
1. Polymorphism in C++ ...2
1.1 Polymorphism and virtual functions .. 2

1.2 Function call binding.. 3

1.3 Virtual functions... 4

1.4 How C++ implements late binding .. 6
1.4.1 Why do I have to know at all about virtual functions if it is such an important

feature? Why isn't all this going on automatically behind the scenes making my life

easier? ... 8

1.5 Abstract base classes and virtual functions .. 9

1.6 Pure virtual definitions ... 12

1.7 What happens when you inherit and add new virtual functions in the

derived class?.. 13

1.8 Object slicing.. 14

1.9 Overloading and overriding.. 15

1.10 Behavior of virtual functions inside constructors 17

1.11 Virtual destructors .. 17

1.12 Pure virtual destructors... 17

1.13 Virtuals in destructors .. 17

2

1. Polymorphism in C++

1.1 Polymorphism and virtual functions

� Polymorphism - many forms

� In C++, polymorphism is implemented through virtual functions. Virtual functions (and
so, of course, polymorphism) have a meaning only in the context of inheritance.

� Virtual functions provide the ability to apply true object-oriented programming in C++

� Virtual functions deal with decoupling in terms of types.

� Inheritance allows the treatment of an object as its own type or its base type. This ability
is critical because it allows many types (derived from the same base type) to be treated as
if they were one type.

� The virtual function allows one type to express its distinction from another; similar type as
long as they’re both derived from the same base type.

"If you don’t use virtual functions, you don’t understand OOP yet."

Bruce Eckel

3

1.2 Function call binding

� Connecting a function call to a function body is called binding. When binding is
performed before the program is run (by the compiler and linker), it’s called early
binding.

Early binding presents a problem with upcasting as we saw from a previous example:

enum note { middleC, Csharp, Cflat }; // Etc.

class Instrument
{
public:
void play(note) const { cout << "Instrument::play()"; }

};

class Wind : public Instrument
{
public:
void play(note) const { cout << "Wind::play()"; }

};

void tune(Instrument& i)
{
// ...
i.play(middleC);

}

void main()
{
Wind w;
tune(w) // Upcast, no explicit cast needed

}

Here the base-class version of play(), i.e Instrument::play(), will be called, due to early
binding.

� The solution is late binding. Late binding, dynamic binding and runtime binding are
synonyms and all three of these are often used interchangeably.

� When implementing late binding, there must be some mechanism to determine the type of
the object at runtime.

� The late-binding mechanism varies from language to language, but some sort of type
information must be "installed" in the objects.

4

1.3 Virtual functions

� To cause late binding to occur for a particular function, C++ requires that you use the
virtual keyword when declaring the function in the base class.

� Only the declaration needs the virtual keyword, not the definition.

� If a function is declared as virtual in the base class, it is virtual in all the derived classes.

� The redefinition of a virtual function in a derived class is usually called overriding.

To get the desired behavior from our prevoius example, simply add the virtual keyword in
the base class before play():

class Instrument
{
public:
virtual void play(note) const { cout << "Instrument::play()"; }

};

� With play() defined as virtual in the base class, you can add as many new types as you
want without changing the tune() function.

� In a well-designed OOP program, most or all of your functions will follow the model of
tune() and communicate only with the base-class interface.

5

� This provides for extensibility because you can add new functionality by inheriting new
data types from the common base class.

� The virtual function is the lens to use when you’re trying to analyze a project: Where
should the base classes occur, and how might you want to extend the program?

6

1.4 How C++ implements late binding

� The keyword virtual tells the compiler it should not perform early binding. Instead, it
should automatically install all the mechanisms necessary to perform late binding.

� This means that if you call play() for a Brass object through an address for the base-
class Instrument, you’ll get the proper function.

Compilers may implement virtual behavior any way they want, but the way it’s described here
is an almost universal approach.

Let's make an array A containing references to different instruments:

Instrument* A[] =
{
new Wind,
new Percussion,
new Stringed,
new Brass,

};

1. The compiler creates a single table (called the VTABLE) for each class that contains
virtual functions.

2. The compiler places the addresses of the virtual functions for that particular class in the
VTABLE.

3. In each class with virtual functions, it secretly places a pointer, called the vpointer
(abbreviated as VPTR), which points to the VTABLE for that object.

� When you make a virtual function call through a base-class pointer (that is, when you
make a polymorphic call), the compiler quietly inserts code to fetch the VPTR and look
up the function address in the VTABLE, thus calling the correct function and causing late
binding to take place.

� All of this happens automatically

To make things a bit more visual, below is a drawing of the array of pointers A[]:

7

� When making a call to a virtual function the compiler begins with the Instrument pointer,
which points to the starting address of the object. All Instrument objects or objects
derived from Instrument have their VPTR in the same place, so the compiler can pick the
VPTR out of the object.

� The VPTR points to the starting address of the VTABLE. All the VTABLE function
addresses are laid out in the same order, regardless of the specific type of the object.
play() is first, what() is second, and adjust() is third.

� For example, the adjust() function is at the location VPTR+2. Thus, instead of saying,
“Call the function at the absolute location Instrument::adjust ” (early binding; the wrong
action), it generates code that says, in effect, “Call the function at VPTR+2.”

� It’s important to realize that utilizing polymorphism through upcasting deals only with
addresses. If the compiler has an object, it knows the exact type and therefore (in C++)
will not use late binding for any function calls – or at least, the compiler doesn’t need to
use late binding.

8

1.4.1 Why do I have to know at all about virtual functions if it is such an important
feature? Why isn't all this going on automatically behind the scenes making my life
easier?

� Well, because it is not quite as efficient. Instead of one simple CALL to an absolute
address, there are two – more sophisticated – assembly instructions required to set up the
virtual function call.

� Stroustrup stated that his guideline was, “If you don’t use it, you don’t pay for it.”
Stoustrup never stated that this has anything to do with keeping C programmers hostile to
C++ happy. But, it is not unusual for a fanatic C programmer to take every chance to
avoid other languages with the argument, "It's not quite as efficient".

� However, once again, if you are going to use polymorphism, use it everywhere you get the
chance. Remember that the penalty in performance is relative to the overall design.
Usually, you can afford this penalty in performance.

9

1.5 Abstract base classes and virtual functions

� Often in a design, you want the base class to present only an interface for its derived
classes. That is, you don’t want anyone to actually create an object of the base class, only
to upcast to it so that its interface can be used.
This is accomplished by making that class abstract, which happens if you give it at least
one pure virtual function.

The syntax for a pure virtual declaration is:

virtual void f() = 0;

By doing this, you tell the compiler to reserve a slot for a function in the VTABLE, but not to
put an address in that particular slot. Even if only one function in a class is declared as pure
virtual, the VTABLE is incomplete.

� When an abstract class is inherited, all pure virtual functions must be implemented, or the
inherited class becomes abstract as well.

Remember the previously shown inheritance hierarchy using the Instrument class as a
baseclass common to all subclasses. The instrument class is there only to create a common
interface for all of its subclasses Thus it doesn't make much sense creating an object that is
only an instrument, and so you will want to prevent users from doing this.
Below is an implementation of the Instrument inheritance hierarchy. Because the Instrument
class has nothing but pure virtual functions, we call it a pure abstract class:

10

class Instrument
{
public:
// Pure virtual functions:
virtual void play(note) const = 0;
virtual char* what() const = 0;
// Assume this will modify the object:
 virtual void adjust(int) = 0;

};
// Rest of the file is the same ...

class Wind : public Instrument
{
public:
void play(note) const
{
cout << "Wind::play" << endl;

}
char* what() const { return "Wind"; }
void adjust(int) {}

};

class Percussion : public Instrument
{
public:
void play(note) const
{
cout << "Percussion::play" << endl;

}
char* what() const { return "Percussion"; }
void adjust(int) {}

};

class Stringed : public Instrument
{
public:
void play(note) const
{
cout << "Stringed::play" << endl;

}
char* what() const { return "Stringed"; }
void adjust(int) {}

};

class Brass : public Wind
{
public:
void play(note) const
{
cout << "Brass::play" << endl;

}
char* what() const { return "Brass"; }

};

class Woodwind : public Wind
{
public:
void play(note) const
{
cout << "Woodwind::play" << endl;

}
char* what() const { return "Woodwind"; }

};

// Identical function from before:
void tune(Instrument& i)
{
// ...
i.play(middleC);

}

11

// New function:
void f(Instrument& i) { i.adjust(1); }

int main()
{
Wind flute;
Percussion drum;
Stringed violin;
Brass flugelhorn;
Woodwind recorder;
tune(flute);
tune(drum);
tune(violin);
tune(flugelhorn);
tune(recorder);
f(flugelhorn);

}

12

1.6 Pure virtual definitions

It’s possible to provide a definition for a pure virtual function in the base class. You’re still
telling the compiler not to allow objects of that abstract base class, and the pure virtual
functions must still be defined in derived classes in order to create objects.

class Pet
{
public:
virtual void speak() const = 0;
virtual void eat() const = 0;
// Inline pure virtual definitions are illegal:
//! virtual void sleep() const = 0 {}

};

// OK, not defined inline
void Pet::eat() const
{
cout << "Pet::eat()" << endl;

}

void Pet::speak() const
{
cout << "Pet::speak()" << endl;

}

class Dog : public Pet
{
public:
// Use the common Pet code:
void speak() const { Pet::speak(); }
void eat() const { Pet::eat(); }

};

int main()
{
Dog simba; // Richard's dog
simba.speak();
simba.eat();

}

Benefits:
� Gathering a common piece of code in one place
� Allows you to change from an ordinary virtual to a pure virtual without disturbing the

existing code.

13

1.7 What happens when you inherit and add new virtual functions in the
derived class?

Here’s a simple example:

class Pet
{
public:
Pet(const string& petName) : pname(petName) {}
virtual string name() const { return pname; }
virtual string speak() const { return ""; }

private:
string pname;

};

class Dog : public Pet
{
public:
Dog(const string& petName) : Pet(petName) {}
// New virtual function in the Dog class:
virtual string sit() const
{
return Pet::name() + " sits";

}
string speak() const // Override
{
return Pet::name() + " says 'Bark!'";

}
private:
string name;

};

int main()
{
Pet* p[] = {new Pet("generic"),new Dog("bob")};
cout << "p[0]->speak() = " << p[0]->speak() << endl;
cout << "p[1]->speak() = " << p[1]->speak() << endl;
cout << "p[1]->sit() = " << p[1]->sit() << endl; // Illegal

}

The p[1]->sit(), function call can be made possible only through a downcast:

((Dog*)p[1])->sit()

� If your problem is set up so that you must know the exact types of all objects, you should
do some rethinking, because you’re probably not using virtual functions (polymorphism)
properly. Downcasts are dangerous because of the possibility of turning an object into
something that it is not.

14

1.8 Object slicing

� There is a distinct difference between passing the addresses of objects and passing objects
by value when using polymorphism.

� If you upcast to an object instead of a pointer or reference to the object, the object is
“sliced” until all that remains is the subobject that corresponds to the destination type of
your cast.

� Pure virtual functions prevent an abstract class from being passed into a function by
value. Thus, it is also a way to prevent object slicing. By making a class abstract, you can
ensure that a pointer or reference is always used during upcasting to that class.

� One of the most important aspects of pure virtual functions is to prevent object slicing by
generating a compile-time error message if someone tries to do it.

15

1.9 Overloading and overriding

This is best illustrated through an example:

class Base
{
public:
virtual int f() const
{
cout << "Base::f()\n";
return 1;

}
virtual void f(string) const { }
virtual void g() const {}

};

class Derived1 : public Base
{
public:
void g() const {}

};

class Derived2 : public Base
{
public:
// Overriding a virtual function:
int f() const
{
cout << "Derived2::f()\n";
return 2;

}
};

class Derived3 : public Base
{
public:
// Cannot change return type:
// void f() const{ cout << "Derived3::f()\n";}

};

class Derived4 : public Base
{
public:
// Change argument list: not really overriding
int f(int) const
{
cout << "Derived4::f()\n";
return 4;

}
};

16

void main()
{
string s("hello");
Derived1 d1;
int x = d1.f();
d1.f(s);
Derived2 d2;
x = d2.f();
//! d2.f(s); // string version hidden
Derived4 d4;
x = d4.f(1);
//! x = d4.f(); // f() version hidden
//! d4.f(s); // string version hidden
Base& br = d4; // Upcast
//! br.f(1); // Derived version unavailable
br.f(); // Base version available
br.f(s); // Base version abailable

}

� This example means to illustrate what happens when overriding/redefining functions in a
baseclass that are overloaded. Anyone who would use a baseclass like this and manipulate
it in these ways in derived classes should be shot.

� The example is here for you to understand what is going on when you are sitting down
having to understand what some moron-programmer did.

To summarize:

� The compiler will not allow you to change the return type of an overridden function (it
will allow it if f() is not virtual). This is an important restriction because the compiler
must guarantee that you can polymorphically call the function through the base class, and
if the base class is expecting an int to be returned from f(), then the derived-class version
of f() must keep that contract or else things will break.

� If you override/redefine one of the overloaded member functions in the base class, the
other overloaded versions become hidden in the derived class.

17

1.10 Behavior of virtual functions inside constructors

� If you call a virtual function inside a constructor, only the local version of the function is
used. That is, the virtual mechanism doesn’t work within the constructor.

1.11 Virtual destructors

� Virtual destructors works exactly the same way as an ordinary virtual function

� You should therefore always supply a virtual destructor for a baseclass.

1.12 Pure virtual destructors

� While pure virtual destructors are legal in Standard C++. There is an added constraint
when using them: you must provide a function body for the pure virtual destructor.

� All destructors in a class hierarchy are always called. If you could leave off the definition
for a pure virtual destructor, what function body would be called during destruction?

� The only difference you’ll see between the pure and non-pure virtual destructor is that the
pure virtual destructor does cause the base class to be abstract, so you cannot create an
object of the base class.

� The only distinction between a pure virtual destructor and a virtual destructor happens
when the destructor is the only pure virtual function.

� Unlike every other pure virtual function, you are not required to provide a definition of a
pure virtual destructor in the derived class. Why?

1.13 Virtuals in destructors

� Inside a destructor, only the “local” version of the member function is called; the virtual
mechanism is ignored.

� Why? The actual function called would (in many cases) rely on portions of an object that
have already been destroyed!

	1. Polymorphism in C++
	1.1 Polymorphism and virtual functions
	1.2 Function call binding
	1.3 Virtual functions
	1.4 How C++ implements late binding
	1.4.1 Why do I have to know at all about virtual functions if it is such an important feature? Why isn't all this going on automatically behind the scenes making my life easier?

	1.5 Abstract base classes and virtual functions
	1.6 Pure virtual definitions
	1.7 What happens when you inherit and add new virtual functions in the derived class?
	1.8 Object slicing
	1.9 Overloading and overriding
	1.10 Behavior of virtual functions inside constructors
	1.11 Virtual destructors
	1.12 Pure virtual destructors
	1.13 Virtuals in destructors

