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ABSTRACT 

Smart phones are quite sophisticated and increasingly incorporate 

diverse and powerful sensors. One such sensor is the tri-axial 

accelerometer, which measures acceleration in all three spatial 

dimensions. The accelerometer was initially included for screen 

rotation and advanced game play, but can support other applica-

tions. In prior work we showed how the accelerometer could be 

used to identify and/or authenticate a smart phone user [11]. In 

this paper we extend that prior work to identify user traits such as 

sex, height, and weight, by building predictive models from la-

beled accelerometer data using supervised learning methods.  The 

identification of such traits is often referred to as ―soft biometrics‖ 

because these traits are not sufficiently distinctive or invariant to 

uniquely identify an individual—but they can be used in conjunc-

tion with other information for identification purposes. While our 

work can be used for biometric identification, our primary goal is 

to learn as much as possible about the smart phone user. This 

mined knowledge can be then be used for a number of purposes, 

such as marketing or making an application more intelligent (e.g., 

a fitness app could consider a user’s weight when calculating 

calories burned).  

Categories and Subject Descriptors 

H.2.8 [Database Applications]: Data Mining 

General Terms 

Algorithms, Measurement, Experimentation, Human Factors. 

Keywords 

Sensor mining, sensors, biometrics, cell phones, smart phones, 

data mining, accelerometer. 

1. INTRODUCTION 
Smart phones are quite sophisticated and increasingly incorporate 

diverse and powerful sensors. These devices provide unprecedent-

ed opportunities for sensor mining since they include a large va-

riety of sensors, including an: acceleration sensor (accelerometer), 

location sensor (GPS), direction sensor (compass), audio sensor 

(microphone), image sensor (camera), proximity sensor, light 

sensor, and temperature sensor. Because of their portability and 

ubiquity, these smart phone sensors provide us with an opportuni-

ty to learn a great deal about their users. In prior work, for exam-

ple, we used the smart phone’s accelerometer to determine what 

physical activity (e.g., walking, jogging, sitting) a user is perform-

ing [10] and to identify/authenticate the user [11]. In this paper 

we extend this latter work on biometric identification to predict 

user characteristics, or traits.  

The identification of personal traits is often referred to as soft 

biometrics because these traits, on their own, are not distinctive 

enough, or invariant enough, to uniquely identify an individu-

al [9]. Soft biometric traits include the three traits that we predict 

in this paper—sex, height, and weight—which clearly are less 

distinctive or invariant than hard biometric traits like fingerprints. 

Nonetheless, these ―soft‖ traits can be used in conjunction with 

other information or other traits to improve the accuracy of a bio-

metric identification system [2,9,14]. While the work described in 

this paper can be used for biometric identification, our goal is far 

more general—we want to learn as much as possible about people 

(in this case smart phone users). This mined knowledge can be 

used for a variety of purposes. For example, this knowledge can 

be used for marketing and advertising, since most soft traits, like 

sex, height, weight, hair color, physical activity level, and 

foot/shoe size could have an impact on what content advertisers 

might want to present. Knowledge of these soft traits can also be 

used to make a smart phone application behave more intelligently 

by having it automatically customize its behavior to the user. For 

example, a fitness or diet ―app‖ could consider your weight when 

calculating calories burned. There are undoubtedly many addi-

tional uses for this type of information, although clearly privacy 

and security issues should be considered.   

The work in this paper is part of a larger effort by the WISDM 

(WIreless Sensor Data Mining) research group [21] to develop 

smart phone-based sensor mining applications. The applications 

are built on the hardware and software platform that we are devel-

oping [12]. Currently, this platform relies on Android-based smart 

phones, which were used for all of the experiments described in 

this paper. All of our work thus far (activity recognition, biometric 

identification, and now trait prediction) relies only on the tri-axial 

accelerometer that is included in all Android smart phones. This 

sensor, which was originally included mainly for screen rotation 

and advanced game play, measures acceleration in all three spatial 

dimensions. In the future, we plan to investigate the use of other 

sensors for sensor mining applications, including trait prediction. 

All of the predictive models built in this paper were generated 

from the accelerometer data by using standard predictive data 

mining methods. 
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2. DATA COLLECTION 
In this section we describe our process for collecting labeled acce-

lerometer data, which is used for generating and evaluating the 

trait-prediction models. Our data was collected from volunteers 

who carried one of the Android smart phones provided by our 

team. The volunteers were asked to walk, with the Android phone 

in their pocket, for approximately 5 to 10 minutes. Our data is 

based on 70 users, but because we had previously collected data 

for our activity recognition research [10], many of the users had 

data for additional activities besides walking; for this study the 

data from these extra activities was ignored. This data collection 

effort was approved by Fordham’s Institutional Review Board, 

since we were ―experimenting‖ on human subjects and there was 

some slight risk of injury (e.g., the subject could fall). All subjects 

provided written informed consent prior to participating in our 

study and were also asked to fill out a detailed questionnaire. This 

questionnaire asked the user for information about all soft traits 

that we could think of that might possibly be predicted from a 

smart phone’s accelerometer data—including the three traits stu-

died in this paper. Participants were permitted to skip any ques-

tions they wanted to, without being dismissed from the study. As 

a consequence, there were fewer than 70 participants for the sex, 

height and weight prediction tasks. The details associated with the 

generated data sets are provided in Section 3.3. 

The soft traits that appeared on our questionnaire are listed in 

Table 1. This paper does not analyze most of these traits. One 

reason is due to a lack of training data. Because we collected data 

from only 70 participants, we could not realistically analyze those 

traits that permitted a great variety of class values or were highly 

imbalanced. For example, we could not properly predict race 

based on the accelerometer data because certain racial groups had 

very little representation. Given that the time required to collect 

data for a 5 minute walk is far less than the time required to col-

lect data for our activity recognition task (5 minutes vs. 60 mi-

nutes), we do expect to radically increase the size of our data set 

in the near future. But we did run experiments on some of these 

other traits and the results were not very good. We simply did not 

have sufficient time to study these prediction tasks, but plan to 

return to them shortly. We are hopeful that with additional train-

ing data and by constructing better features (Section 3.2), we will 

be able to predict some of these other traits. However, it is very 

possible that some of these traits may simply not be predictable 

from 5 or 10 minutes of accelerometer data. 

One issue with our data collection is that we selected our data 

from users who were, in many ways, very homogenous. For ex-

ample, since almost all study participants were solicited on our 

campus, almost all were college students. As a consequence, we 

could not meaningfully predict age, an important trait that may be 

predictable, because most of our users were between the ages of 

18 and 24. In the future we do plan to draw more volunteers from 

alternate locations and to target users with traits that are underre-

presented in our data set. 

Several of the soft traits listed in Table 1 were included in our 

survey specifically because we believed that they may impact gait 

and thus impact the accelerometer data. For example, if one nor-

mally carries a backpack it could impact one’s gait and, similarly, 

the number of hours of aerobic exercise could also impact gait. 

Note that the last three ―traits‖ listed in Table 1 are not what 

would normally be considered user traits (e.g., type of footwear), 

but rather are things associated with the user during the data col-

lection process, which may impact the user’s gait. We collect this 

information so we can analyze their impact on the accelerometer 

data and, more importantly, so that we can try to predict them. 

The traits listed in Table 1 were selected based on the assumption 

that accelerometer data was being collected. If we were collecting 

data from other sensors we certainly would have come up with a 

different list (e.g., if audio data was collected from the phone’s 

microphone we might ask about the volume of the user’s normal 

speaking voice). We do hope to extend the work in this paper to 

other sensors in the future. 

Table 1. Soft Traits that were Collected  

Traits that we currently analyze 

 Sex: biological sex {male, female} 

 Height: measured in inches 

 Weight: measured in pounds 

Traits that we do not currently analyze 

 Age: measured in years (mainly college students) 

 Race: {White, Black, Asian/Pacific Islander, Hispanic or 

Latino, Other} 

 Area you grew up in {Rural, Urban, Suburban} 

 Handedness: {Right, Left, Ambidextrous} 

 Hours of aerobic exercise per week 

 Type of bag do you carry {Backpack, Briefcase, …} 

 Play organized sports in last 12 months {Yes, No} 

 Do you have an injury that affects the way you walk: 

{Yes, No} 

 Shoe Size: also specifies if men’s or women’s size 

 Hours of academic work per week excluding lecture 

 Footwear during walking {Sneakers, High Tops, …} 

 Clothing during walking {Shorts, Pants, Dress, Other} 

 Phone Position during walking (Belt, Left Pocket, Right 

Pocket} 
 

Data collection was controlled by our WISDM Sensor Collector 

application, which can be downloaded for free from the Android 

marketplace. This application, through a simple graphical user 

interface, permits us to record the user’s name, to start and stop 

data collection, and label the activity being performed (in this case 

walking). Through the application we can control what sensors 

are being monitored as well as how frequently the sensor data is 

collected. In all cases we collected the accelerometer data using 

our default sampling frequency of 50ms, yielding 20 samples per 

second. Data collection was supervised by one of the WISDM 

team members to ensure the quality of the data (and that no one 

ran off with our $500 phones). Data was then collected either 

directly from the phone via a USB connection or transmitted over 

a cellular connection to our Internet-connected WISDM server. 

3. DESCRIPTION OF EXPERIMENTS 
Our experiments are described in this section and then the results 

from these experiments are presented and analyzed in Section 4. 

In Section 3.1 we define the prediction tasks associated with pre-

dicting the three user traits. Then in Section 3.2 we discuss the 

process for transforming the raw time-series accelerometer data 



into examples so that traditional data mining prediction algo-

rithms can be used. This step mainly involves the construction of 

higher level features. Section 3.3 describes the ―transformed‖ data 

sets generated by this transformation step, where each data set is 

associated with one of the prediction tasks described in Section 

3.1.  Finally, in Section 3.4 we describe the prediction algorithms 

and the methodology used to build and evaluate the predictive 

models. The data transformation step described in Section 3.2 is 

essentially identical to the one used in our prior work [10-12] but 

the other sections are all new.  

3.1 User Trait Prediction Tasks 
We cover three basic trait prediction tasks in this paper: sex pre-

diction, height prediction, and weight prediction. The first task, 

sex prediction, is fundamentally a binary classification task while 

the other two tasks are fundamentally regression (i.e., numerical 

prediction) tasks. Specifically, sex prediction involves classifying 

a smart phone user as either male or female while the height and 

weight prediction tasks involve predicting the user’s height in 

inches or weight in pounds. The class labels for these tasks are 

acquired via the questionnaire described in Section 2. 

The interpretation and evaluation of numerical predictions is not 

as straightforward as for classification problems. While there are 

statistics like root mean squared error for characterizing the pre-

diction performance, it is still often difficult to assess the quality 

of the results. Thus, in addition to treating the height and weight 

prediction tasks as regression tasks, we also convert them into 

classification tasks; for some applications this formulation may 

actually be of more use. We use the mappings shown in Table 2 to 

convert the height and weight prediction tasks into classification 

tasks. The distribution of people between these classes is approx-

imately equal, but since the measurements were all recorded using 

integers, the resulting class distribution is not perfectly balanced. 

The precise distribution information is provided in Section 3.3, 

which describes the data sets. 

Table 2. Height and weight categories 

Height (inches) Weight (lbs.) 

From To Class From To Class 

0 65 Short 0 139 Light 

66 69 Medium 140 169 Medium 

70 ∞ Tall 170 ∞ Heavy 

One issue for the two classification problems associated with 

Table 2 is that a classifier will have difficulty distinguishing ex-

amples at the borders between the classes. Given that at this stage 

in our research we are mainly concerned with ensuring that our 

models can identify substantial differences, our experiments in 

this paper exclude the center class (medium for both tasks) from 

the data set, so that medium people do not appear in either the 

training or testing sets. Thus, our task in these cases is to deter-

mine whether we can distinguish a short person from a tall person 

and a light person from a heavy person.  

3.2 Data Transformation 
We first transform the raw time series data into examples, since 

the classification algorithms that we use in this paper cannot di-

rectly learn from time series data [22]. To accomplish this we 

divided the data into 10-second segments and then generated fea-

tures from the accelerometer values contained in each 10-second 

interval. Since acceleration data is collected for 3 axes 20 times 

per second, each 10-second interval has 600 total values. We refer 

to this 10-second interval as the example duration (ED). We chose 

a 10-second example duration because we felt that it provided 

sufficient time to capture several repetitions of the motions in-

volved in walking and because preliminary experiments indicate 

that this value provides good results for our current applications.  

The data contained in one example duration is converted into a 

single example, described by forty-three features. These forty-

three features are variations of just the six basic features, listed 

below (the number of features associated with each basic feature 

is noted in brackets): 

• Average[3]: Average acceleration value (for each axis) 

• Standard Deviation[3]: Standard deviation (for each axis) 

• Average Absolute Difference[3]: Average absolute difference 

between the value of each of the 200 readings within the ED 

and the mean value over those 200 values (for each axis) 

• Average Resultant Acceleration[1]: Average of the square 

roots of the sum of the values of  each axis squared  √(xi
2 + yi

2 

+ zi
2) over the ED  

• Time Between Peaks[3]: Time in milliseconds between peaks 

in the sinusoidal waves associated with most activities (for 

each axis) 

• Binned Distribution[30]: The values for each axis are divided 

into 10 equally spaced bins and then the fraction of the 200 

values that fall within each of the bins is recorded. 

The ―time between peaks‖ feature requires further explanation. 

Walking and other repetitive activities tend to generate repeating 

waves for some or most of the axes, and this feature estimates the 

time between successive peaks. To estimate this value we find the 

highest peak within the record for each dimension, set a threshold 

based on a percentage of this value, and then find other peaks that 

meet or exceed this threshold; if no peaks meeting this criterion 

are found, then the threshold is lowered until we find at least three 

peaks. We then measure the time between successive peaks and 

calculate the average. For samples where at least three peaks 

could not be found, the distance between peaks is marked as un-

known. This method was able to find the time between peaks for 

data that was collected while users walked. Certainly more sophis-

ticated schemes will be tried in the future. 

3.3 Description of Data Sets 
All of the data sets employed in this study are created from an 

initial data set that contains data from 70 study participants. Many 

of these participants performed more activities than walking, due 

to our prior work on activity recognition [10], but for the purpos-

es of this study, all data not associated with walking was removed. 

Because participants were not required to answer all of the survey 

questions, our task-related data sets do not contain data from all 

70 participants. Overall, for the three traits that we study, the fol-

lowing numbers of users reported the necessary trait values: 66 for 

sex, 61 for height, and 63 for weight. The data set for sex is ea-

siest to describe: it contains 38 (57.6%) male and 28 (42.4%) 

female participants. 

The height data is relatively uncomplicated and, as shown in Fig-

ure 1a, the distribution is relatively symmetric. The average height 

is 69.1 inches (5 foot 9 inches). The figure also shows the break-



down of users between the short and tall categories (medium users 

fall between these two categories). The short category contains 20 

users, the medium category 19 users, and the tall category 22 us-

ers. For our binary classification problem that ignores the medium 

category, the class distribution is 47.6% short and 52.4% tall. 

 
(a) 

 
(b) 

Figure 1. Distribution of (a) height and (b) weight values 

The distribution of the weight data is presented in Figure 1b, 

which clearly shows an asymmetric distribution with a much 

longer tail toward the higher weights. Due to the larger range of 

numerical values than for height, the users are aggregated into 10 

pound bins. What is not visible is that most users reported their 

weights in 5 pound increments. The 63 users that reported their 

weight were distributed into the three weight categories as fol-

lows: 21 were light, 20 were medium, and 22 were heavy. For our 

binary classification problem, the users are 48.9% light and 51.1% 

heavy. While our lightest user was 115 lbs and our heaviest was 

300 lbs, the majority of users fall between 120 and 180 lbs. Pre-

liminary results indicated that it was extremely difficult to predict 

the underrepresented values at 275 and 300 pounds. In order to 

provide a more representative evaluation of our results, which are 

based on a relatively small data set to begin with, these two points 

were excluded from further analysis. Even with this, the results 

presented in Section 4.3 and displayed in Figure 3a show that the 

other set of outliers, between 220 lbs and 240 lbs, were also hard 

to predict. We should be able to do better in the future as we col-

lect much more data. With these two data points removed, the 

average weight of the users is 160.5 lbs. 

3.4 Induction Algorithms and Methodology 
Our experiments involve three binary classification tasks, one for 

each trait, and two regression tasks, for height and weight predic-

tion. Our models are all built using predictive data mining algo-

rithms from the WEKA data mining suite [23]. We use WEKA’s 

instance based (IBk) ―nearest neighbor‖ learner, multilayer per-

ceptron neural network, and J48 decision tree algorithms for our 

three classification tasks and use the instance based and neural 

network algorithms for our two regression tasks (J48 cannot pre-

dict numerical values). Default settings are used for all learning 

methods except for instance based, in which case we use 3 nearest 

neighbors (k=3) instead of the default of 1. Throughout this paper 

the algorithms are abbreviated as follows: IB3 for the instance 

based method, NN for the neural network method, and J48 for the 

decision tree method. 

The experiment setup is very important. For this work it is critical 

that a user does not appear in both the training and test sets simul-

taneously, even if the training and test sets contain samples from 

different 10 second time periods. The reason that this is important 

is because we want to be able to identify characteristics of a user 

based on ―universal‖ models generated from a set of other users. 

We have found in prior work that there is a tremendous improve-

ment in performance if there is overlap for a user in the training 

and test sets—even if the overlap is for just a few examples from 

different time periods. To address this issue and to maximize the 

use of our very limited number of test subjects, we utilize leave-

one-out cross validation, so that we train on all but one user and 

then test the induced model on that one held-out user; this process 

is repeated until all users are tested on. Thus, if we have n users in 

the data set, we will execute n runs in the leave-one-out cross 

validation process. All of our results are based on the aggregated 

values over these n runs. 

Each test set will contain all of the examples for a single user, 

each one representing 10 seconds of walking activity. Most users 

have about 5 to 10 minutes of walking activity and the test set has, 

on average, 57 transformed 10-second examples. While we inter-

nally record our predictive performance on each of these 

10-second examples, those results are not presented in this paper. 

Rather, for classification problems, our performance results are 

based on a simple majority-voting procedure. For example, if the 

test set has 57 examples for user A and 37 of those predict male 

and 20 predict female, we will classify the user as male. For re-

gression tasks, rather than using a majority voting scheme, we 

aggregate the predictions by averaging the results (in the future 

we may consider a procedure than lessens the impact of outliers, 

like using the median value). The results using the aggregated 

predictions, as expected, perform better than the results based on 

individual examples, although the supporting data for this com-

parison is not presented in this paper. 

4. RESULTS 
In this section we present and evaluate the results associated with 

predicting the following three traits: sex, height, and weight. 

When it is not practical to show the detailed results for all of the 

data mining algorithms, we show it only for the instance based 

algorithm, since overall it tends to perform best.  

4.1 Sex Classification Task Results 
We begin with the results for predicting the sex of a user, because 

this binary classification problem is the simplest to evaluate. The 

confusion matrices for the sex classification task, for the instance 

based, neural network, and decision tree models, are provided in 

Table 3. As is the convention in data mining, the labels across the 

top row correspond to the predicted class values while the labels 

in the left-most column correspond to the actual class labels. 

Thus, Table 3a shows that of the 38 males in our data set, 31 are 

correctly classified as male and 7 are incorrectly classified as fe-

male. These confusion matrices are quite important because they 

show us where the errors occur and allow us to make sure that the 

classifier is not trivial (i.e. always predicting the majority class).  



Table 3. Confusion matrix for sex classification task 

 Male Female 

Male 31 7 

Female 12 16 

(a) Instance Based (IB3) 

 Male Female 

Male 30 8 

Female 15 13 

(b) Neural Network (NN) 

 Male Female 

Male 27 11 

Female 10 18 

(c) Decision Tree (J48) 

The accuracies associated with each of these models are summa-

rized in Table 4. The MFC method corresponds to our ―straw 

man‖ model that always predicts the Most Frequent Class. For 

results to be significant, they should outperform the MFC method, 

although with imbalanced data sets it might be possible for a 

model to be useful even if this is not the case, if it performs well 

on the rare class. In this case, our majority class contains 57.6% of 

the examples (i.e., 38 males out of a total of 66 subjects). Here the 

instance based method performs best (we denote the best method 

by underlining it), although its performance is far from ideal. We 

expect to improve our results in the future as we obtain additional 

training data and engineer more useful features.  

Table 4. Accuracy for sex classification task 

IB3 NN J48 MFC 

71.2% 65.2% 68.2% 57.6% 

4.2 Height Prediction Task Results 
Next we turn our attention to the numerical height trait. Because 

the native task here involves predicting a numerical value, our 

most detailed results are presented using a scatter plot. Due to 

space considerations, only the scatter plots for the instance based 

algorithm are provided. The results in Figure 2a are a traditional 

scatter plot, where each data point corresponds to a single user, 

whereas the same information is shown in Figure 2b, but the re-

sults for users with the same actual height are averaged together. 

The results in Figure 2a are of the most practical significance, 

because we care about performance on an individual basis, but the 

results in the more summarized Figure 2b are a bit easier to parse.  

In both cases the ideal performance would yield points on the line 

y=x, which corresponds to perfect predictions. A benchmark 

―straw man‖ strategy, analogous to the MFC strategy for classifi-

cation tasks, is to always predict the average height, which is 69.1 

inches. This straw man strategy is displayed in Figure 2 as a hori-

zontal line. The line that optimally interpolates the predicted val-

ues is also shown and is labeled ―linear fit.‖ Because the linear fit 

line is closer than the ―straw man‖ line to the optimal strategy, 

represented by the line y=x, we conclude that our results clearly 

outperform the straw man strategy of always predicting the aver-

age height.  

 
(a) 

 
(b) 

Figure 2. IB3 scatter plot results for predicting height.  In (a) 

each point represents a single user and in (b) users with the 

same actual height are averaged.  

Table 5 summarizes the performance of the numerical predictions 

using standard statistical measures (recall that J48 can only handle 

classification tasks). The metrics in Table 5 include ―Mean Error‖, 

which represents the mean absolute difference between the actual 

and predicted values for each user, and the Root Mean Squared 

Error (RMSE), which is computed by summing the square of the 

differences over all actual and predicted values and then taking 

the square root of that sum. For both metrics a smaller value indi-

cates better performance. The main difference between these two 

metrics is that the RMSE assigns a higher penalty than Mean Er-

ror for large errors. RMSE can be smaller than Mean Error since 

values less than 1.0 get smaller when you square them. 

Table 5. Summary statistics for numerical height prediction  

Metric IB3 NN Straw 

Mean Error 3.23 3.91 3.59 

RMSE 3.89 3.92 4.17 



The results in Table 5 show that IB3 performs best and outper-

forms the Straw Man strategy of always predicting the average 

height. But there is certainly room for future improvement. 

As discussed earlier, we also evaluate our ability to classify a user 

as short or tall. This is a simple test to see if we can classify 

people in these two extremes. The confusion matrix results are 

shown in Table 6 and appear to be quite good. 

Table 6. Confusion matrix results for height classification task 

 Short Tall 

Short 15 5 

Tall 2 20 

(a) Instance Based (IB3) 

 Short Tall 

Short 17 3 

Tall 3 19 

(b) Neural Network (NN) 

 Short Tall 

Short 14 6 

tall 3 19 

(c) Decision Tree (J48) 

The accuracies associated with classifying a user as short or tall 

are provided in Table 7. The results indicate that the model signif-

icantly outperforms the Most Frequent Class strategy and in fact 

performs much better than the model that predicts a user’s sex. In 

this case the neural network model performs best although the 

instance based model also performs quite well. 

Table 7. Accuracy Results for height classification task 

IB3 NN J48 MFC 

83.3% 85.7% 78.6% 52.4% 

4.3 Weight Prediction Task Results 
The instance based results for predicting the numerical weight 

trait, presented in the scatter plots in Figure 3, are presented in a 

manner similar to the results for height in Figure 2. However, 

because the range of weight values is so much greater than the 

range of height values, in Figure 3b users are aggregated into 10-

pound bins. As we saw with height, the ―linear fit‖ line that fits 

the predicted values comes much closer to the optimal perfor-

mance (represented by the line y=x), than does the straw man 

strategy of always predicting the average weight of 160.5 lbs. But 

we do see some notable cases where our predicted weight is much 

higher than the actual observed weight. For example, in one case 

in Figure 3a a user weighing about 160 pounds is predicted to 

weigh about 240 pounds.1 But overall the results are quite posi-

tive. For example, if we look at the three ―actually‖ heaviest 

people in Figure 3a, we see that all are predicted to be substantial-

ly heavier than the average person. In general, we might expect 

                                                                 

1 There may be a good explanation for this error. Further analysis 

showed that this user’s questionnaire indicated that they had 

knee problems that affected their ability to walk. One can easily 

imagine that this might make them appear heavier.  

that any model would have the most trouble predicting values at 

the extremes. 

 
(a) 

 
(b) 

Figure 3. IB3 scatter plot results for predicting weight.  In (a) 

each point represents a single user and in (b) users are 

grouped into 10-pound bins, then averaged.  

The performance of the numerical weight predictions is summa-

rized in Table 8. The results indicate that for Mean Error and Root 

Mean Squared Error, the instance based method performs best. It 

is likely that IB3 does poorly on the RMSE (i.e. not much better 

than the straw man) due to the few users that are predicted as 

being much heavier than their actual weights. The results indicate 

that, on average, the instance based algorithm produces predic-

tions that are about 2 pounds more accurate than the Straw Man 

strategy of always predicting the average weight. 

Table 8. Summary statistics for numerical weight prediction  

Metric IB3 NN Straw 

Mean Error 22.61 25.17 24.62 

RMSE 28.85 32.33 29.52 

The results in Table 9 show that we can do a relatively good job at 

distinguishing between light and heavy people, but that for the 



instance based and neural network models, we can do a much 

better job at identifying the heavy people. 

Table 9. Confusion matrix for weight classification task 

 Light Heavy 

Light 13 7 

Heavy 2 17 

(a) Instance Based (IB3) 

 Light Heavy 

Light 11 9 

Heavy 5 14 

(b) Neural Network (NN) 

 Light Heavy 

Light 15 5 

Heavy 5 14 

(c) Decision Tree (J48) 

The accuracy results associated with classifying a user as being 

light or heavy are summarized in Table 10. The results indicate 

that the instance based method performs best and that we can 

significantly outperform the Most Frequent Class strategy. But 

there is substantial room for future improvement. 

Table 10. Accuracy Results for weight classification task 

IB3 NN J48 MFC 

78.9% 65.0% 76.3% 51.3% 

5. RELATED WORK 
The use of patterns of movement for measuring ―soft‖ biometric 

traits, such as gait, height, weight, and sex, is a relatively new but 

growing area. Most of the work in this area is geared toward bio-

metric identification, where research has demonstrated that mea-

suring these soft traits can improve the performance of biometric 

identification systems [2,9,14].  But the connection to work in 

biometrics is not critical, since information about these ―soft‖ 

traits can be used for other purposes—which is part of our moti-

vation for this work. Furthermore, as will be made clear in this 

section, the measurement and impact of these soft traits on activi-

ties such as walking has been studied for many years in other 

disciplines. 

Our prior work on biometric identification [10] is highly relevant 

to the work in this paper. That work used the same WISDM plat-

form [12,21] that is used in this paper and also was based on acce-

lerometer data from Android smart phones. The main difference is 

that in the prior work the goal was to identify users whereas the 

goal here is to learn about their traits. But of course the identifica-

tion was only possible because the predictive models implicitly 

identified user traits related to how they move. In that prior work 

we demonstrated that a smart phone’s accelerometer was suffi-

cient for identifying a user from a pool of 36 users with 100% 

accuracy, given only on a few minutes of accelerometer data 

(some of which was available for training). The data that we sup-

plied was from a variety of physical activities whereas in this 

work we simplify things by only using walking data. There have 

also been numerous other accelerometer-based biometric identifi-

cation studies, where accelerometers were placed on one more 

body parts [6,7,13]. But it should be noted that there other means 

for using motion to perform biometric identification, most notably 

vision-based systems [17], which tend to be more popular that 

accelerometer-based systems. 

Some of this work on accelerometer based biometric identifica-

tion, which relies primarily on gait, mentions factors that impact 

the results. Because these factors impact gait, it seems reasonable 

to conclude that they may be predictable based on gait and are 

thus candidates as ―soft‖ traits.  One study found that the weight 

of one’s shoes can impact gait-based recognition performance [7]. 

A second study found that an imposter could not mimic a person’s 

gait to fool a gait-based recognition system unless they also knew 

the person’s sex [7]. Finally, a third study found that biometric 

identification can be improved by estimating a person’s height 

and stride length [4]. 

Other research communities, including those that study ergonom-

ics and kinesiology, have also studied factors and traits that im-

pact gait. One such study showed that the texture of footwear 

impacts gait [18]. Other footwear related studies showed that the 

type of shoe impacts gait [20] and that heel height impacts gait 

patterns in women [16]. Not coincidentally, our survey tracks 

information on such things as shoe type—and even before finding 

the research on heel height one of our female researchers agreed 

to provide walking data while wearing high heels. Another inter-

esting study examined the interaction between gait speed, obesity, 

and race/ethnicity and found observable patterns [24]. The study 

found that gait speed is impacted by obesity, but that this impact 

is substantially affected by the subject’s race/ethnicity. The con-

nection between gait speed and obesity supports our belief that 

weight can be estimated using accelerometer data collected during 

walking (some of our features capture gait speed) and we do track 

race in our questionnaire. Other research showed that gait does in 

fact vary between men and women [5] while a related study ex-

amined gender recognition based on movement (using point light 

displays to hide other cues) and demonstrated that viewers believe 

that males move their shoulders more and women move their hips 

more [3]. Note that our experiments, which involve accelerometer 

readings based on smart phones located in ones pants pocket, 

should be able to detect differences in hip movements, if they 

exist. A final study showed that accelerometer data while standing 

can tell us something about a person’s balance [15]. 

Based on these studies, we see that there are reasons to believe 

that we might be able to identify many soft traits that are asso-

ciated with a user, including some, like balance, that are not listed 

in Table 1. But we also see that we may be able to identify other, 

more temporary things about a user, such as what type of shoe 

they are currently wearing. But there is also the possibility for 

learning about a person based on longer term trends, whereas our 

research thus far, and most of the research discussed in this sec-

tion, is about short term observations. For example, adolescents 

have different activity patterns than others and in fact these pat-

terns differ by gender [8]. Also, a longer term study showed that 

an accelerometer can estimate walking speed together with the 

pattern, intensity and duration of daily walking activity [19]. 

Thus, this mining of longer term sensor data is a potentially very 

profitable area for research. In fact, the WISDM project is well 

positioned for this type of research since our ActiTracker [1] cell 

phone application, based on our activity recognition research [10], 

will allow us to track activity information for users over long pe-

riods of time—and provide the information back to them via a 

web interface. This service is under active development and 

should be released to the Android marketplace in the near future. 



6. CONCLUSIONS AND FUTURE WORK 
The use of smart phone sensors to learn about users is an interest-

ing and timely topic, and smart phone-based sensor mining appli-

cation should proliferate over the next decade. Many applications 

will undoubtedly be developed that cannot easily be imagined at 

the present time. In this paper we take a step toward the use of 

smart phone sensors to identify and measure user traits. We show 

that it is possible to identify a user’s sex, whether they are short or 

tall, and whether they are light or heavy, although the perfor-

mance of these predictions is not consistently good (but they are 

better than always guessing the most frequent class). Similarly, we 

demonstrate that we can predict a user’s height and weight, but 

that such fine grained predictions are of only modest quality. In 

the immediate future we will work to improve these results. Cer-

tainly additional training data will help, since we currently have 

useful data from less than 70 users. Additional work will also go 

into generating more informative high level features, including 

some that better capture the time-series nature of the data. We also 

will begin to investigate the use of other sensors on the smart 

phone, especially the GPS sensor. 

In addition to improving current results, we plan to predict the 

values of many additional traits. We will begin with the traits 

listed in Table 1, but also consider other traits—including traits 

that may only become apparent based on long term patterns. Fi-

nally, we plan to implement some of our predictive models so that 

users can get results in real-time, via our WISDM platform. We 

may do this with a research-oriented app or by building some of 

these capabilities into the ActiTracker [1] application/service that 

we are developing. We believe that we will learn much more 

about this new and exciting research area by actually building and 

deploying publicly available sensor mining applications.  

Finally, there are other issues that need to be addressed, such as 

privacy and security. We address this topic in some detail in a 

recent paper describing our WISDM sensor mining architecture 

and platform [12]. But there also needs to be some education of 

the public about the benefits and dangers of this technology, since 

no application can be made perfectly secure and no data can al-

ways be guaranteed to remain private. But many innovative and 

creative smart phone-based sensor mining applications are just 

waiting to be developed and we hope that this paper will advance 

research in this area as well as bring attention to the topic.  
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