
CISC 3595 Operating Systems

Fall 2022

Assignment

Out 11/20, In 11/29

Q1. For each of the following Resource Allocation graphs, use the Graph Reduction algorithm

described in the lectures to determine the following: (24 pts total)

i) List a possible order in which vertices are removed from the graph (3 pts each)

ii) Is there a deadlock? (1 pts each)

a) T2, T1, T3, no deadlock

b) T1 waits for R3 has R1,

 T3 has R3 waits for R1

deadlock.

c) T2, T1, T3, no deadlock

d) T1,T2 waits for R2 has R1,

 T3,T4 has R2 waits for R1

deadlock.

e) T2, T1, T3, T4 no deadlock f) T2, T4, T1, T3 no deadlock

Q2. Consider the following system allocation matrix with accompanying maximum requirements

of each thread for each resource. (15 pts total)

i) fill in the Need matrix for each scenario (3 pts each)

ii) Is the scenario safe? (1 pts each)

iii) List the order in which the threads can complete or show where the allocation cannot

be satisfied. (2 pts each)

Available = (0,3,0,1) T2,T1,# NOT SAFE because all remaining need 3 of D.

Available = (1,0,0,2)T1,T2,T3,T4,T0 or T1,T2,T0,T3,T4 SAFE

Thread

T0

T1

T2

T3

T4

Max

 A B C D

5 1 1 7

3 2 1 1

3 3 2 1

4 6 1 3

6 3 2 5

Allocated

 A B C D

3 0 1 4

2 2 1 0

3 1 2 1

0 5 1 0

4 2 1 2

Need

 A B C D

2 1 0 3

1 0 0 1

0 2 0 0

4 1 0 3

2 1 1 3

Available

 A B C D

5 6 3 2

3 4 2 2

Thread

T0

T1

T2

T3

T4

Max

 A B C D

5 1 1 7

3 2 1 1

3 3 2 1

4 6 1 3

6 3 2 5

Allocated

 A B C D

3 0 1 4

2 2 1 0

3 1 2 1

0 5 1 0

4 2 1 2

Need

 A B C D

2 1 0 3

1 0 0 1

0 2 0 0

4 1 0 3

2 1 1 3

Available

 A B C D

13 10 6 9

3 2 1 2

6 3 3 3

6 8 4 3

10 10 5 5

Available = (1,5,2,0) T0,T2,T3,T4,T1 SAFE

Thread

T0

T1

T2

T3

T4

Max

 A B C D

0 0 1 2

1 7 5 0

2 3 5 6

0 6 5 2

0 6 5 6

Allocated

 A B C D

0 0 1 2

1 0 0 0

1 3 5 4

0 6 3 2

0 0 1 4

Need

 A B C D

0 0 0 0

0 7 5 0

1 0 0 2

0 0 2 0

0 6 4 2

Available

 A B C D

1 5 3 2

3 14 12 12

2 8 8 6

2 14 11 8

2 14 12 12

Q3. Explain how Logical Addresses are mapped to Physical Addresses for each of

i) contiguous allocation,

ii) linked allocation

iii) indexed allocation

iv) FAT approaches for representing files.

by showing for each approach how to calculate the physical address from the logical address

using the examples address 4209, 3034, 256, 18166, for a system with block size 512. (1 pts each

– 16 total)

Contiguous Allocation 4209 block# 8 offset: 113 CA: FCB contains start block and extent.

traverse start blk + 8 blocks, offset 113

Linked Allocation 4209 LK: block# 8 offset: 149 LK: FCB contains start block and last block.

traverse start blk + 8 links, offset: 145+4

Indexed Allocation 4209 IN: index# 8 offset: 113 IN: FCB contains index block# and number of

blocks. traverse to index 8, offset: 113

FAT Allocation 4209 FAT: block# 8 offset: 113 FAT: FCB contains start index and last index.

traverse from first index, use contents for next index, 8 times. Offset 113

Contiguous Allocation 3034 block# 5 offset: 474 CA: FCB contains start block and extent.

traverse start blk + 5 blocks, offset 474

Linked Allocation 3034 LK: block# 5 offset: 498 LK: FCB contains start block and last block.

traverse start blk + 5 links, offset: 494+4

Indexed Allocation 3034 IN: index# 5 offset: 474 IN: FCB contains index block# and number of

blocks. traverse to index 5, offset: 474

FAT Allocation 3034 FAT: block# 5 offset: 474 FAT: FCB contains start index and last index.

traverse from first index, use contents for next index, 5 times. Offset 474

Contiguous Allocation 262 block# 0 offset: 262 CA: FCB contains start block and extent. traverse

start blk + 0 blocks, offset 262

Linked Allocation 262 LK: block# 0 offset: 266 LK: FCB contains start block and last block.

traverse start blk + 0 links, offset: 262+4

Indexed Allocation 262 IN: index# 0 offset: 262 IN: FCB contains index block# and number of

blocks. traverse to index 0, offset: 262

FAT Allocation 262 FAT: block# 0 offset: 262 FAT: FCB contains start index and last index.

traverse from first index, use contents for next index, 0 times. Offset 262

Contiguous Allocation 18176 block# 35 offset: 256 CA: FCB contains start block and extent.

traverse start blk + 35 blocks, offset 256

Linked Allocation 18176 LK: block# 35 offset: 400 LK: FCB contains start block and last block.

traverse start blk + 35 links, offset: 396+4

Indexed Allocation 18176 IN: index# 35 offset: 256 IN: FCB contains index block# and number

of blocks. traverse to index 35, offset: 256

FAT Allocation 18176 FAT: block# 35 offset: 256 FAT: FCB contains start index and last index.

traverse from first index, use contents for next index, 35 times. Offset 194

LA Contiguous Linked Index FAT

Addr Block# Offset Block# Offset Block# Offset Block# Offset

4209 8 113 8 (145+4)149 8 113 8 113

3034 5 474 5 (494+4)498 5 474 5 474

262 0 262 0 (262+4)266 0 262 0 262

18176 35 256 35 (396+4)400 35 256 35 256

Q4. Consider a file system that uses a modified contiguous-allocation scheme with support for

extents. A file is a collection of extents, with each extent corresponding to a contiguous set of

blocks. A key issue in such systems is the degree of variability in the size of the extents.

Assuming internal fragmentation means that allocated blocks are not completely used and

external fragmentation means that contiguous unallocated blocks are not enough for any file,

what are the advantages and disadvantages of the following schemes? (18 pts)

a. All extents are of the same size, and the size is predetermined.

Easiest to implement when the extents are all the same size, but the degree of internal

fragmentation will increase as the extent size increases (and decrease as the extent size

decreases). If extents are fixed sized and do not need to be contiguous, it eliminates external

fragmentation.

b. Extents can be of any size and are allocated dynamically.

Hardest to implement because variable extents can be divided into smaller extents and

combined back into larger extents. Internal fragmentation all but disappears except in as

much as the smallest unit is a block, so all file allocation schemes have some internal

fragmentation. External fragmentation is more of an issue. Even though small extents can be

allocated, it would be inefficient to store files in many small extents. In this caseall of the

advantages of contiguous allocation can be lost.

c. Extents can be of a few fixed sizes, and these sizes are predetermined

More complicated than a single size extent. It can limit internal fragmentation because of a

few fixed sized extents, however if the number of extents for each size are not allocated to

match the needs of the files stored, then there can be more internal fragmentation. External

fragmentation is not an issue since all extents can be allocated.

