
Generalized Sequential Pattern Mining of
Undergraduate Courses

Daniel D. Leeds, Cody Chen, Yijun Zhao, Fiza Metla, James Guest, and Gary M. Weiss
Computer and Information Science Department

Fordham University, New York, NY

{dleeds, cchen187, yzhao11, fmetla, jguest2, gaweiss}@fordham.edu

ABSTRACT
University students have a great deal of freedom in deciding the

order in which to take their courses. In this paper we apply the Apri-
ori-based Generalized Sequential Pattern (GSP) algorithm to
undergraduate course data from a large university in order to iden-
tify frequent course sequences. Course sequencing results are
primarily generated at the department level, with a special focus on
Computer Science courses. This paper also introduces the course
sequence flow diagram, which compactly represents a large amount
of course sequencing information in an intuitive visual form. Our
results and associated flow diagrams can help to answer a variety

of important questions, such as: what course sequences are most
common, how are courses between different departments ordered,
and when are courses taken in an order that may contradict the ad-
vice given by academic advisors? In this paper we show that this
form of descriptive data mining can identify standard core curricu-
lum and pre-health sequences of study, as well as computer science
courses that are either artificially pushed to the end of a student’s
program of study or taken earlier than would be recommended.

Keywords
Sequence mining, association analysis, course sequencing, educa-
tional data mining.

1. INTRODUCTION
The order in which university students take their courses is only
partially constrained by course prerequisites and university poli-
cies. However, course sequencing is important since it impacts
student learning and can impact student grades. This was demon-

strated by one of our research group’s recent studies that looked at
pairs of courses taken in both possible orderings and showed that
the different orderings produced different grade performance [4].
Other work has looked at the sequences that courses in specific dis-
ciplines, such as communications [7] and psychology [2], are taken
in, and assessed how these impact student learning. Some work
looks more generally at course selection and how it impacts student
grades [5] or time to graduation [6].

Prior work focuses mainly on assessing the impact of specific
course sequences rather than on identifying or characterizing
course sequences. This paper focuses on the descriptive data min-
ing task of identifying common course sequences and how to best
represent this information. These sequences are of intrinsic value,
providing insight into how our curricula operate in practice. They

can identify course prerequisite structures and interrelationships
between departments. They can also expose courses taken in an un-
expected, and perhaps inadvisable, order. These insights can be
used to modify and improve academic advising and inform curric-
ular changes, such as by modifying course prerequisites.

In this paper we use the Apriori-based Generalized Sequential Pat-
tern (GSP) algorithm [9] to identify frequent k-sequences, where a

k-sequence contains k courses taken in a specific sequential order.
We apply this method to courses at the department level and in
some cases across departments. We show how these frequent k-se-
quences can be used to form a course sequence flow diagram that
encapsulates the knowledge of many sequential patterns in a simple
and useful visual form. We then show how the flow diagrams and
associated results can be used to gain useful academic insights,
which can inform academic advising and perhaps even changes to

the curricula (e.g., modifications to prerequisites or course number-
ing). Our most detailed analysis focuses on the Computer Science
department, building off our familiarity with our home department.

In Section 2 we describe the Apriori and GSP algorithms. Section 3
describes the course-enrollment data set provided by our university
and the steps necessary to transform this data into the student-level
course sequences suitable for mining by the GSP algorithm. In Sec-
tion 4 we present our results in the form of frequent k-sequences,
introduce the course sequence flow diagram, and extract insights
from these results by utilizing our curricular domain knowledge.

Section 5 provides our broader conclusions, study limitations, and
plans for future work.

2. SEQUENCE MINING
This paper extracts common course sequences from undergraduate
course enrollment data. It relies on the generalized sequential pat-
tern mining framework [9], which is an extension to the Apriori
association rule mining algorithm that takes ordering into account.
Whereas Apriori generates a set of frequent itemsets, GSP gener-
ates a set of frequent sequences, and, in the context of this study, a
set of frequent course sequences. Minimum support is used analo-

gously to its use in Apriori, so a specific sequence is considered
frequent if it occurs in more than minsup sequences. We briefly in-
troduce the well-known Apriori algorithm and then describe the
GSP algorithm as an extension to Apriori.

The Apriori association rule mining algorithm [1] was developed
to provide retailers with information about what items are usually
purchased in the same transaction. Formally, let I = {I1, I2, I3, …,
Id} be the distinct items and let T = {T1, T2, T3, …, Tn} be the set
of customer transactions, where each Ti contains a subset of items
in I. A k-itemset X is a collection of exactly k items:

X = {X1, X2, X3, …, Xk}, where Xi  I i, and |X| < d.

Given a set of transactions T, the support of a k-itemset is the frac-
tion of the transactions T that contain all of the k items in the

k-itemset (e.g., if k=2 and the items are milk and cereal, then

D. Leeds, C. Chen, Y. Zhao, F. Metla, J. Guest, and G. Weiss.
Generalized sequential pattern mining of undergraduate courses. In
A. Mitrovic and N. Bosch, editors, Proceedings of the 15th Inter-
national Conference on Educational Data Mining, pages 629–633,
Durham, United Kingdom, July 2022. International Educational
Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6852978

https://doi.org/10.5281/zenodo.6852978

support is the fraction of transactions that contain milk and cereal).
Association rule algorithms like Apriori [1] and FP-growth [3]
identify all frequent k-itemsets. These algorithms also include a
second step that generates association rules from the itemsets, but
our study does not need to generate rules, only frequent sequences,

so we focus only on the first step.

The GSP algorithm [9] is a modest extension of the Apriori algo-
rithm. The extension involves making the Apriori algorithm
sensitive to the order of items (i.e., courses) in each transaction.
There are two extensions that need to be made to the Apriori algo-
rithm. The first is to extend the candidate generation phase to
generate ordered itemsets and the second is to account for item or-
dering when computing the support for an itemset (i.e., sequence).

3. METHODOLOGY
This section describes our initial data set, how we transform this
data into a form suitable for the GSP algorithm, and the impact of
the minsup threshold on the resulting course sequences.

3.1 Initial Course-Enrollment Data Set
This study is based on eight years of undergraduate course enroll-
ment data from Fordham University. Each entry in the initial data
set represents the enrollment of a specific student in a course sec-
tion, along with their grade in the course and the semester and year

that they took the course. To preserve privacy the student identifiers
were mapped to new, but consistent, values and course sections
with fewer than five students were dropped. The data set contains
473,527 records that collectively cover 24,969 distinct students.
For the purpose of this study all sections of the same course are
considered equivalent. Even with these privacy protections we can-
not share the course-enrollment data, due to strict privacy laws.

3.2 Student Course-Sequence Data Set
The initial data is not in the format expected by the GSP algorithm
since it expects each entry to include an ordered sequence of
courses. Thus we transform the initial data set into a student course-
sequence data set by separating the courses for each student and
then ordering these courses chronologically. Courses that are taken

during the same semester are ordered lexicographically using the
course identifier. Below is a sample course sequence record, which
starts with the student-ID and is followed by five courses:

 S245632: CS1000, CS2000, HIST1200, CS3462, CS2250

3.3 Applying GSP to Course-Sequence Data
When we run the GSP algorithm on course-sequence data at the
departmental level, we restrict the data to only include sequences
that contain students who take one or more courses from that de-
partment. This improves the algorithm’s running time without
impacting the generated frequent k-sequences; however, it impacts
minsup, if expressed as a fraction, since the denominator used to

calculate support is reduced. To address this, and also account for
the fact that different departments have different numbers of stu-
dents (i.e., sequences), we express minsup as a minimum support
count (an integer) rather than a minimum support (a fraction).

The GSP algorithm can be applied directly to the student course-
sequence data set, where each entry corresponds to the ordered
courses taken by one student. If minsup is set too low, the number
of frequent sequences will explode exponentially, which will
radically impact the running time of the algorithm and lead to an
unwieldy number of frequent sequences. Experiments in Section 4
vary minsup to assess its impact on running time and on the number

of frequent sequences.

4. RESULTS
This section includes our main results. Section 4.1 provides depart-

ment level information about the number of frequent k-sequences
generated by the GSP algorithm, while Section 4.2 provides infor-
mation on the running time of the algorithm. Section 4.3 examines
the frequent sequences for the Computer Science (CS) department,
introduces our course sequence flow diagram, and uses this dia-
gram to provide insights into the sequencing of CS courses. The
section concludes by analyzing some non-CS course sequences.

4.1 Summary Department Level Results
This section provides summary results of running the GSP algo-
rithm on courses from individual STEM departments, combined
Biology and Chemistry courses, and all undergraduate courses. By
varying the number of courses considered we demonstrate its im-
pact on the number of frequent sequences and running time. Table 1

shows the number of k-sequences generated for these groupings,
for various values of k and minsup. Two entries are provided for
each minsup value: one without pruning and one with pruning. The
pruned results remove any frequent k-sequence contained (i.e., with
the courses in the same relative order) within a larger frequent se-
quence, since this information can be considered redundant. Pruned
entries have a “*” next to the minsup value. When generating fre-
quent sequences from all undergraduate courses, much larger

minsup values are employed to keep the running time manageable
and to avoid generating more sequences than could be analyzed.

Table 1. Department-level results for the GSP algorithm

 Number of k-sequences (k from 2 to 9)

Department minsup 2 3 4 5 6 7 8 9

CompSci 50 151 223 132 23 1

 50* 56 111 97 21 1

 100 61 61 18 1

 100* 61 61 18 1

Chemistry 50 101 289 408 224 48 4

 50* 9 44 178 152 40 4

 100 20 7 1

 100* 12 4 1

Physics 50 51 48 37 21 7 1

 50* 17 14 12 10 5 1

 100 14 2

 100* 10 2

Biology 50 91 148 96 25 1

 50* 22 61 59 23 1

 100 47 54 26 6

 100* 14 24 16 5

NatSci 50 121 315 580 736 704 490 225 60

 50* 24 53 136 189 230 232 147 50

 100 70 124 131 86 34 4

 100* 15 31 44 43 27 4

Math 50 111 177 79 6

 50* 40 98 68 6

 100 68 34 1

 100* 35 32 1

Psychology 50 241 250 48

 50* 110 193 48

 100 114 53 8

 100* 72 41 8

Bio+Chem 50 278 899 1455 1272 694 235 38

 50* 38 179 512 592 395 170 38

 100 122 296 414 344 162 37 3

 100* 48 115 202 248 174 64 3

All 500 919 1853 1792 1096 532 197 47 5

 500* 322 819 902 599 328 141 40

 1000 292 416 160 6

 1000* 105 238 148 6

* frequent k-sequences that appear in frequent k+1 sequences are pruned

Table 1 shows that the number of k-sequences varies greatly by de-
partment. This variation is due in part to the varying number of
students, and student majors, in each department, as well as the
amount of sequencing in the curriculum. The largest k-sequence for
each department varies from 4 to 10 (Natural Science has one

10-sequence for minsup=25 that did not fit in the table). The num-
ber of k-sequences is also dramatically impacted by the minsup
value, which indicates that care must be chosen in selecting this
value. Adding additional courses can also have a large impact, as
can be seen by comparing the individual Biology and Chemistry
department entries with the combined Bio+Chem entry. The num-
ber of entries when using all courses would be enormous if we did
not increase the minsup threshold by a factor of 10. The number of

sequences that are pruned is more substantial for smaller se-
quences—a pruned itemset has a cascading effect as it trickles
down to the lower levels (i.e., lower k values).

4.2 Run-time Complexity
The running time of the GSP algorithm is affected by the number

of items (distinct courses), the number of sequences to mine, and
the number of items (i.e., courses) in each sequence. While worst
case performance is exponential in the number of items/courses, the
performance is generally much better, depending on the minsup
value. If minsup is sufficiently low, the complexity can even be lin-
ear in the number of sequences. The time to generate the frequent
course sequences for the same nine department groups appearing in
Table 1, when run on a MacBook Air laptop with an 8-core 3.2GHz

processor, is displayed in Figure 1. To make the figure easy to read
the legend is ordered to match the running times associated with
each department. Since the y-axis uses a log-scale, the running time
is not actually linear. In order to keep the running time manageable,
minsup starts at 500 when mining all courses— but as shown in
Table 1, this still yields a much longer running time.

Figure 1. Impact of minimum support on running time

4.3 Detailed Analysis of Computer Science
This section looks into the detailed results for the CS department.

In Section 4.3.1 we introduce our course sequence flow diagrams,
which are capable of representing the information from a large
number of frequent sequences in compact visual form. In Section
4.3.2 we then then use this diagram to better understand how stu-
dents sequence their CS courses.

4.3.1 Course Sequence Flow Diagram
Many of the results for the department are summarized in Figure 2,
which embodies the information within all twenty-three Computer
Science 5-sequences (the 5-sequences are listed in Appendix Ta-
ble 2). We focus on these since there is only one 6-sequence and no
larger sequences (see Table 1). Our course sequence flow diagram
constitutes a substantial improvement upon previously existing se-
quencing visualization methods, such as Sankey diagrams [8]. We

believe that our course sequence flow diagram is a significant con-
tribution, preserving information across multiple sequences while
conveying this information clearly and compactly.

Figure 2 contains all eleven courses that are represented in the 23
5-sequences in Table 2. Each sequence in Table 2 has an index, and
each node in the Figure 2 is labeled with the matching index, so the

23 5-sequences can be reconstructed from the diagram. For exam-
ple, if you follow the flow of all nodes in Figure 2 that contain
index 1, you will reconstruct the first sequence in Table 2 (DISC,
CS1, CS2, DS, TOC). The diagram actually goes much further,
however, presenting support information for each sequence. Each
of the 23 sequences has its own support; when sequences overlap,
the corresponding supports are added together in the current flow
diagram. Thus, we can determine the combined support associated

with any edge in the diagram based on the summed supports as-
signed to that edge. Appendix Table 3 provides the underlying
information about each pair of courses across the extracted se-
quences. To avoid overcrowding the diagram with information, we
encode the support sum from each edge through varying thick-
nesses. The thickness level listed in Table 3 and utilized in Figure
2 is computed as follows:

Thickness = ⌊2 ∗ log10 𝛴 𝑆𝑢𝑝𝑝𝑜𝑟𝑡⌋

4.3.2 Specific Insights into CS Based on Results
Figure 2 provides a succinct high level view of the flow of courses,

which enables us to learn about how students sequence their
courses. Given our experience with the undergraduate CS curricu-
lum, we are able to verify known patterns in course sequences (first
three bullet items) and glean new and potentially useful insights
(last three bullet items). We summarize some of these as follows:

• The diagram recognizes the key prerequisite relationships in-
cluding our introductory programming sequences of CS1 →
CS2 → Data Structures (DS). These courses are connected
with the thickest edges.

• Computer Organization is often taken after CS2 and Data
Structures, which is what we recommend, but it is not required

(it can be taken after CS1).

• The nodes in Figure 2 are arranged into 6 vertical columns
based on the edges and relative position of the courses within
the frequent sequences. These reflect the general structure and
course levels quite well. For example, Discrete Structures and
CS1 are 1000 level courses, CS2 and Data Structures are 2000
level courses, the courses in the next column are all 3000 level

courses, etc. A few notable exceptions are discussed next.

• The position of Data Mining (DM) is surprising. Its only pre-
requisite is CS1, while Theory of Computation (TOC) has
many prerequisites—yet Data Mining is generally taken after
Theory of Computation. This may be an artifact of our assign-
ing Data Mining as a 4000 level course even though our

faculty believe that level is not appropriate.

• Theory of Computation is almost always taken after Algo-
rithms (ALG), even though both are 4000-level courses with
no prerequisite relationship. The observed sequencing could
be an artifact of scheduling but may be related to student belief
that the algorithms course is essential for obtaining employ-
ment, including internships. Relevant 2-tuples show that

ALG→TOC occurs 2.4 times as often as the reverse ordering.

• Database Systems (DB) is taken a bit later in the sequence than
we would expect and perhaps recommend. It only requires
CS1 but is taken after CS2 and Data Structures.

Figure 2. Course sequence flow diagram for Computer Science frequent 5-sequences (nodes labeled with indices from Table 2)

4.4 Analysis of Non-CS Departments
The dataset contains courses from dozens of departments. We lack
the space and domain knowledge to analyze all of them, but we
mine course sequences from several groupings of departments and
provide a few observations. We start with the longest frequent se-
quences, which occur when courses from all departments are
considered. With minsup = 500 we obtain five 9-sequences, all of

which include only biology and chemistry courses, and four of the
five sequences begin with the following eight courses:

 IntroBio1+lab, GenChem1+lab, IntroBio2+lab, GenChem2+lab

Half of the courses above are lab courses which count as separate
courses but probably should be excluded from the data set in order
to find more meaningful sequences (we removed all lab courses for
Computer Science only). Nonetheless the algorithm was able to

identify a very common science sequence that is taken by students
planning to go on to medical school. If we start to look at smaller
k-sequences, such as when k=5, the sequences with the highest lev-
els of support are dominated by courses that satisfy core
requirements. In general we see that science courses are more
tightly sequenced than other courses, although for shorter se-
quences the more popular core courses play a central role.

Due to their role in our university, we next present the results asso-
ciated with core curriculum courses, which must be taken by all
students, and span many departments. Below are the five 6-se-

quences that appear with minsup =1000. These provide insight into
the most common ways in which the core courses are taken:

IntroBio1+lab, GenChem1+lab, IntroBio2+lab

MacroEcon, BusinessMath, MicroEcon, EnglComp2, Business Calculus

EnglComp2, Philosophy1, Theology1, EnglLit, Philosophy2

EnglComp2, Theology1, EnglLit, Philosophy1, Philosophy2

Phil1, EngComp2, Philosophy1, EnglLit, Philosophy2

Theology1, EnglComp2, Philosophy1, EnglLit, Philosophy2

The first two sequences are associated with science and business
majors, respectively, who are directed to take those courses to ful-
fill their science, math, and social science core requirements; the
last four are humanities courses taken by a wide range of students.

Given the Computer Science discipline has a close relationship
with Mathematics, we also looked at the frequent sequences for the

Math department. We were surprised to note that the last course in
the sequence is very often Statistics, which we thought would be
taken earlier, especially since courses with a higher number were
sometimes taken first. But the department has the following long
prerequisite sequence, which explains the observed behavior:

 Calc1 → Calc 2 → Multivariable Calc → Probability → Statistics

5. CONCLUSION
This paper introduces GSP-based sequence mining for analyzing
university course sequences. The method was applied to eight years
of undergraduate course enrollment data and produced a large num-
ber of frequent k-sequences. Course sequences were generated for
individual departments, several related departments, and across all
departments. Our results show that it is possible to mine course se-
quences on a standard laptop given reasonable minsup values.

We also developed a new course sequence flow diagram that visu-

ally captures many different common course sequences, while
maintaining almost all of the low level information. We view the
development of this diagram as a significant contribution since it is
far superior to our prior efforts, and the Sankey diagrams [8] we
generated using existing libraries. The course sequence flow dia-
gram generated for Computer Science accurately represented well
known course relationships and uncovered subtle sequencing is-
sues. These insights can lead to improved advising and changes to

our curriculum—for example, we can update course numbers to
better reflect the role of the course, or to modify student behavior
to better align with our sequencing intentions. Our analysis also
provided insights into other course sequences and identified a long
sequence taken by students in the pre-medical education track.

We believe that course sequencing mining can be a useful tool for
academic advising and for better understanding how students se-
quence their courses. This work is an example of descriptive data
mining and additional applications for this work will likely be dis-
covered in time.

6. REFERENCES
[1] Agrawal, R., and Srikant, R. 1994. Fast algorithms for min-

ing association rules. In Proceedings of the 20th
International Conference on Very Large Data Bases, VLDB,
Vol. 1215, 487-499.

[2] Betancur, L., Rottman, B. M., Votruba-Drzal, E., and
Schunn, C. 2019. Analytical assessment of course sequenc-
ing: The case of methodological courses in psychology.
Journal of Educational Psychology, 111(1), 91.

[3] Borgelt, C. 2005. An Implementation of the FP-growth Algo-
rithm. In Proceedings of the 1st International Workshop on
Open Source Data Mining: Frequent Pattern Mining Imple-
mentations, 1-5.

[4] Gutenbrunner, T., Leeds, D.D., Ross, S., Riad-Zaky, M., and
Weiss, G.M. 2021. Measuring the academic impact of course
sequencing using student grade data. In Proceedings of The
14th International Conference on Educational Data Mining,
International Educational Data Mining Society, Paris France,

June 29-July 2, 799-803.

[5] Morsy. S., and Karypis, G. 2019. Will this course increase
or decrease your GPA? Towards grade-aware course recom-
mendation. Journal of Educational Data Mining, 11(2):20–
46, 2019.

[6] Parks, M. R., Faw, M., and Goldsmith, D. 2011. Undergradu-
ate instruction in empirical research methods in
communication: Assessment and recommendations. Commu-

nication Education, 60, 406-421. DOI=
10.1080/03634523.2011.562909

[7] Richards, A. S. 2012. Course sequencing in the communica-

tion curriculum: A case study. Communication Education,
61(4), 395-427. DOI= 10.1080/03634523.2012.713500

[8] Schmidt, M. 2008. The Sankey diagram in energy and mate-

rial flow management: part II: methodology and current
applications. Journal of Industrial Ecology, 12(2), 173-185.

[9] Srikant, R., and Agrawal, R. 1996. Mining sequential pat-

terns: Generalizations and performance improvements. In
International conference on extending database technology,
1-17. Springer, Berlin, Heidelberg.

APPENDIX

Table 2. Computer Science course sequence table

Index Computer Science Frequent 5-Sequence Support Index Computer Science Frequent 5-Sequence Support

1 Discrete Struct, CS1, CS2, Data Struct, Theory of Comp 50 13 CS1, CS2, Data Struct, Theory of Comp, Data Mining 63

2 CS1, CS2, Data Struct, Databases, Operating Sys 67 14 CS1, CS2, Data Struct, Data Comm and Net, Theory of Comp 55

3 CS1, CS2, Data Struct, Databases, Comp Alg 60 15 CS1, CS2, Databases, Operating Sys, Theory of Comp 80

4 CS1, CS2, Data Struct, Databases, Theory of Comp 73 16 CS1, CS2, Databases, Comp Alg, Theory of Comp 58

5 CS1, CS2, Data Struct, Comp Org, Operating Sys 52 17 CS1, CS2, Comp Org, Data Struct, Operating Sys 54

6 CS1, CS2, Data Struct, Comp Org, Comp Alg 60 18 CS1, CS2, Comp Org, Data Struct, Theory of Comp 52

7 CS1, CS2, Data Struct, Comp Org, Theory of Comp 52 19 CS1, CS2, Comp Org, Operating Sys, Theory of Comp 73

8 CS1, CS2, Data Struct, Operating Sys, Comp Alg 70 20 CS1, CS2, Comp Org, Comp Alg, Theory of Comp 59

9 CS1, CS2, Data Struct, Operating Sys, Theory of Comp 110 21 CS1, CS2, Operating Sys, Theory of Comp, Data Mining 50

10 CS1, CS2, Data Struct, Operating Sys, Data Mining 61 22 CS1, Data Struct, Databases, Operating Sys, Theory of Comp 56

11 CS1, CS2, Data Struct, Comp Alg, Theory of Comp 84 23 CS2, Data Struct, Databases, Operating Sys, Theory of Comp 56

12 CS1, CS2, Data Struct, Comp Alg, Data Comm and Net 55

Table 3. Computer Science sequence edge table

C1→ C2 Indices Σ Support Thickness C1→ C2 Indices Σ Support Thickness

CS1→ CS2 1-21 1338 6 DB→ALG 3,16 118 3

CS2→ DS 1-14, 23 968 6 TOC→DM 13,21 113 3

OS→ TOC 9,15,19, 21-23 425 5 ORG→DS 17,18 106 3

DS→ DB 2,3,4,22,23 312 5 ALG→NET 12 84 2

DS→ OS 8-10,17 295 5 DB→TOC 4 73 2

DB→ OS 2,15,22,23 259 4 OS→ALG 8 70 2

CS2→ ORG 17-20 238 4 OS→DM 10 61 1

ALG→TOC 11,16,20 201 4 CS1→DS 22 56 1

DS→TOC 1,13,18 165 4 DS→NET 14 55 1

DS→ORG 5--7 164 4 NET→TOC 14 55 1

CS2→DB 15,16 138 3 ORG→TOC 7 52 1

DS→ALG 11,12 139 3 DISC→CS1 1 50 1

ORG→OS 5,19 125 3 CS2→OS 21 50 1

ORG→ALG 6,20 119 3

Table 3 shows CS1→ CS2 and CS2→ Data Structures have the two highest support sums; this is reflected in the edge-widths in Figure 2.

