
CSCI 123 Introduction to
Programming Concepts in C++

Brad Rippe

String and Vectors

Overview

8.1 An Array Type for Strings

8.2 The Standard string Class

8.3 Vectors

8.1

An Array Type for Strings

An Array Type for Strings

• C-strings can be used to represent strings of
characters

– C-strings are stored as arrays of characters

– C-strings use the null character '\0' to end a string

• The Null character is a single character

– To declare a C-string variable, declare an array of
characters:

char s[9];

C-string Details

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7] s[8] s[9]

H i M o m ! \0 ? ?

• Declaring a C-string as char s[10] creates space
for only nine characters

– The null character terminator requires one space

• A C-string variable does not need a size
variable

– The null character immediately follows the last
character of the string

• Example:

C-string Declaration

• To declare a C-string variable, use the syntax:

type arrayName[size+1];

– + 1 reserves the additional character needed by
'\0'

Initializing a C-string

• To initialize a C-string during declaration:
char message[20] = "Hi there.";

– The null character '\0' is added for you

• Another alternative:
char fileName[] = “input.txt";

but not this:

char fileName[] = {„i', „n', „p', „u', „t',

„.', „t', „x', „t'};

C-string error

• This attempt to initialize a C-string does not
cause the \0 to be inserted in the array

char fileName[] = {„i', „n', „p', „u', „t',

„.', „t', „x', „t'};

Don't Change '\0'

• Do not to replace the null character when
manipulating indexed variables in a C-string
– If the null character is lost, the array cannot act

like a C-string
• Example:

int size = 0;
while(myString[size] != '\0') {

myString[size] = 'X';
size++;

}

– This code depends on finding the null character!

Safer Processing of C-strings

• The loop on the previous slide depended on
finding the '\0' character

– It would be wiser to use this version in case the
'\0' character had been removed

int index = 0;

while(myString[index] != '\0‟ && index < size) {

myString[index] = 'X';

index++;

}

Assignment With C-strings

• This statement is illegal:

myString = "Hello";

– This is an assignment statement, not an
initialization

– The assignment operator does not work with
C-strings

Assignment of C-strings

• A common method to assign a value to a
C-string variable is to use strcpy, defined in
the cstring library
– Example:

#include <cstring>
…

char myString[11];

strcpy(myString, "Hello");

Places "Hello" followed by the null character in
myString

A Problem With strcpy

• strcpy can create problems if not used
carefully

– strcpy does not check the declared length of the
first argument

– It is possible for strcpy to write characters beyond
the declared size of the array

Problem copying cstrings

char cString1[] = "Please email my message to the

class!";

char cString2[] = "";

strcpy(cString2, cString1);

cout << "cString1 = " << cString1 << endl;

cout << "cString2 = " << cString2 << endl;

What happens here?

cString2 only gets allocated enough memory for an empty string

cString1 is given the memory after cString2

when cString1 is copied to cString2, it overwrites part of

cString1 this is bad

A Solution for strcpy
• Many versions of C++ have a safer version of

strcpy named strncpy
– strncpy uses a third argument representing the

maximum number of characters to copy
– Example:

char myString[10];

strncpy(myString, myStr, 9);

This code copies up to 9 characters into
myString, leaving one space for '\0‘

If third argument is less than or equal to the length of source, a null
character is not appended automatically to the copied string. If count is
greater than the length of source, the destination string is padded with
null characters up to length count. strncpy does not check for sufficient
space in destination; it is therefore a potential cause of buffer overruns.
Keep in mind that count limits the number of characters copied; it is
not a limit on the size of destination

Problem copying cstrings

char cString1[] = "Please email my message to the

class!";

char cString2[] = "";

strncpy(cString2, cString1, cString1Size);

cout << "cString1 = " << cString1 << endl;

cout << "cString2 = " << cString2 << endl;

What happens here now?

Same problem…. But if we know the size of cString1 we can limit this issue

Problem copying cstrings

char cString1[] = "Please email my message to the

class!"; // size is 37 +1 for the null

char cString2[38] = "";

strncpy(cString2, cString1, cString1Size);

cout << "cString1 = " << cString1 << endl;

cout << "cString2 = " << cString2 << endl;

// assume cString1Size is 38

How do we fix the problem?

Set the size of cString2 to the number of characters in the source string. This will
allocate enough memory so that the issue will be avoided.

Depre-what?

warning C4996: 'strncpy' was declared
deprecated

• Deprecated functions means that these
particular functions are not recommended to
be used. There are better functions which
should be used instead.

strcpy_s

From Microsoft MSDN:
“For example, the strcpy function has no way of telling if the string

that it is copying is too big for its destination buffer. However, its
secure counterpart, strcpy_s, takes the size of the buffer as a
parameter, so it can determine if a buffer overrun will occur. If you
use strcpy_s to copy eleven characters into a ten-character buffer,
that is an error on your part; strcpy_s cannot correct your mistake,
but it can detect your error and inform you by invoking the invalid
parameter handler.”

You can use strcpy_s to avoid buffer overflow and the other secure
versions of the deprecated functions (in VS 2005)

http://msdn2.microsoft.com/en-us/library/8ef0s5kh(VS.80).aspx
This is part of the ISO Standard and not the ANSI standard
ISO - International Organization for Standardization
American National Standards Institute - ANSI

http://msdn2.microsoft.com/en-us/library/8ef0s5kh(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/8ef0s5kh(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/8ef0s5kh(VS.80).aspx
http://www.iso.org/cate/cat.html
http://www.iso.org/cate/cat.html
http://www.iso.org/cate/cat.html
http://www.iso.org/cate/cat.html
http://www.ansi.org/
http://www.ansi.org/
http://www.ansi.org/
http://www.ansi.org/

strcpy_s

• Parameters
– strDestination Location of destination string buffer

– sizeInBytes, sizeInWords Size of the destination
string buffer.

– strSource Null-terminated source string buffer.

• Returns
– Zero if successful;

an error otherwise.

== Alternative for C-strings

• The = = operator does not work as expected with
C-strings

– The predefined function strcmp is used to compare C-string
variables

– Example:

#include <cstring>

…

if (strcmp(string1, string2))

cout << "Strings are not the same.";

else

cout << "String are the same.";

strcmp's logic

• strcmp compares the numeric codes of elements
in the C-strings a character at a time

– If the two C-strings are the same, strcmp returns 0

• 0 is interpreted as false

– As soon as the characters do not match

• strcmp returns a negative value if the numeric code in the
first parameter is less

• strcmp returns a positive value if the numeric code in the
second parameter is less

• Non-zero values are interpreted as true

strcmp()
char cString1[] = "Please email my message to the class!";

char cString2[50];

// strcmp compares strings lexicographically returns

// < 0 string1 less than string2 ;0 string1 identical to string2 ; > 0 string1 greater than string2

if(cString1 == cString2) {

cout << "string 1 is equal to string 2\n";

} else {

cout << "string 1 is not equal to string 2\n";

}

if(strcmp(cString1, cString2) < 0) {

cout << "string 1 is less than string 2\n";

} else if(strcmp(cString1, cString2) == 0) {

cout << "string 1 equal to string 2\n";

} else if(strcmp(cString1, cString2) > 0) {

cout << "string 1 is greater than string 2\n";

}

More C-string Functions

• The cstring library includes other functions
– strlen returns the number of characters in a string

int x = strlen(myString);

– strcat concatenates two C-strings
• The second argument is added to the end of the first
• The result is placed in the first argument
• Example:

char aString[20] = "The rain";
strcat(aString, "in Spain");

Now aString contains "The rainin Spain"

The strncat Function

• strncat is a safer version of strcat

– A third parameter specifies a limit for the number
of characters to concatenate

– Example:

char aString[20] = "The rain";

strncat(aString, "in Spain", 11);

C-strings as
Arguments and Parameters

• C-string variables are arrays

• C-string arguments and parameters are used
just like other arrays

– If a function changes the value of a C-string
parameter, it is best to include a parameter for the
declared size of the C-string

– If a function does not change the value of a C-
string parameter, the null character can detect the
end of the string and no size argument is needed

C-string Output

• C-strings can be output with the insertion
operator

– Example:

char msg[] = “What a “;

cout << msg << " Class!\n”;

C-string Input

• The extraction operator >> can fill a C-string
– Whitespace ends reading of data
– Example:

char a[80];

char b[80];
cout << "Enter input: " << endl;
cin >> a >> b;
cout << a << b << "End of Output";

could produce:

Enter input:
Do be do to you!
DobeEnd of Output

Reading an Entire Line

• Predefined member function getline can read
an entire line, including spaces

– getline is a member of all input streams

– getline has two arguments

• The first is a C-string variable to receive input

• The second is an integer, usually the size of the first
argument specifying the maximum number of elements
in the first argument getline is allowed to fill

Using getline

• The following code is used to read an entire line
including spaces into a single C-string variable

int lineLength = 0;

int numberOfLines = 0;

char line[LINE_SIZE];

while(true) {

aInFile.getline(line, LINE_SIZE); // read the whole line

if(aInFile.eof()) break;

lineLength = aInFile.gcount();

numberOfLines++;

}

cout << “The last line txt “ << line << endl;

cout << “The line length “ << lineLength << endl;
cout << “The number of lines “ << numberOfLines << endl;

and could produce:
The last line txt Title: Spurs 86, Heat 83
The line length 24
The number of lines 432

cstring_getline.cpp

getline wrap up

• getline stops reading when the number of
characters, less one, specified in the second
argument have been placed in the C-string

– one character is reserved for the null character

– getline stops even if the end of the line has not
been reached

getline and Files

• C-string input and output work the same way
with file streams
– Replace cin with the name of an input-file stream

iStream >> myString;

iStream.getline(myString, 80);

– Replace cout with the name of an output-file
stream

outStream << myString;

getline syntax

• Syntax for using getline is

cin.getline(stringVar, maxChars + 1);

– cin can be replaced by any input stream

– maxChars + 1 reserves one element for the null
character

C-String to Numbers

• “86" is a string of characters

• 86 is a number

• When doing numeric input, it is useful to read
input as a string of characters, then convert
the string to a number

– Reading money may involve a dollar sign

– Reading percentages may involve a percent sign

C-strings to Integers

• To read an integer as characters
– Read input as characters into a C-string, removing

unwanted characters

– Use the predefined function atoi to convert the
C-string to an int value

• Example: atoi(“86") returns the integer 86

atoi("#33") returns 0 because # is not a digit

– #include <cstdlib>

C-string to long

• Larger integers can be converted using the
predefined function atol

– atol returns a value of type long

– long int

C-string to double

• C-strings can be converted to type double
using the predefined function atof

• atof returns a value of type double

– Example:

atof("9.99") returns 9.99

atof("$9.99") returns 0.0 because the
$ is not a digit

Library cstdlib

• The conversion functions
atoi
atol
atof

are found in the library cstdlib

• To use the functions use the include directive

#include <cstdlib>

cctype library

isdigit(c)
isalpha(c)
isalnum(c)
islower(c)
isupper(c)
isspace(c)
isprint(c)
isgraph(c)
ispunct(c)
iscntrl(c)

Returns true if c is a digit
Returns true if c is a letter
Returns true if c is a letter or a digit
Returns true if c is a lowercase letter
Returns true if c is a uppercase letter
Returns true if c is a whitespace character
Returns true if c is a printable character occupies space on the device
Returns true if c is a printable character excluding ‘ ‘
Returns true if c is a punctuation character
Returns true if c is a control character ‘\n’, ‘\f’, ‘\v’, ‘\a’, and ‘\b’

Helpful character functions, when examining characters for conversions

Numeric Input

• We now know how to convert C-strings to
numbers

• How do we read the input?
– Function getATeam()

string fileData;

char score[20];

// get the first team

aInFile >> fileData;

aTeams[aTeamSize][aTeamIndex] = fileData;

aInFile >> score;

cleanScore(score);

aWinsLosses[aTeamSize][aTeamIndex] = atoi(score);

Uses atoi to convert the "cleaned-up" C-string to int
From the data in nbaScores.txt

Title: Sonics 96, Bobcats 89
Description: Ray Allen's spinning three-point play with 1:25 left capped a 34-point game, and the Seattle

SuperSonics pulled away late for a 96-89 win over the Charlotte Bobcats on Sunday night.
Link: http://www.nba.com/games/20070304/CHASEA/boxscore.html?rss=true

Section 8.1 Conclusion

• Can you

– Describe the benefits of reading numeric data as
characters before converting the characters to a
number?

– Write code to do input and output with C-strings?

– Use the atoi, atol, and atof functions?

– Identify the character that ends a C-string?

8.2

The Standard string Class

The Standard string Class

• The string class allows the programmer to treat
strings as a basic data type
– No need to deal with the implementation as with C-

strings

• The string class is defined in the string library
and the names are in the standard namespace
– To use the string class you need these lines:

#include <string>

using namespace std;

Assignment of Strings

• Variables of type string can be assigned with
the = operator
– Example:

string s1;

string s2;

string s3;

…

s3 = s2;

• Quoted strings are type cast to type string
– Example:
string s1 = "Hello Mom!";

Using + With strings

• Variables of type string can be concatenated
with the + operator
– Example:

string s1;

string s2;

string s3;

…

s3 = s1 + s2;

– If s3 is not large enough to contain s1 + s2, more
space is allocated

Using + With strings

char cString1[80] = "I wonder if you're really";
char cString2[] = " going to read this??";

string string1 = "There might be ";
string string2 = "a real chance that you will!";
// the book uses strcat
// Only with VS 2005 - strcat_s() because strcat has been deprecated. strcat_s() is a

more secure version of strcat(), but you can use strcat too!
cout << "Output the cstrings\n";
cout << strcat_s(cString1, cString2) << endl;

// the + operator doesn't add the characters but
// concatenates the strings together creating one string
cout << "Output the strings\n";
cout << string1 + string2 << endl;

string Constructors

• The default string constructor initializes the
string to the empty string

• Another string constructor takes a C-string
argument

– Example:

–
string phrase; // empty string

string noun("ants"); // a string version

// of "ants"

Mixing strings and C-strings

• It is natural to work with strings in the
following manner

string phrase = "I love" + adjective + " "

+ noun + "!";

– It is not so easy for C++! It must either convert
the null-terminated C-strings, such as "I love", to
strings, or it must use an overloaded + operator
that works with strings and C-strings

I/O With strings

• The insertion operator << is used to output
objects of type string
– Example: string s = "Hello Mom!";

cout << s;

• The extraction operator >> can be used to
input data for objects of type string
– Example: string s1;

cin >> s1;
• >> skips whitespace and stops on encountering more

whitespace

I/O with string

string word;

while(inFile >> word) {

// statements here

// work happening here

}

getline and Type string

• A getline function exists to read entire lines into a
string variable
– This version of getline is not a member of the

istream class, it is a non-member function of the
string class

– Syntax for using this getline is different than that used
with cin: cin.getline(…)

• Syntax for using getline with string objects:
getline(istream_Object, string_Object);

• From #include <string>

getline Example

• This code demonstrates the use of getline with
string objects

– string line;

cout "Enter a line of input:\n";

getline(cin, line);

cout << line << "END OF OUTPUT\n";

Output could be:
Enter some input:
Do be do to you!
Do be do to you!END OF OUTPUT

Character Input With strings

• The extraction operator cannot be used to
read a blank character

• To read one character at a time remember to
use cin.get

– cin.get reads values of type char, not type string

Another Version of getline

• The versions of getline we have seen, stop
reading at the end of line marker '\n'

• getline can stop reading at a character
specified in the argument list
– This code stops reading when a '?' is read

string line;

cout <<"Enter some input: \n";

getline(cin, line, '?');

getline Returns a Reference

• getline returns a reference to its first argument

• This code will read in a line of text into s1 and
a string of non-whitespace characters into s2:

string s1;

string s2;
getline(cin, s1) >> s2;

•
cin >> s2;

returns

getline Declarations

• These are the declarations of the versions of
getline for string objects we have seen

– Syntax:

#include <string>
istream& getline(istream& is, string& s, char delimiter = '\n');

Mixing cin >> and getline

• Recall cin >> n skips whitespace to find what it
is to read then stops reading when whitespace
is found

• cin >> leaves the '\n' character in the input stream

– Example:
int n;

string line;

cin >> n;

getline(cin, line);

leaves the '\n' which immediately ends getline's
reading…line is set equal to the empty string

ignore

• ignore is a member of the istream class
• ignore can be used to read and discard all the

characters, including '\n' that remain in a line
– Ignore takes two arguments

• First, the maximum number of characters to discard
• Second, the character that stops reading and discarding

– Example:
cin.ignore(1000, '\n');

reads up to 1000 characters or to '\n'

String Processing

• The string class allows the same operations
we used with C-strings…and more

– Characters in a string object can be accessed as if
they are in an array

• fileName[i] provides access to a single character
as in an array

• Index values are not checked for validity!

Member Function length

• The string class member function length returns
the number of characters in the string object:

– Example:
int n = fileName.length();

• This provides much more power than cstrings in
that we don’t have to keep size, string object do
that for us

Member Function at

• at is an alternative to using []'s to access
characters in a string.

– at checks for valid index values

– Example: string str("Mary");
cout << str[1] << endl;
cout << str.at(1) << endl;
str[2] = 'X';
str.at(2) = 'X';

Equivalent

Equivalent

Comparison of strings

• Comparison operators work with string
objects
– Objects are compared using lexicographic order

(Alphabetical ordering using the order of symbols
in the ASCII character set.)

– = = returns true if two string objects contain the
same characters in the same order
• Remember strcmp for C-strings?

– <, >, <=, >= can be used to compare string
objects

stringFun.cpp

string Objects to C-strings

• Recall the automatic conversion from C-string
to string:

char cString[] = "C-string";
stringVar = cString;

• strings are not converted to C-strings
• Both of these statements are illegal:

– cString = stringVar;
– strcpy(cString, stringVar);

Converting strings to C-strings

• The string class member function c_str returns
the C-string version of a string object

– Example:
strcpy(cString, stringVar.c_str());

• This line is still illegal
cString = stringVar.c_str() ;

– Recall that operator = does not work with C-
strings

Section 8.2 Conclusion

• Can you

– Show how a string object can be used like a C-
string?

– Write code to read an entire line into a string
object?

– Use the string function at to access individual
characters in a string object?

– Write code to convert a string to a C-string?

8.3

Vectors

Vectors

• Vectors are like arrays that can change size as
your program runs

• Vectors, like arrays, have a base type

• To declare an empty vector with base type int:
vector<int> v;

– <int> identifies vector as a template class

– You can use any base type in a template class:
vector<string> v;

Vector from STL

• Standard Template Library - STL

– Provides containers, iterators and algorithms that
you don’t have to program.

– They have been given to you for FREE!

– Java has what’s known as the collections classes
which contains similar containers, iterators and
algorithms for Java

Accessing vector Elements

• Vectors elements are indexed starting with 0

– []'s are used to read or change the value of an
item:

v[i] = 42;

cout << v[i];

– []'s cannot be used to initialize a vector element

Initializing vector Elements

• Elements are added to a vector using the
member function push_back

– push_back adds an element in the next available
position

– Example: vector<double> sample;
sample.push_back(0.0);
sample.push_back(1.1);
sample.push_back(2.2);

The size Of A vector

• The member function size returns the number
of elements in a vector

– Example: To print each element of a vector given
the previous vector initialization:

for (int i= 0; i < teams.size(); i++)

cout << teams[i] << endl;

vectors.cpp

The Type unsigned int

• The vector class member function size returns
an unsigned int

– Unsigned int's are nonnegative integers

– Some compilers will give a warning if the previous
for-loop is not changed to:

for (unsigned int i= 0; i < teams.size(); i++)
cout << teams[i] << endl;

Alternate vector Initialization

• A vector constructor exists that takes an
integer argument and initializes that number of
elements

– Example: vector<int> v(10);

initializes the first 10 elements to 0
v.size() would return 10

• []'s can now be used to assign elements 0 through 9

• push_back is used to assign elements greater than 9

Vector Initialization
With Classes

• The vector constructor with an integer
argument

– Initializes elements of number types to zero

– Initializes elements of class types using the
default constructor for the class

The vector Library

• To use the vector class

– Include the vector library

#include <vector>

– Vector names are placed in the standard
namespace so the usual using directive is needed:

using namespace std;

vectors.cpp

vector Issues

• Attempting to use [] to set a value beyond the
size of a vector may not generate an error

– The program will probably misbehave

• The assignment operator with vectors does an
element by element copy of the right hand
vector

– For class types, the assignment operator must
make independent copies

vector Efficiency

• A vector's capacity is the number of elements
allocated in memory

– Accessible using the capacity() member function

• Size is the number of elements initialized

• When a vector runs out of space, the capacity is
automatically increased

– A common scheme is to double the size of a vector

• More efficient than allocating smaller chunks of memory

Controlling vector Capacity

• When efficiency is an issue

– Member function reserve can increase the
capacity of a vector

• Example:

v.reserve(32); // at least 32 elements
v.reserve(v.size() + 10); // at least 10 more

– resize can be used to shrink a vector

• Example:

v.resize(24); //elements beyond 24 are lost

Section 8.3 Conclusion

• Can you

– Declare and initialize a vector of 10 doubles?

– Write code to increase the size of a vector in at
least two different ways?

– Describe the difference between a vector's size
and its capacity?

