows little sensitivity to changes 
in misclassification cost, while undersampling shows rea-
sonable sensitivity to these changes. Breiman et al. [2] 
analyzed classifiers produced by sampling and by varying 
the cost matrix and found that these classifiers were indeed 
similar. Japkowicz and Stephen [10] found that cost-
sensitive learning algorithms outperform under-sampling 
and over-sampling, but only on artificially generated data 
sets. Maloof [12] also compared cost-sensitive learning 
algorithms to sampling but found that the cost-sensitive 
learning algorithm, oversampling and undersampling per-
formed nearly identically. However, because only a single 
data set was analyzed, one can not draw any general con-
clusions from those results. Since we analyzed fourteen 
real-world data sets, we believe our research extends this 
earlier work and gives more weight to our conclusions. 
 Recent research [7] has analyzed C5.0’s implementa-
tion of cost-sensitive learning and has shown that it does 
not always produce the desired, and expected, results. 
Specifically, this research showed that one can achieve 
lower total cost by passing into C5.0 cost information that 
differs from the “actual” cost information used to evaluate 
the classifier. In this case, the “best” cost ratio to use for 
learning was determined empirically, using a validation set. 
Clearly these results are surprising since one would expect 
the actual cost ratio to produce the best results. This seems 
to indicate that C5.0’s cost-sensitive learning implementa-
tion may not be operating optimally. However, we suspect 
a similar phenomenon would exist with sampling—that the 
best class distribution for learning would not always be the 
one that effectively “imposes” the actual misclassification 
costs. This is supported by some empirical results that 
show that the best class distribution for learning is typically 
domain dependent [17].  

8 Conclusion 
 The results from this study indicate that for data sets 
with class imbalance and unequal misclassification costs, 
there is no clear winner when comparing the performance 
of oversampling, undersampling and a cost-sensitive learn-
ing algorithm. However, if we focus exclusively on data 
sets with more than 10,000 examples, then the cost-
sensitive learning algorithm consistently outperforms the 
sampling methods (oversampling appears to be the best 
method for small data sets). Note that in this study our 
focus was on using the cost information to improve the 
performance of the minority class, but in fact our results 
are much more general; they can be used to assess the 
relative performance of the three methods for implement-
ing cost-sensitive learning. Our results also allow us to 
compare the performance of oversampling to undersam-



pling, which is of significance because, as described in 
Section 7, previous research studies have come to contra-
dictory conclusions about the relative effectiveness of these 
two sampling strategies. We found that which sampling 
method performs best is highly dependent on the data set, 
with neither method a clear winner over the other. This 
explains why previous studies, which typically only looked 
at a few data sets, came to contradictory conclusions. 
 There are a variety of enhancements that people have 
made to improve the effectiveness of sampling. Some of 
these enhancements include introducing new “synthetic” 
examples when oversampling [5], deleting less useful ma-
jority-class examples when undersampling [11] and using 
multiple sub-samples when undersampling such than each 
example is used in at least one sub-sample [3]. While these 
techniques have been compared to oversampling and un-
dersampling, they generally have not been compared to 
cost-sensitive learning algorithms. This would be worth 
studying in the future.  
 In our research, we evaluated classifier performance 
using a variety of cost ratios. We did this based on the 
assumption that the actual cost information will be known 
or can be estimated. However, this is not always the case 
and it would be interesting to repeat our experiments and 
use other measures, such as the area under the ROC curve, 
to compare the effectiveness of the three methods when 
specific cost information is not known. 
 The implications of this research are significant. The 
fact that sampling, a wrapper-based approach, performs 
competitively—if not better—than a commercial tool that 
implements cost-sensitivity raises several important ques-
tions.  These questions are: 1) why doesn’t the cost-
sensitive learning algorithm perform better given the 
known drawbacks with sampling, 2) are there ways to 
improve the effectiveness of cost-sensitive learning algo-
rithms and 3) are we better off not using the cost-sensitivity 
features of a learner and using sampling instead. We hope 
to address these questions in future research. 
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