
CISC 2000 — Computer Science II
Fall, 2014

Note 10/30

1 Review of lab exercises

(a) Modular Design:

Class interface file (such as rational.h), class implementation file (such as rational.cpp), and
driver/test/main file (main.cpp that makes use of the rational class).

Interface file (header file): define the class (the name, public member functions,...) so that one
knows what the class is about, what it can do (member functions provided for the class...). It’s like
a contract between the programmer who designs and implements the class, and the programmer
who uses the class type.

Implementation file: how the member functions are implemented.

(b) Information hiding: user of a class (such as main.cpp) does not need to know the impelmentation
details of the class.

Benefits: readability, ease of maintenance, you can change implementation file without affect
main.cpp, as long as the interface stays the same.

2 Preview of lab8

Abstract Data Type when we design and implement a class, we are buidling a new data type
that is hopefully useful for various applications. Therefore we will work on build such a class next:
StaticIntArray.

The questions of what member functions to provide for a class shouldn’t be tightly coupled with the
main function. Usually, we want to provide basic operations for the class:

(a) constructor functions for initializing objects of this type

(b) input, output member functions: for read and write object’s value

(c) getter member functions: to retrieve private data member value

(d) setter member functions: to set private data member

(e) comparison, append, addition, substraction: depends on what the class represents

3 friend function of a class

When we design and implement the IsEqualTo function for rational class, we have been design it so
that it’s comparing the invoking object and the object passed in parameter:

bool rational::IsEqualTo (const rational & n)

{

...

}

// this is how we call it:

rational a, b;

a.IsEqualTo (b);

It is a little unnatural, to pass the two objects differently, although conceptually the two objects being
compared should be symmetric.

So let’s try to pass both objects by parameters:

// comparing n1 with n2

bool rational::IsEqualTo (const rational & n1, const rational & n2)

{

...

}

// this is how we call it to compare a, b

rational a, b, c;

c.IsEqualTo (a,b);

//Since it’s a member function, we needs to provide invoking object, even though the function

//has nothing to do with the invoking object...

This is even more awkard!

So we prefer to make this function a non-member function:

bool IsEqualTo (cosnt rational & n1, const rational & n2)

{

return (n1.numerator*n2.denominator == n2.numerator*n1.denominator);

}

This won’t compile, as the funciton cannot access private members of the class. We could call member
function get numerator, get denominator to access them. But there is overhead in making function
calls...

The solution: make this (non-member) function a friend of the class, by adding the following in the
public section of class rational. A friend function of a class can access private members of the class.

class rational{

public:

friend bool IsEqualTo (const rational & n1, const rational &n2);

...

4 static member variables

Usually, each object of a class type has its own copy of all member variables. For example,

Data today, yesterday;

In memory, variable today has three parts: year, month, and day; variable yesterday also has three
parts. They have different and separate memories for storing their member variables. (Please be
reminded how we draw memory for a variable that is a struct or class type.).

But in some cases, we want all objects of the class type to share a single copy of some member variable.
We do this by adding the keyword static to the member variables’ declaration (in the class definition).

The following are two such cases:

(a) the member variable is a constant, therefore its value will be the same anyway. For example, in
the StaticIntArray class, CAPACITY is a constant across all different objects of the type. (Refer
to lab8)

(b) We want to keep track information about the whole class: for example, how many objects of this
type has been created so far...

2

class rational{

public:

constructor (int p, int q)

{

numerator = p;

denominator = q;

counter++;

cout <<"So far: " << counter << " rational objects created!\n";

}

...

private:

static int counter; // one copy of counter for the class,

// not for individual rational object

...

};

More on this in lab exercise next week.

5 Usage of keyword const.

(a) To declare a named constant

(b) To denote a read-only parameter (pass-by-reference, or array). If the function includes code that
modifies the parameter, the compiler will report compilation errors.

(c) To denote a member function to be const, i.e., the function does not modify the invoking object:

class rational {

...

int get_denominator () const;

bool IsEqual (const rational & n) const;

...

}

6 I/O and file stream

(a) The concept of stream: Input and ouput to a program are both like a stream of characters: that
will be read and write in order.

When you use:

int a;

char c;

int b;

cin >> a >> c >> b;

The keyboard input (whatever the user types in) are parsed in the order of input, in order to
extract an integer value to be assigned to a, a character value to be assigned to c, ...

Likewise, when you do:

cout << month <<"/" << day <<"/" << year;

The value of month, slash character, day, ... are sent to the output stream (terminal) one by one,
in order.

3

(b) We can read from a disk file in a way similar to how we have been reading from keyboard. We
can write to a disk file in way similar to how we have been writing to terminal. We will practice
on this in next lab exercise.

#include <fstream> //This file defines classes (that others have defined and implemented)

// which allow you to read and write from disk files easily.

ifstream in_file; // declare an object variable named in_file of class ifstream type

// in order to read from a disk

in_file.open ("myinput.txt"); // connect the object with a file named

// myinput.txt in current direcotry

char c;

int month, day, year;

in_file >> month >> c >> day >> c >> year; // to read a date in the

// format of yyyy/month/day...

4

