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ABSTRACT 
In realistic settings the prevalence of a class may change after a 

classifier is induced and this will degrade the performance of the 

classifier. Further complicating this scenario is the fact that la-

beled data is often scarce and expensive. In this paper we address 

the problem where the class distribution changes and only unla-

beled examples are available from the new distribution. We de-

sign and evaluate a number of methods for coping with this prob-

lem and compare the performance of these methods. Our quantifi-

cation-based methods estimate the class distribution of the unla-

beled data from the changed distribution and adjust the original 

classifier accordingly, while our semi-supervised methods build a 

new classifier using the examples from the new (unlabeled) distri-

bution which are supplemented with predicted class values. We 

also introduce a hybrid method that utilizes both quantification 

and semi-supervised learning. All methods are evaluated using 

accuracy and F-measure on a set of benchmark data sets. Our 

results demonstrate that our methods yield substantial improve-

ments in accuracy and F-measure.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning-induction 

General Terms 
Algorithms, Measurement, Design 

Keywords 
Semi-supervised learning, quantification, classification, concept 

drift, class distribution 

1. INTRODUCTION 
In real-world data mining settings it is often the case the classifi-

cation ―concept‖ we are trying to learn may change over time and, 

in particular, may change after a classifier is induced. This prob-

lem is known as concept drift [14] and in this paper we focus on a 

specific type of concept drift where the class distribution changes 

over time, yielding a distribution mismatch [7] problem. This 

problem occurs frequently. For example, epidemiologists often 

find that although the cause of a disease is stable, the prevalence 

of the disease changes over time. The same phenomenon has been 

found in help-desk support applications, where the occurrence of 

certain support issues varies over time (e.g., there are more reports 

of cracked computer screens on July 4, the U.S. Independence day 

[7]). This problem of a changing class distribution is further 

complicated by the fact that labeled examples are often scarce or 

costly to obtain—and it may not even be possible to label newly 

acquired examples in a timely manner.  

This paper focuses on two research questions associated with the 

data mining scenario just described: 1) How can we maximize 

classification performance when the class distribution changes but 

is unknown, and 2) How can we utilize unlabeled data from the 

changed class distribution to accomplish this goal? 

More formally, the class of problems we study has some original 

distribution, Dorig, from which we are provided a set of labeled 

examples, ORIGlabel, with class distribution ORIGCD. At some 

point the distribution of data changes to Dnew with a new but 

unknown class distribution, NEWCD, and from this distribution we 

are provided with a set of unlabeled examples, NEWunlabel. For 

evaluation purposes we are also provided with labeled examples, 

NEWeval, drawn from Dnew. Given this terminology we can state 

our learning problem more precisely. 

Problem statement: 

Given: ORIGlabel drawn from Dorig (with ORIGCD) 

   NEWunlabel drawn from Dnew (with unknown NEWCD) 

   NEWeval drawn from Dnew 

  Do: Construct the classifier C, using ORIGlabel and/or    

NEWunlabel, which yields the best possible classification 

performance on NEWeval. 

We introduce Figure 1 to illustrate the distribution mismatch 

problem and to establish some performance goals for our work.  

Figure 1 shows how two baseline methods, Naïve and Oracle, 

perform for a two-class data set when the original class distribu-

tion is balanced (i.e., ORIGCD = 1:1 with a positive class rate of 

50%) but then is altered so that the class distribution for the new 

distribution (NEWCD) varies between 1% and 99% positive ex-

amples, in 1% increments (details of the experiment are provided 

in Section 3). 

The Naïve approach ignores the unlabeled data and the fact that 

the class distribution may change and utilizes the classifier in-

duced from ORIGlabel to classify the examples in NEWeval. The 

Oracle method provides a potential upper bound for achievable 
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performance by building a classifier using NEWunlabel with the 

true class labels ―uncovered.‖ Evaluation is based on NEWeval. 

 
Figure 1. Classifier Performance on Adult Data Set 

The results for Naïve clearly demonstrate the distribution mis-

match problem since the accuracy of Naïve degrades with respect 

to the ―desired‖ performance of Oracle for most cases where 

ORIGCD ≠ NEWCD (the shape of these curves is discussed in 

Section 4). We can state our performance goals in terms of these 

two baseline methods: we will develop methods that perform 

strictly better than Naïve and approach the performance of Oracle. 

In this paper we utilize two basic techniques for improving clas-

sifier performance beyond that of the Naïve approach: class dis-

tribution estimation (CDE) and semi-supervised learning (SSL). 

The CDE technique exploits the fact that if we can estimate the 

class distribution from which future examples will be drawn, then 

we can adjust the original classifier to account for the differences 

in class distribution. In this paper we describe and analyze two 

CDE-based methods: an iterative method of our own design and a 

quantification-based method based on a quantification technique 

[7]. The CDE-based methods use NEWunlabel in the learning 

process, but only to estimate NEWCD. Our semi-supervised learn-

ing methods, on the other hand, use examples from NEWunlabel in 

the classifier induction process, where these new examples are 

assigned predicted class labels. We introduce two main SSL-

based methods: a simple method that only uses the examples from 

NEWunlabel to build the classifier and a self-training [20] variant 

that iteratively merges the examples from ORIGlabel with NEWun-

label. Finally, we introduce a hybrid method that integrates features 

from the CDE-based and SSL-based methods. We evaluate all 

methods using accuracy and F-Measure. 

The remainder of this paper is structured as follows. Section 2 

describes our methods in detail. Section 3 presents our experiment 

methodology and our results are then presented and analyzed in 

Section 4. Related work is described in Section 5 and Section 6 

summarizes our conclusions and discusses areas for future re-

search. 

2. METHODS 
In this section we describe the methods used to handle changes in 

class distribution, with the exception of the Naïve and Oracle 

methods, which were introduced earlier. Recall that these methods 

serve as lower and upper performance bounds, respectively, for 

our methods. Our class distribution estimation methods require 

some background before they can be properly understood and this 

background is provided in Section 2.1. The CDE-based methods 

are then described in Section 2.2, the SSL-based methods in 

Section 2.3, and the hybrid CDE/SSL method in Section 2.4. 

2.1 Understanding Class Distribution Changes 
In this section we discuss the impact that a changing class distri-

bution has on classification and how we can compensate for this 

change in class distribution. We begin by introducing some basic 

terminology. Table 1 shows a standard confusion matrix for a 

two-class domain, where all predictions can be categorized as true 

positives (TP), false negatives (FN), false positives (FP), and true 

negatives (TN). 

Table 1. Confusion Matrix for Binary Classification 

 Predicted Class 

positive negative 

A
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u
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C
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ss
 positive TP FN 

negative FP TN 

The following terms are defined based on the values in the confu-

sion matrix: positive rate (pr), negative rate (nr), distribution 

mismatch ratio (dmr), true positive rate (tpr), and false positive 

rate (fpr).  We use the prime symbol () to denote the values asso-

ciated with the new distribution. 

pr = (TP+FN)/(TP+FN+FP+TN) 

nr = (FP+TN)/(TP+FN+FP+TN) 

dmr = (pr/nr) : (pr/nr) 

tpr = TP/(TP+FN) 

fpr = FP/(FP+TN) 

Now that we have introduced the basic terms we can discuss what 

happens if the class distribution changes and how we can com-

pensate for these changes. This topic is described in detail from a 

theoretical perspective by Elkan [6] and an applied perspective by 

Weiss and Provost [16]. In the interest of clarity we discuss the 

issue from the applied perspective and use an example to motivate 

the key concepts and explain the relevant equations. 

In our example the data set drawn from the original distribution 

has 900 positive examples and 100 negative examples (pr = 9/10, 

nr=1/10) and the data drawn from the new distribution has 200 

positive and 800 negative examples (pr=2/10, nr=8/10). The 

distribution mismatch ratio dmr indicates the factor by which the 

ratio of positive to negative examples changes between the origi-

nal and new distribution. For this example dmr = 9:¼ or, equiva-

lently, 36:1. Thus, based on the ratio of the positive rate to nega-

tive rate, the positives are 36 times more prevalent in the original 

distribution than in the new distribution. Note that if we used the 

fraction of positive examples rather than the positive to negative 

ratio, then dmr would only be 4.5 (i.e., .9/.2), but if fractions are 

used then equation 1 becomes much more complex and difficult 

to understand [16]. 

We can adjust for changes in class distribution during the classifi-

er induction process by any of these three methods [6]:  1) sam-

pling (or reweighting) the training examples so as to alter the class 

distribution to match the new distribution, 2) altering the probabil-

ity thresholds used to determine the class label, or 3) altering the 

ratio of misclassification costs between false positive and false 

negative predictions. We employ the third method because the 
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learning package that we use, WEKA, supports cost-sensitive 

learning and thus no changes were required to the learning algo-

rithm. We use equation 1 to determine the cost ratio (the ratio of a 

false positive to false negative prediction) that should be used 

when building the classifier: 

COSTFP : COSTFN = (pr/nr) : (pr/nr)        (1) 

Returning to our example, the cost ratio COSTFP : COSTFN would 

equal 36:1. This adjustment can informally be shown to be correct 

as follows. Without loss of generality, imagine that we build a 

decision tree classifier and at an arbitrary leaf node there are P 

positive and N negative examples. Without cost-sensitive learn-

ing, the leaf will be labeled with the majority class. A cost-

sensitive learner will classify the leaf to minimize the total cost 

and in this case the costs will be perfectly balanced if P=36N, 

since a positive label yields a cost of 36  COSTFN and a negative 

prediction yields a cost of 1  COSTFP. If the positive rate is 

above this it will be labeled positive and if below this it will be 

labeled negative. This is the desired behavior since the new distri-

bution will cause the ratio of positive to negative examples, as 

noted earlier, to decrease by a factor of 36 (i.e., a leaf with a 

positive to negative class ratio of 36:1 using ORIGlabel corres-

ponds to a class ratio of 1:1 when using NEWeval and the 1:1 ratio 

is the normal threshold for labeling a classification ―rule‖). 

2.2 Class Distribution Estimation Methods 
We introduce three class distribution estimation (CDE) methods 

in this section. Since quantification is the task of estimating the 

class distribution of new data, these CDE methods can also be 

considered quantification-based methods. The key difference 

between the quantification task and our task is that for quantifica-

tion the ultimate goal is to estimate the prevalence of each class, 

whereas in our case this is only an intermediate step—the ultimate 

goal is to improve classification performance on data drawn from 

a new distribution. For all CDE-based methods the final classifier 

is induced from ORIGlabel with the cost ratio computed with equa-

tion 1, utilizing the estimate of NEWCD produced by the specific 

CDE method (note NEWCD determines the pr/nr ratio). 

Our CDE-Iterate method iteratively generates estimates of 

NEWCD. It first builds a classifier C1 using ORIGlabel and then 

uses C1 to classify NEWunlabel. The initial estimate of NEWCD is 

then calculated from these predictions. However, assuming 

ORIGCD ≠ NEWCD, the original predictions will be biased and 

will tend to underestimate the change in class distribution (this 

bias is why we need the ―adjustment‖ in the first place). To com-

pensate for this, the process is repeated but in the second iteration 

the classifier C2 is built using the cost ratio calculated using equa-

tion 1 with the estimate of NEWCD from the first iteration. The 

expectation is that additional iterations will reduce the undesired 

bias and the subsequent classifiers will be better able to classify 

NEWunlabel, yielding more accurate estimates of NEWCD. The 

iterations terminate once a pre-specified maximum number of 

iterations is exceeded (in this paper we only report results for the 

first 3 iterations). CDE-Iterate-n refers to the classifier produced 

by the nth iteration of this method. 

To make the algorithm more concrete, we specify the CDE-

Iterate algorithm in Figure 2 using pseudo-code. The algorithm 

begins by initializing the values for the cost ratio to the default 

values (line 1), builds an initial classifier C1 from ORIGlabel (line 

2) and then calculates the pr/pn ratio for ORIGlabel (line3), where 

the Pos() and Neg() functions return the number of positive and 

negative examples for the specified data sets (ORIGlabel). The 

algorithm then iterates in lines 4-10 until the maximum number of 

iterations (maxIterations) is reached. In this loop this algorithm 

first uses the previous classifier Ci to classify NEWunlabel (line 6). 

Then in lines 7-8 the distribution mismatch ratio (dmr) is com-

puted and the cost ratio information is updated. In line 9 a new 

classifier Ci+1 is generated using ORIGlabel with the updated cost 

ratio. Finally, once the loop terminates the last classifier is re-

turned (line 11).                

CDE-Iterate (ORIGlabel, NEWunlabel)  
1.    COSTFP = COSTFN = 1;   

2.    C1 = build_classifier(ORIGlabel, COSTFP, COSTFN); 

3.    Pos2Neg = Pos(ORIGlabel) / Neg(ORIGlabel);     
4.    for (i=1; i<maxIterations; i++) 

5.    {  

6.        NEWlabel = Classify(NEWunlabel, Ci);     

7.        dmr = Pos2Neg : ( Pos(NEWlabel) / Neg(NEWlabel) ); 

8.        COSTFP = COSTFN ∙ dmr;  

9.        Ci+1 = build_classifier(ORIGlabel, COSTFP, COSTFN); 

10.  }  
11.  return Ci+1;  

Figure 2. Pseudo-code for the CDE-Iterate Algorithm 

The CDE-AC method relies on the Adjusted Count (AC) quanti-

fication technique [7] to estimate NEWCD. The method uses equa-

tion 2 to produce its adjusted estimate of the positive rate of the 

new distribution, pr*. Note that it still requires pr, the unadjusted 

estimate of NEWCD, which is calculated in the same manner as it 

was calculated in the first iteration of CDE-Iterate—a classifier is 

built from ORIGlabel, used to classify NEWunlabel, and pr is calcu-

lated from the predicted class labels. Furthermore, tpr and fpr, 

which are associated with the original distribution, are estimated 

by using 10-fold cross validation on ORIGlabel. Equation 2 essen-

tially compensates for the fact that prwill underestimate changes 

in class distribution due to the undesired bias discussed earlier 

(see Forman [7] for further details and a derivation of equation 2). 

The estimate of NEWCD can easily be calculated from the adjusted 

positive rate, pr*. 

 pr* = (pr – fpr) / (tpr – fpr)         (2) 

Finally, in order to evaluate the effectiveness of our two CDE-

based methods, we introduce the CDE-Oracle method, which 

obtains the correct value of NEWCD (via an oracle) and then uses 

equation 1 to determine the appropriate cost ratio. The classifier is 

then induced from ORIGlabel using this cost ratio. One would 

expect this method to be an upper bound on the performance of all 

CDE-based methods. 

2.3 Semi-Supervised Learning Methods 
In this section we discuss semi-supervised learning (SSL) me-

thods [4], which induce a classifier using examples from       

NEWunlabel. Unlike the methods in the previous section, no explicit 

adjustment is made for differences in class distribution. Our first 

SSL-based method, SSL-Naïve, is quite straightforward. It builds 

a classifier C from ORIGlabel, uses C to label NEWunlabel, and then 

uses the labeled version of NEWunlabel to build a new classifier, C. 

Note that this method does not directly use any of the labeled data 

from the original distribution when building the final classifier. 



Our next SSL-based method is more sophisticated in that it induc-

es a classifier using examples from both the original and new 

distributions. This method, SSL-Self-Train, uses a semi-

supervised technique known as self-training [20]. As the case with 

the SSL-Naïve method, this method starts by building a model 

based on ORIGlabel and uses it to classify NEWunlabel. However, 

this method then moves the examples from NEWunlabel that have 

the most confident predictions (i.e., above the median confidence 

level) into ORIGlabel. In this case confidence is based on how 

close the class membership probability estimate is to 1.0. The 

above set of steps is repeated until either all of the examples in 

NEWunlabel have been merged with those in ORIGlabel or a maxi-

mum number of iterations have been executed. In our implemen-

tation a maximum of 4 iterations are executed. 

2.4 Hybrid Method 
We combine the class distribution estimation and semi-supervised 

self-training methods into a Hybrid method, where the goal is to 

exploit the power of the CDE technique but also include data from 

the new distribution when training the classifier. The hybrid 

method starts like the CDE-Iterate method: it builds a classifier C 

from ORIGlabel, applies C to NEWunlabel to estimate NEWCD, uses 

equation 2 to determine the appropriate cost ratio, and then rege-

nerates the classifier from ORIGlabel using this cost information. It 

then applies the self-training technique—it uses the adjusted 

classifier to relabel NEWunlabel and then effectively ―moves‖ the 

examples where the confidence of the predicted label is above the 

median value to ORIGlabel. This method then determines the ap-

propriate cost ratio (equation 2) to account for differences in the 

class distribution of ORIGlabel and NEWCD. This calculation takes 

into account the fact that the class distribution of ORIGlabel 

changes as new examples are moved into it. This process is then 

repeated until all examples have been removed from NEWunlabel or 

a maximum of 4 iterations have been executed. Due to space 

limitations we do not report the results for each iteration, as was 

done for CDE-Iterate. In summary, this method is essentially the 

semi-supervised self-training method, but where we compensate 

for the difference between the class distribution of the training 

data and NEWCD. 

3. EXPERIMENT METHODOLOGY 
This section describes our experimental setup. It describes the 

data sets that we use, the specific experiments that we run, the 

classifier induction algorithm we employ, and the metrics that we 

use to evaluate classifier performance. The methods that we eva-

luate were described in Section 2 and are not described here. 

Table 2. Description of 5 UCI Data Sets 

Dataset Size % Pos Partition 

Adult    48,842  23.9% 4,700 

Covertype  581,012  48.8% 8,000 

Letter-Vowel    20,000  19.4% 1,500 

Magic Gamma    19,020  64.8% 2,600 

Spambase      4,601  39.4% 700 

Table 2 describes the five UCI data sets [3] that we use in this 

study. Any data sets that had more than two classes were con-

verted into two-class data sets. The Covertype data set was con-

verted to two classes by designating ―2‖ as the positive class and 

all other values as the negative class, while the Letter-Vowel data 

set was converted by designating the vowels as the positive class 

and all other letters as the negative class. The positive class is the 

minority class for all data sets except for the Magic Gamma data 

set, because the documentation for that data set specifically states 

that the majority class is the class of interest. Table 2 shows the 

original data set size, the percentage of the examples that belong 

to the positive class, and the number of examples in each partition 

(explained shortly). 

As described earlier, the problem we investigate requires three 

data sets: ORIGlabel, NEWunlabel and NEWeval. We generate each of 

these by splitting the original data set into three equal-sized parti-

tions. For our experiments the positive rate of ORIGlabel is fixed at 

50% while the positive rate of NEWunlabel and NEWeval but will be 

varied between 1% and 99% in 1% increments. In order to gener-

ate the desired class distributions without duplicating any exam-

ples, the size of the partitions must be limited. We use the maxi-

mum possible partition size for each data set and these partition 

sizes are specified in the last column of Table 2 (the value dis-

played for Covertype is not the maximum possible value but was 

reduced due to the size of the data set and time constraints). 

Table 3 shows the results of this partitioning process for the Adult 

data set. Each of the three partitions contains 4,700 examples, 

even as the positive rate (Pr) varies. The maximum number of 

positive or negative examples required is 11,656 (2,350 + 2 • 

4,653), which for the positives examples occurs when Pr= 99% 

and for the negative examples when Pr=1%. Since the original 

data set contains 11,673 (23.9% of 48,482) positive and 37,168 

negative examples, these partitions can be generated without 

duplicating examples. In this case 17 positive examples are not 

used because fractional examples cannot be used to generate the 

appropriate positive rates. 

Table 3. Partitions for Adult Data Set 

Splits Pr # Pos # Neg Tot 

ORIGlabel 50% 2,350 2,350 4,700 

NEWunlabel, NEWeval 1% 47 4,653 4,700 

 2% 94 4,606 4,700 

 … … … … 

 98% 4,606 94 4,700 

 99% 4,653 47 4,700 

In our methodology the partition ORIGlabel is created first and 

does not vary as the 99 partitions for NEWunlabled and NEWeval are 

generated. In order to produce more reliable results, the experi-

ments, and thus the partitioning process, were repeated 10 times 

and the results presented in this paper are averages over those 10 

runs (Covertype experiments were repeated only 4 times due to 

time constraints). 

All experiments in this paper utilize the J48 [17] implementation 

of C4.5 [12] from WEKA release 3.5.8. Our CDE-based methods 

compensate for changes in class distribution using WEKA’s cost-

sensitive learning capabilities, which in WEKA are implemented 

using example reweighting. All of our methods described in 

Section 2 are implemented as wrapper-based learners and could 

easily be applied to other base learning methods. The classifica-

tion performance of our methods is evaluated using both accuracy 

and F-measure. The F-measure is defined as the harmonic mean 

between precision and recall and is defined in equation 3. 

       F-measure = 2 • precision • recall / (precision + recall)       (3) 



We track the performance of F-measure because we are interested 

in what happens when a class distribution becomes highly skewed 

and accuracy is known to be an inappropriate evaluation measure 

in these cases [11]. One might expect AUC to be a more natural 

choice than F-measure given its current popularity in the data 

mining community—and in fact we did track AUC for all experi-

ments. However, we do not report these results because ROC 

curves are, by design, not sensitive to changes in class distribution 

and hence are an inappropriate evaluation measure for this prob-

lem (the results were also uninteresting in that most methods 

performed similarly). 

4. EXPERIMENT RESULTS 
In this section we present and analyze our experimental results. 

We begin by analyzing the detailed results for one representative 

data set, Adult, and then analyze more highly summarized results 

for all five data sets. The detailed accuracy results for the Adult 

data set are shown in Figure 3 and the same data is shown at a 

slightly less granular level (i.e., only data from 13 of the 99 posi-

tive rates are shown) in Table 4. 

Figure 3 shows that three of the methods, Naïve, SSL-Naïve, and 

SSL-Self-Train, perform much worse than the remaining methods 

that are displayed, including all CDE-based methods and the 

Hybrid method. Of the three methods that perform poorly, 

Naïve’s performance is in the middle, with SSL-Naïve performing 

the worst for low positive rates and best at high positive rates. 

With the exception of CDE-Iterate-1, the remaining methods all 

perform about the same for high positive rates but vary at low 

positive rates. Here again CDE-Iterate-1 does the worst, while 

CDE-AC does the best and Hybrid is in the middle. Because of 

difficulties visually differentiating between the curves, the CDE-

Iterate-2 and CDE-Iterate-3 methods are not shown, although their 

performance is better than CDE-Iterate-1 but worse than CDE-AC 

(their more highly summarized performance is provided in Table 

5). The CDE-Oracle and Oracle methods are not shown because 

in the figure they were indistinguishable from the CDE-AC me-

thod. 

 

Figure 3. Accuracy Peformance for Adult Data Set 

It is worth commenting on the shapes of the curves in Figure 3. 

Three of the curves are nearly linear and this includes the Naïve 

method, which is the easiest to analyze. Since the Naïve method 

ignores the new distribution in the learning phase, we might 

expect its performance to be linear and parallel to the x-axis (i.e., 

invariant with respect to positive class rate). However, the ob-

served performance is not inconsistent with this, which simply 

means that the accuracy of the induced classifier is not the same 

for both classes even though the classes are equally represented in 

the training data. The performance curves for the other methods, 

including the Oracle method (not shown) exhibit a ―U‖ shape with 

a minimum near a positive class rate of 50%. This is simply due 

to the fact that it is easiest to achieve high accuracy when a data 

set is highly skewed—and the strategies that exhibit the ―U‖ 

shape can adapt to the skewed distribution. 

The overall performance characteristics of the methods are shown 

more effectively in Table 4, which includes the results for all 10 

methods. Of particular value are the averages for the methods 

over the different positive rates, shown in the last row (these 

averages are computed over all 99 positive class rates, not just the 

13 that are displayed). The Oracle and Naïve methods determine 

the range of expected behavior, while the CDE-Oracle provides 

what should be an upper bound on the performance of the CDE-

based methods. First, note that the CDE-Oracle provides perfor-

mance very close to that of the overall Oracle method. Based on 

the averages we see that the CDE-Iterate methods get progressive-

ly better with additional iterations and that the CDE-AC method is 

the best overall performing CDE-based method. As we saw in 

Figure 3 the SSL-based methods perform poorly and in fact, based 

on average performance, perform worse than the Naïve method. 

The Hybrid method performs in the middle range of the CDE-

Based methods and thus shows promise if it can be improved. The 

overall results suggest that CDE-AC is a very good method and 

looking at each individual row, we see that not only does it have 

the best average performance, but it performs best or nearly best 

for each positive rate. Table 5 will present a more summarized 

view of the data in Table 4, but for all five data sets. 

Table 4. Detailed Accuracy Results for Adult 

 

The F-measure results for the Adult data set are displayed in 

Figure 4. Because the curves are even harder to distinguish than 

for accuracy, the figure was simplified slightly—the x-values are 

shown at 5% increments, curves that were essentially indistin-

guishable were labeled together using one of the curves, some of 

the 10 methods were omitted, and the positive rate is clipped at 

70% because the relative performance of the methods does not 

vary after that point. 

The results for F-measure are interesting in that they vary greatly 

from those for accuracy—and the Oracle does not perform best. 

As Table 6 will show us, this behavior is relatively consistent over 

all data sets, so it is worth further analysis. First, Figure 4 shows 
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CDE-AC
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Hybrid

CDE-Iterate-2
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Naïve

Pr Oracle Naive Oracle Iter-1 Iter-2 Iter-3 AC Naive Self-Tr.

1 99.07 78.78 99.08 93.56 99.10 99.10 99.08 77.73 78.74 99.04

5 95.93 78.81 95.87 90.42 95.34 95.93 95.88 78.04 79.11 95.41

10 92.20 78.64 92.13 88.28 91.77 92.22 92.16 77.82 79.55 90.93

20 86.95 79.42 86.63 84.15 85.88 86.68 86.69 78.69 79.41 85.14

30 83.31 80.21 83.09 81.78 82.47 82.73 82.94 79.49 80.12 82.14

40 81.42 80.88 81.47 80.70 80.77 80.80 81.01 80.00 80.44 81.09

50 81.27 81.24 81.24 81.01 80.86 80.79 80.96 80.65 81.10 81.40

60 82.12 81.52 82.05 82.43 82.39 82.38 82.33 81.29 81.21 82.20

70 84.60 82.41 84.63 84.40 84.29 84.20 84.29 82.12 81.80 84.29

80 87.99 82.68 87.86 87.11 87.81 87.82 87.81 83.12 82.37 87.66

90 92.65 83.36 92.71 91.29 92.45 91.89 92.30 83.92 83.16 92.42

95 95.83 83.51 95.77 93.85 95.64 95.56 95.54 84.17 83.74 95.84

99 98.98 83.93 99.00 95.97 98.96 99.00 98.87 84.97 83.95 98.96

Ave 86.83 81.13 86.84 85.38 86.58 86.62 86.75 80.86 81.09 86.42

CDE SSLBaseline
Hybrid



that the same three methods that did poorly for accuracy for both 

high and low positive class rates (Naïve, SSL-Self-Train, and 

SSL-Naïve) exhibit the same behavior for F-measure. All other 

methods perform similar to one another for high positive class 

rates. But at low positive class rates CDE-Iterate-2 consistently 

does the best. The Oracle and CDE-AC methods perform nearly 

identically to one another, and the Hybrid method sometimes does 

better and sometimes worse than Oracle and CDE-AC. We defer 

the discussion of this interesting behavior until after we introduce 

the F-measure results for the five data sets in Table 6. 

 

Figure 4. F-Measure Performance for Adult Data Set 

We now present the more summarized results for all five data 

sets. Table 5 provides these results for accuracy, which is similar 

to Table 4 but averages the results over all 99 positive rates. The 

methods are sorted in order of decreasing average accuracy, so the 

best methods are toward the top. When determining which me-

thod is the best practical method, the Oracle and CDE-Oracle 

methods are excluded, since in practice oracles are not available. 

The best performing practical method for each individual data set 

is underlined and from this we see that CDE-AC is not just the 

best when averaged over all five data sets, it performs best on 

each individual data set. The overall performance of the other 

methods is roughly consistent with what we saw for Adult. Again, 

we see that the CDE-Iterate method benefits from additional 

iterations and the Hybrid method shows some promise. We again 

see that the SSL-based methods perform poorly—and worse than 

the Naïve method which essentially ignores the changing distribu-

tion completely. 

Table 5. Summary Accuracy Results 

 

Table 6 shows the summary performance of the ten methods over 

the five data sets for F-measure. The methods are again ordered 

by decreasing average performance, and since the values in the 

Adult column are decreasing, as they were in Table 5, the relative 

efficacy of each method for the Adult data set matches the pattern 

over all data sets. The key conclusions here are that the SSL-

based methods do poorly and that the Oracle and CDE-AC me-

thods are in the middle of the performance range and the CDE-

Iterate methods outperform these two methods.  

Table 6. Summary F-Measure Results 

 

While not all of our results could necessarily be predicted a priori, 

most of our results are not surprising and can be explained. For 

example, for accuracy it makes some sense that the CDE-Iterate 

method performs better after one iteration because of the undesir-

able bias mentioned in Section 2. CDE-based methods outperform 

SSL-based methods because, as we shall discuss in Section 5, 

class distribution estimation (i.e., quantification) is fundamentally 

an easier task than classification and thus the CDE-based methods 

introduce less uncertainty than the SSL-based methods, which 

require us to classify examples from the new distribution before a 

classifier can be retrained. 

The F-measure results that have the CDE-Iterate methods outper-

forming the CDE-Oracle and Oracle methods are harder to justify, 

but we feel we have a plausible explanation. Our explanation 

begins with the Oracle method, which uses the correct (hidden) 

labels from the new distribution to train a classifier. While this 

seems like the perfect strategy, most classification methods are 

optimized for accuracy maximization and often sacrifice perfor-

mance of the minority class for improved performance of the 

majority class—which will likely degrade the F-measure perfor-

mance, due to the need to achieve high recall values. Thus we can 

see that the Oracle method may produce poor F-measure values 

when trained on data with low positive class rates. Because the 

CDE-Iterate method will train a classifier using data with a posi-

tive rate of 50%, it has the opportunity to achieve better F-

measure results. The cost ratio used to adjust the classifier can 

undermine this by placing less emphasis on the positive class 

when the new distribution has a lower estimated positive rate, but, 

as discussed in Section 2, the CDE-Iterate method will tend to 

underestimate any changes in class distribution, especially in the 

initial iteration. This explains why CDE-Iterate-1 performs well. 

This above explanation may explain the observed results, but is 

there any useful lesson here? There is a lesson, but it not a new 

one. If one wants to perform better on one class than another, it is 

appropriate to bias the learner toward that class and if one wants 

to do well on a measure that balances the performance of both 

classes, then one should not bias the learner toward one class 

(e.g., by training on data mainly from one class).  Thus, we should 
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Method Adult Type Vowel Gamma Base Ave

Oracle 86.83 85.30 89.12 85.75 91.79 88.10

CDE-Oracle 86.84 85.02 88.98 85.94 91.69 88.06

CDE-AC 86.75 85.06 88.68 85.65 91.82 87.94

CDE-iterate-3 86.62 84.91 88.68 85.32 91.74 87.80

Hybrid 86.42 84.68 88.24 85.35 91.58 87.61

CDE-iterate-2 86.58 84.32 88.40 84.80 91.72 87.55

CDE-iterate-1 85.38 82.82 87.61 83.47 91.47 86.60

Naive 81.13 78.83 85.22 80.29 88.76 83.40

SSL-Self-Train 81.09 79.05 85.24 79.99 88.55 83.29

SSL-Naive 80.86 77.67 82.93 79.54 87.96 82.57

Cover Letter Magic Spam

Method Adult Type Vowel Gamma Base Ave

CDE-iterate-2 .777 .748 .819 .761 .861 .799

CDE-iterate-1 .773 .742 .811 .755 .859 .794

CDE-iterate-3 .752 .738 .810 .749 .858 .787

Hybrid .769 .725 .803 .747 .843 .785

Oracle .760 .730 .812 .737 .850 .784

CDE-Oracle .760 .723 .812 .736 .854 .784

CDE-AC .755 .716 .807 .742 .845 .781

Naive .742 .718 .784 .736 .825 .767

SSL-Self-Train .741 .720 .785 .731 .824 .766

SSL-Naive .738 .704 .749 .728 .814 .755



take this into account when ―adjusting‖ a classifier to compensate 

for changes in class distribution. This suggests an extension to our 

work—how to adjust for a changing class distribution when either 

the classes are not equally important or are equally important. 

Interestingly enough, there has been work on cost quantification 

[7] and these methods would be appropriate to counteract changes 

to the class distribution when we have knowledge about the rela-

tive importance of the different classes. 

5. RELATED WORK 
In this section we describe some related work, although much of 

the most relevant work was already mentioned in Section 2. The 

problem of improving classifier performance in response to un-

known changes in class distribution has been studied previously 

[1, 9, 13] and the most relevant and successful approach thus far 

has involved expectation maximization (EM) [9, 13] and this 

approach has also been adapted to the related problem of classify-

ing non-stationary data sequences [18]. Our CDE-Iterate method 

is a variant of the basic EM method, but there are some minor 

differences. Namely, the CDE-Iterate method thresholds the 

generated probability estimates to assign a class label and from 

this generates the class distribution estimate, while EM uses the 

probability estimates directly, without applying any threshold. In 

addition, CDE-Iterative ―adjusts‖ the original model using cost-

sensitive learning while the prior work using EM adjusted the 

original model’s posterior probability outputs. Based on our 

results and the published results in prior work, we believe that 

both the EM and CDE-Iterate methods are similar and perform 

similarly (however, as we discuss in Section 6, we view CDE-AC 

as superior to both methods). 

In some situations one may have no information (e.g., unlabeled 

examples) about future changes in class distribution but still wants 

to maximize classifier performance on future data [19]. The ap-

proach in this case is not to adapt to changing conditions, but 

rather to build a ―robust‖ classifier that performs well under a 

wide variety of situations [2]. In fact, this desire for classifiers that 

exhibit robust behavior over wide ranges of class distributions and 

misclassification costs is the primary reason that ROC analysis 

[10] has gained such prominence in the data mining community. 

While this approach of generating robust classifiers has its advan-

tages and is applicable to our problem, it clearly is not the best 

strategy when the class distribution of the new data is known or 

can be reliably estimated—and as we have seen in this paper, we 

can reliably estimate the new class distribution when unlabeled 

data from the new distribution is available. 

While our work focused on improving classifier performance in 

response to changes in the class distribution of the data, a related, 

but different, task is the quantification task. Quantification in-

volves estimating the prevalence (i.e., class distribution) of the 

classes over time [7]. Quantification is a simpler task than classi-

fication because one can often come up with good estimates of a 

class distribution without producing accurate predictions for 

individual examples. As an example, auto insurance agencies can 

accurately predict what fraction of their policy holders will have 

an accident without being able to accurately predict which specif-

ic policy holders will have an accident. As we have seen this 

paper, quantification methods can also help solve our more com-

plex task (i.e., our CDE methods perform quantification then 

model adjustment). Quantification techniques are discussed in 

detail by Forman [7, 8] and while we applied some of those me-

thods to our problem (i.e., Adjusted Count) there are other rele-

vant methods that could be analyzed in the future (e.g., Median 

Sweep, Mixture Model).  

Our CDE-based methods compensate for changes in the class 

distribution via cost-sensitive learning and the EM accomplishes 

the same thing by changing the probability thresholds. A third 

way of compensating for differing class distributions is to sample 

from the original distribution so that its class distribution matches 

the estimated class distribution of the new data. Many appropriate 

sampling methods exist [15], such as oversampling and under-

sampling, as well as more advanced methods which make better 

use of the data [5]. 

Since our learning task involves labeled and unlabeled data, semi-

supervised learning methods [4, 20] are relevant. The results thus 

far for the SSL-based methods have not been very promising, 

probably due to the fact that, as just discussed, it is easier to accu-

rately estimate the class distribution of the unlabeled examples 

than to classify them. We believe, however, that the CDE-based 

methods can ultimately benefit from semi-supervised learning and 

thus we feel that semi-supervised learning warrants further study. 

6. CONCLUSION AND FUTURE WORK 
In this paper we evaluated several methods for dealing with the 

situation where the class distribution can change after an initial 

classifier is built and only unlabeled data from the new distribu-

tion is available. Our results clearly indicate that the naïve ap-

proach of not doing anything leads to very poor results but that 

there are very effective methods for dealing with this problem. 

The class distribution estimation based methods generally per-

formed the best and when accuracy must be maximized the CDE-

AC method is the best choice based on its performance, computa-

tional requirements (i.e., only a single iteration) and the fact that 

there are no parameters, such as the number of iterations, to set. 

The CDE-based methods performed relatively close to the 

ORACLE method, especially in comparison to the Naïve method, 

which performed poorly. In general we found that the 

CDE-Iterate-2 method outperforms the CDE-Iterate-1 method, 

indicating that our iterative process does lead to improved class 

distribution estimates. Relative to the CDE-based methods, the 

semi-supervised learning methods did poorly. The hybrid method 

did much better than the SSL-based methods, but consistently 

underperformed the CDE-based methods. The results for F-

measure were quite different and the reasons for this were dis-

cussed in Section 4. However, the results were still quite clear, 

with the CDE-Iterate-2 method performing best, and all of the 

CDE-based methods were effective, significantly outperforming 

the naïve strategy. 

The relatively poor performance of the SSL-based methods, for 

both accuracy and F-measure, is quite notable. This failure was 

explained earlier by the fact that class distribution estimation is 

fundamentally an easier task than classification and hence our 

class distribution estimates are thus going to be more accurate 

than the estimates of the class values for the new, unlabeled, data. 

A second insight, however, is related to the task itself. Semi-

supervised learning is typically employed when labeled training 

data is very scarce but unlabeled data abounds. That is not the 

case in our problem setting or in our experimental setup and was 

not the motivation for the use of semi-supervised learning. In our 

setting we assume that there is sufficient labeled data to build a 

reasonable classifier. The problem is that the class distribution 

changes and that is the motivation for the use of semi-supervised 

learning (i.e., we want to learn from the more representative, but 



unlabeled, examples). Given this understanding and the fact that 

CDE is easier than classification, the disparity in the results is 

explained. Nonetheless, in theory the use of the new data for 

training could improve overall classifier performance and we do 

believe that SSL methods can be of use in this context. We dis-

cuss improvements to the SSL methods in our discussion of future 

work toward the end of this section. 

This paper provides a number of contributions. First, we evaluate 

methods that have not previously been used to address the chang-

ing class distribution problem—and these new methods—

especially CDE-AC—are shown to work well. Furthermore, the 

CDE-AC method that we recommend is simpler and easier to 

implement than iterative methods. The failure of the SSL-based 

methods is also notable and should help guide future research. We 

also provide a more comprehensive empirical study of the prob-

lem than past work: we analyze a total of ten methods, including 

several baseline methods for comparison, evaluate our results with 

respect to F-measure in addition to accuracy, combine multiple 

approaches (i.e., Hybrid), and evaluate our methods under a large 

number (99) and range (1% - 99%) of class distributions. Finally, 

the problem we address does occur in many realistic settings and 

given the current state-of-the-art of data mining tools, it is feasible 

for practitioners to implement our solution (i.e., most tools pro-

vide one of the three methods that we discuss for adjusting a 

classifier). Finally, we also hope that our work will bring deserved 

attention to the problem of changing class distributions and the 

fact that good solutions do exist. 

Although our results for the CDE-based methods are quite en-

couraging, there is certainly some room for improvement, since 

even a 1% difference in accuracy between our method and the 

ORACLE method is significant. One improvement would be to 

adapt the CDE-Iterative method to automatically terminate once 

the class distribution estimate converges. This might improve 

overall performance over any specific CDE-Iterate-n method and 

would eliminate the problem of identifying the appropriate num-

ber of iterations. It is possible that such a CDE-converge method 

would outperform CDE-AC. We have performed some prelimi-

nary research in this area and have found that in many cases 

convergence does occur, although we need to refine our notion of 

convergence (e.g., to handle small cyclical fluctuations in the 

estimates). As discussed, semi-supervised learning should enable 

us to improve our CDE results further by making additional data 

available for classifier induction, although the clear superiority of 

the CDE-based methods over the SSL-based methods indicate that 

it may not be easy to develop an effective hybrid approach. One 

possibility we are investigating is to use a classifier that accepts 

class membership probabilities in the training phase, so that the 

uncertain predictions generated by semi-supervised learning can 

be factored into the learning process.  

We also would like to apply our current methods, and some new 

variants of these methods, to more complex problem settings. One 

such problem setting differs only slightly, where NEWunlabel and 

NEWeval are replaced by a single data set that serves both purpos-

es. In this new scenario the goal is to exploit new data to build a 

new classifier and then classify that same new data, rather than 

our current setting where additional data drawn from the new 

distribution is classified. This new setting would be an example of 

transductive learning. A more ambitious setting that we intend to 

study is where the concept drift is of a much less restrictive form, 

such that the actual concept can change over time, rather than just 

its class distribution. The CDE-based methods may still prove 

useful in this more challenging setting—since the class distribu-

tion will most likely change if the concept changes—but the 

CDE-based methods clearly will not be sufficient by themselves. 

In this more complex setting semi-supervised learning will have 

more to offer and hybrid methods may then perform best. 
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