CISC 2000 — Computer Science II
Fall, 2014

Note 10/30
1 Review of lab exercises

(a) Modular Design:

Class interface file (such as rational.h), class implementation file (such as rational.cpp), and
driver/test/main file (main.cpp that makes use of the rational class).

Interface file (header file): define the class (the name, public member functions,...) so that one
knows what the class is about, what it can do (member functions provided for the class...). It’s like
a contract between the programmer who designs and implements the class, and the programmer
who uses the class type.
Implementation file: how the member functions are implemented.

(b) Information hiding: user of a class (such as main.cpp) does not need to know the impelmentation
details of the class.

Benefits: readability, ease of maintenance, you can change implementation file without affect
main.cpp, as long as the interface stays the same.

2 Preview of lab8

Abstract Data Type when we design and implement a class, we are buidling a new data type
that is hopefully useful for various applications. Therefore we will work on build such a class next:
StaticIntArray.

The questions of what member functions to provide for a class shouldn’t be tightly coupled with the
main function. Usually, we want to provide basic operations for the class:

a) constructor functions for initializing objects of this type

b

)
)
¢) getter member functions: to retrieve private data member value
)
)

(
(b) input, output member functions: for read and write object’s value
(

(d

(e) comparison, append, addition, substraction: depends on what the class represents

setter member functions: to set private data member

3 friend function of a class

When we design and implement the IsEqualTo function for rational class, we have been design it so
that it’s comparing the invoking object and the object passed in parameter:

bool rational::IsEqualTo (const rational & n)

{

}. ..

// this is how we call it:
rational a, b;

a.IsEqualTo (b);

It is a little unnatural, to pass the two objects differently, although conceptually the two objects being
compared should be symmetric.

So let’s try to pass both objects by parameters:

// comparing nl with n2
bool rational::IsEqualTo (const rational & nl, const rational & n2)

{

}. ..

// this is how we call it to compare a, b
rational a, b, c;

c.IsEqualTo (a,b);
//Since it’s a member function, we needs to provide invoking object, even though the function
//has nothing to do with the invoking object...

This is even more awkard!

So we prefer to make this function a non-member function:

bool IsEqualTo (cosnt rational & nl, const rational & n2)

{

return (nl.numerator*n2.denominator == n2.numerator*nl.denominator) ;

}

This won’t compile, as the funciton cannot access private members of the class. We could call member
function get_numerator, get_denominator to access them. But there is overhead in making function
calls...

The solution: make this (non-member) function a friend of the class, by adding the following in the
public section of class rational. A friend function of a class can access private members of the class.

class rational{
public:
friend bool IsEqualTo (const rational & nl, const rational &n2);

static member variables

Usually, each object of a class type has its own copy of all member variables. For example,
Data today, yesterday;

In memory, variable today has three parts: year, month, and day; variable yesterday also has three
parts. They have different and separate memories for storing their member variables. (Please be
reminded how we draw memory for a variable that is a struct or class type.).

But in some cases, we want all objects of the class type to share a single copy of some member variable.
We do this by adding the keyword static to the member variables’ declaration (in the class definition).

The following are two such cases:

(a) the member variable is a constant, therefore its value will be the same anyway. For example, in
the StaticIntArray class, CAPACITY is a constant across all different objects of the type. (Refer
to lab8)

(b) We want to keep track information about the whole class: for example, how many objects of this
type has been created so far...

class rational{

public:
constructor (int p, int q)
{
numerator = p;
denominator = q;
counter++;
cout <<"So far: " << counter << " rational objects created!\n";
}
private:

static int counter; // one copy of counter for the class,
// not for individual rational object

};

More on this in lab exercise next week.

5 Usage of keyword const.

(a) To declare a named constant

(b) To denote a read-only parameter (pass-by-reference, or array). If the function includes code that
modifies the parameter, the compiler will report compilation errors.

(c) To denote a member function to be const, i.e., the function does not modify the invoking object:
class rational {

int get_denominator () const;
bool IsEqual (const rational & n) const;

}

6 I/0 and file stream

(a) The concept of stream: Input and ouput to a program are both like a stream of characters: that
will be read and write in order.

When you use:
int a;
char c;
int b;

cin >> a >> ¢ >> b;

The keyboard input (whatever the user types in) are parsed in the order of input, in order to
extract an integer value to be assigned to a, a character value to be assigned to c, ...

Likewise, when you do:
cout << month <<"/" << day <<"/" << year;

The value of month, slash character, day, ... are sent to the output stream (terminal) one by one,
in order.

(b) We can read from a disk file in a way similar to how we have been reading from keyboard. We
can write to a disk file in way similar to how we have been writing to terminal. We will practice
on this in next lab exercise.

#include <fstream> //This file defines classes (that others have defined and implemented)

// which allow you to read and write from disk files easily.

ifstream in_file; // declare an object variable named in_file of class ifstream type
// in order to read from a disk

in_file.open ("myinput.txt"); // connect the object with a file named
// myinput.txt in current direcotry

char c;
int month, day, year;

in_file >> month >> ¢ >> day >> ¢ >> year; // to read a date in the
// format of yyyy/month/day...

