
Presented at the 1998 NIPS-98 Workshop on Learning from Ambiguous and Complex Examples.

Event Prediction: Learning from Ambiguous Examples

Gary M. Weiss
* and Haym Hirsh

Department of Computer Science
Rutgers University

New Brunswick, NJ 08903
gmweiss@att.com, hirsh@cs.rutgers.edu

Abstract

Event prediction is an important problem with many real-
world applications. For the majority of these applications, it is
not necessary to predict the exact time an event will occur—it
is acceptable to predict that the event will occur within some
time interval. The use of this time interval introduces
ambiguity into the event prediction problem, permitting it to
be viewed as a multiple-instance learning problem. We have
developed timeweaver, a genetic-algorithm based learning
system that is capable of solving these event prediction
problems. Timeweaver handles the ambiguity in the learning
problem by employing a special evaluation function. In this
paper we also describe how some of the ambiguity can be
eliminated by reformulating the learning problem.

Introduction

There are many situations where one would like to learn to
predict the occurrence of a specific type of event, a target
event, before it actually occurs. Representative applications
include predicting telecommunication equipment failures
(Weiss & Hirsh, 1998) and predicting electric power system
blackouts (Geurts & Wehenkel, 1998). The event prediction
task involves taking existing event traces (which themselves
contain target events) and from them learning a pattern that
successfully predicts the target events. The learned pattern
can then be applied to new event sequences. Every time a
new event is received, the pattern is checked, and if the new
event causes the pattern to be “completed”, then a prediction
of the target event is issued.

For these problems it is not necessary to predict an event
the instant it occurs; rather, it is sufficient to predict it within
some reasonable “prediction period”. This may result in
ambiguous examples, since we require a target event to be
predicted only once, yet there may be many events within
the interval in which a prediction must occur. This situation
is equivalent to having a bag labeled positive in a multiple-
instance learning problem, where only one item in the bag is
required to be positive.

The Problem Formulation

An event Et is a timestamped observation that occurs at time
t and is described by a set of feature-value pairs. An event
sequence is a time-ordered sequence of events, S = Et1,
Et2,..., Etn. The target event is the event to be predicted. We
say a prediction occurring at time t, Pt, is correct if a target
event occurs within its prediction period. As shown below,

*Also AT&T Labs, Short Hills NJ 07078

the prediction period is defined by a warning time, W, and a
monitoring time, M.

The warning time, W, is the “lead time” necessary for a
prediction to be useful and the monitoring time, M,
determines how far into the future a target event can occur
and the prediction still be considered correct. The warning
time depends on the problem domain (e.g., how long it takes
to replace a piece of equipment). There generally is more
flexibility in assigning a value to the monitoring time. The
larger the value of M the easier the prediction problem, but
the less meaningful the prediction (imagine a monitoring
time of 100 years). We have just defined the prediction
period with respect to each prediction. For the purpose of
training a learner, where we must classify each prediction as
correct or incorrect, it is better to define the prediction
period with respect to each target event. This is shown
below, where the target event X occurs at time t:

A prediction is correct if it falls within the prediction period
of some target event. The problem is to learn a prediction
pattern P that correctly predicts the target events. A
prediction is made upon observation of each event, so P: Et1,
Et2,.., Etx→{+,-}, for each event Etx. To complete the
description of the problem, we need to define the semantics
of a prediction. We assume that a user of our learning
system, when applying it to new data, will take action (e.g.,
replace a piece of equipment) as soon as a single positive
prediction occurs.

Event Prediction as Multiple-Instance Learning

The basic event prediction problem can be viewed as a
multiple-instance learning problem. A positive or negative
prediction occurs at each event and an example is associated
with each prediction. For a target event to be predicted only
a single prediction need occur within its prediction period—
but multiple predictions will be possible if more than one
event falls within this period. Thus, the examples that fall
within the prediction period form a bag of predictions with a
positive label, where only one of the examples is required to
be a positive prediction. Note that in this section we have
not specified what is in each example. While this may lead
to some confusion, it is not necessary in order to understand

t + WPt

prediction period

t + M

Xtt - Wt - M

prediction period

2

how the ambiguity arises. Nonetheless, from the problem
formulation one can see that each example includes the
event that caused the prediction to be made as well as
previous events in the sequence.

The predictions that fall between two prediction periods
can be viewed as falling into a single bag of predictions with
a negative label. That is, because these events do not fall
within a target event’s prediction period, all of the
predictions should be negative. This is a consequence of the
fact that only a single positive prediction is required to
predict a target event. At this point, we have successfully
described the event prediction problem as a multiple-
instance learning problem.

Due to some real-world considerations, however, we
cannot view the event prediction problem as a perfect
multiple-instance learning problem. In multiple-instance
learning, one does not distinguish between having one
positive examples in a negative bag or having multiple
positive examples in the bag—either way this counts as a
single error. However, in our case multiple false positives
may not be equivalent to a single false positive. To see why,
we will consider the telecommunication domain we have
studied. In this domain we replace a circuit pack once we
predict it will fail. A single incorrect prediction will cause
the circuit pack to be unnecessarily replaced. A second
incorrect prediction may cause the circuit pack to be
replaced again; thus we should count each incorrect
prediction. However, it will take some time to replace this
circuit pack—possibly a time equal to the warning time. So,
if the second incorrect prediction occurs close to the first, it
may not cause any additional action. Our strategy is to
discount false predictions that occur close together. We
have come up with a formula for doing this that takes into
account some of the characteristics of the domain.

Evaluation Metrics

This section will describe statistics to evaluate the learned
prediction “pattern”. In order to be meaningful, these
statistics will take into account the ambiguity in the
examples. These statistics, shown in Figure 1, were
developed to guide the search in our learning system.

We begin by introducing statistics that do not reflect the
ambiguity in the data, and then modify them to take the
ambiguity into account. The statistics we start with are
precision and recall, since we would like to generate a
solution that achieves both high precision and recall. For the
event prediction problem, recall is defined as the percentage
of target events correctly predicted and precision as the
percentage of predictions that are correct.

Recall =
Target Events Predicted

Total Target Events
Precision =

TP
TP + FP

Normalized Precision =
Target Events Predicted

Target Events Predicted + FP

TP = True Prediction FP = False Prediction

Reduced Precision =
Target Events Predicted

Target Events Predicted + Discounted FP

Figure 1: Evaluation Metrics

 By defining recall based on the target events, rather than
on the predictions, we avoid the ambiguity associated with
the predictions. However, precision does not take into
account the ambiguity we discussed earlier since it counts
each prediction. Normalized precision eliminates the
problem of counting multiple predictions of a single target
event multiple times by replacing the number of correct
predictions with the number of target events correctly
predicted—thus “extra” predictions of a target event are
ignored. Reduced precision takes into account the concerns
we described in the previous section with the false
predictions, by discounting the number of false predictions.
There are many possible ways to discount the false
predictions. We focused on the fact that a prediction is
“active” for a time interval equal to its prediction period. If
a second prediction occurs ½ a prediction period after the
first prediction, the active period for the two predictions is
only 1½ prediction periods, due to a ½ prediction period
overlap. So, in this case, the discounted value of the two
false predictions would equal 1½ instead of 2.

Timeweaver: An Event Prediction System

Timeweaver solves the event prediction problem by
identifying predictive patterns in the event sequences.
Individual patterns predict a subset of the target events with
high precision and collectively the patterns cover most of the
target events. This approach is implemented in timeweaver,
a genetic algorithm-based learning system (Weiss & Hirsh,
1998). Timeweaver’s search space is defined by a pattern
language that allows sequential and temporal constraints to
be specified between events. In order to handle the ambiguity
in the examples, the genetic algorithm’s evaluation function
uses the recall and reduced precision statistics defined in
Figure 1. The exact way in which these two statistics are
combined is described in Weiss and Hirsh (1998).

Additional Sources of Ambiguity

We have shown how the event prediction problem can be
viewed as a problem that requires learning from ambiguous
examples and how this is a variant of the multiple-instance
learning problem. Below we discuss one way in which the
problem can be further complicated.

So far we have treated all correct predictions within the
prediction period of a target event as being equivalent. That
is, we have assumed that the value of a prediction is based
on the step function shown in Figure 2. In the real world,
however, things are generally not that simple and instead the
value of a prediction might be represented by the curve.

Figure 2: the value of a prediction

Xtt - Wt - M

prediction period

3

With this curve, the value of the prediction decreases rapidly
as the prediction occurs closer to the target event. As the
prediction occurs further and further away from the target
event, it become less valuable, since it is less meaningful;
however, the value is likely to decrease slowly. The optimal
time for a prediction would fall somewhere in the prediction
period associated with the simpler step function. With this
formulation, there is still ambiguity. Multiple predictions
may still occur, but now not all predictions have the same
value. With this more complex value function, we count the
first prediction, since we assume action is initiated
immediately, but now we need to use the value returned by
this first prediction. It is fairly straightforward to modify
our evaluation functions to take this more complex value
function into account.

Eliminating Ambiguity

Some problems are inherently ambiguous while for others
the ambiguity is introduced in order to provide a
representation that is suitable for a specific learning
algorithm or family of learning algorithms. In this section
we discuss how some of the ambiguity in the learning
problem can be removed by reformulating the problem.

Reformulating the Problem
The event prediction problem can be reformulated to
eliminate the “basic” ambiguity in the event prediction
problem—where this ambiguity arises from the fact that a
prediction is made after each event in the sequence. We can
eliminate this ambiguity by breaking the events into
examples such that there is only one example associated
with each target event. Figure 3 shows how this is done.

Figure 3: Eliminating Ambiguity

In the figure, each event is represented by a square and the
two target events, T1 and T2, have prediction periods, P1
and P2, respectively. The events within each prediction
period form a single example. This causes two positive
examples to be formed. Negative examples are formed from
the events between consecutive prediction periods that do
not fall into the warning period of a target event. The reason
that the events in the warning period are excluded is that
predictions within this period are not really wrong—they are
just not useful; if we did include them, then that might
prevent us from learning the correct concept. In some cases,
the negative examples may cover a very large number of
events. In this case we may choose to break the large
negative examples into two or more smaller examples.
Depending on the learning system and the problem at hand,
this may yield better results. In recent work we have broken
the negative examples up so that each negative example
spans a time period equal to the prediction period—thus the
negative and positive examples tend to cover roughly the
same number of events.

Representation Issues
In order to reformulate the problem as just described, we
must be able to encode multiple events into a single
example, such that the events themselves are preserved, as
well as the sequential and temporal information. With
timeweaver, this is trivial. Because timeweaver operates on
the raw event sequence data, all we need to do is represent
each example as a separate sequence of events. Another
approach we are exploring is to represent the examples using
first-order relations, and then use FOIL, a relational learner,
to learn to predict the target events.

It is worth pointing out that it is difficult to encode
multiple events as a single example using a learner, like
C4.5, that requires a propositional representation. One way
of doing this encoding is to generate new features to encode
sequence information (e.g., n-grams), but this may result in
a tremendous number of features, which may include useless
information while still missing important sequence and
temporal information. Other methods for doing this type of
encoding have also been investigated (Dietterich and
Michalski, 1985).

Discussion

Although this paper focuses on learning from ambiguous
examples, we would like to point out that until recently, we
did not explicitly think of our work in this manner. We
simply developed a system to solve a particular problem that
seemed interesting because it did not easily fit into the
standard machine learning paradigms. However, we believe
that there is value in explicitly thinking in terms, especially
if it brings more attention to a class of interesting, real-
world, problems that may not have received sufficient
attention.

We would also like to point out that the ability to specify
the evaluation function was critical in developing our
“multiple-instance” learner. Although all heuristic learners
have some form of evaluation function, many off-the-shelf
learners do not permit the user to modify the evaluation
function, except in some limited, predefined, way. We
believe this will become an increasingly important issue as
machine learning is applied to a wider range of problems. It
is also important to note that for the event prediction
problem, and probably for many other problems, it is critical
to understand the domain under study in order to determine
if examples are ambiguous, and if so, the nature of the
ambiguity.

References
Dietterich, T., and Michalski, R. 1985. Discovering patterns
in sequences of events, Artificial Intelligence, 25:187-232.

Geurts P. & Wehenkel, L. 1998. Early Prediction of
Electric Power System Blackouts by Temporal Machine
Learning. In Predicting the Future: AI Approaches to Time-
Series Problems, papers from the 1998 Workshop, Technical
Report WS-98-07, AAAI Press, 21-28.

Weiss, G. M., and Hirsh, H. 1998. Learning to Predict Rare
Events in Event Sequences. In Proceedings of the Fourth
International Conference on Knowledge Discovery and Data
Mining, AAAI Press, 359-363.

+–+ T1T2

P1P2

