
Review of Everything Arrays

❑ Array Basics

❑ Arrays in Functions

❑ Programming with Arrays

❑ Simple linear search, simple selection sort.

❑ Multi-dimensional Arrays

Array Basics

Arrays

❑ An array is used to process a collection of data
of the same type

◼ Examples: A list of names
A list of temperatures

❑ Why do we need arrays?

◼ Imagine keeping track of 5 test scores, or
100, or 1000 in memory
◼ How would you name all the variables?

◼ How would you process each of the variables?

Declaring an Array

❑ An array, named score, containing five
variables of type int can be declared as

int score[5];

❑ This is like declaring 5 variables of type int:
score[0], score[1], … , score[4]

❑ The value in brackets is called

◼ A subscript

◼ An index

◼ Eg. Score sub 0, score sub 1, …. , score sub 4

The Array Variables

❑ The variables making up the array are referred to as

◼ Indexed variables

◼ Subscripted variables

◼ Elements of the array

❑ The number of indexed variables in an array is
the declared size, or size, of the array

◼ The largest index is one less than the size

◼ The first index value is zero

◼ Not all variables are actually being used all the time!

Array Variable Types

❑ An array can have indexed variables of any
type

❑ All indexed variables in an array are of the
same type

◼ This is the base type of the array

❑ An indexed variable can be used anywhere an
ordinary variable of the base type is used

Using [] With Arrays

❑ In an array declaration, []'s enclose the size
of the array such as this array of 5 integers:

int score [5];

❑ When referring to one of the indexed variables,
the []'s enclose a number identifying one of the
indexed variables
◼ E.g.,

score[3]=7;

score[3] is one of the indexed variables

◼ The value in the []'s can be any expression that
evaluates to one of the integers 0 to (size -1)

Indexed Variable Assignment

❑ To assign a value to an indexed variable, use
the assignment operator:

int n = 2;
score[n + 1] = 99;

◼ In this example, variable score[3] is
assigned 99

Loops And Arrays

❑ for-loops are commonly used to step through
arrays

◼ Example: for (int i = 0; i < 5; i++)
{
cout << score[i] << " off by “

<< (max – score[i]) << endl;
}

could display the difference between each
score and the maximum score stored in an
array

First index is 0

Display 7.1

Last index is (size – 1)

Let’s write a program with an Array

❑ Write a program to read in 5 scores and find
the max score and then print the difference
between each score and the max.

❑ What do we have to do?

◼ Declare some variables

◼ How do we figure out the max score?
◼ Where do we start?

◼ What is the program structure?
◼ What kind of statements are needed?

Display 7.1

Constants and Arrays

❑ Use constants to declare the size of an array

◼ Using a constant allows your code to be easily
altered for use on a smaller or larger set of
data
◼ Example:
const int NUMBER_OF_STUDENTS = 50;

int score[NUMBER_OF_STUDENTS];

for (i = 0; i < NUMBER_OF_STUDENTS; i++)

cout << score[i] << " off by “ << (max – score[i]) << endl;

◼ Only the value of the constant must be changed to
make this code work for any number of students

Variables and Declarations

❑ Most compilers do not allow the use of a
variable to declare the size of an array

Example:
cout << "Enter number of students: ";
cin >> number;
int score[number];

◼ This code is illegal on many compilers

◼ But it works on our version of g++. It is an
extension.

Array Declaration Syntax
❑ To declare an array, use the syntax:

Type_Name Array_Name[Declared_Size];

◼ Type_Name can be any type

◼ Declared_Size can be a constant to make
your program more versatile

❑ Once declared, the array consists of the
indexed variables:
Array_Name[0] to Array_Name[Declared_Size-1]

Arrays and Memory
❑ Declaring the array

int a[6];

◼ Reserves memory for six variables of type int

◼ The variables are stored one after another

◼ The address of a[0] is remembered by C++
◼ The addresses of the other indexed variables are

not remembered by C++

◼ To determine the address of a[3]
◼ C++ starts at a[0]

◼ C++ adds a[0] + 3 * sizeof(int) to get to a[3].

Display 7.2

in this example, each int variable uses

2 bytes, but typically an int variable

uses 4 bytes.

Recall:
❑ Computer memory consists of numbered locations called bytes

◼ A byte's number is its address
❑ A simple variable is stored in consecutive bytes

◼ The number of bytes depends on the variable's type
❑ A variable's address is the address of its first byte

Display 7.2

Array Index Out of Range

❑ A common error is using a nonexistent index

◼ Index values for int a[6] are the values 0
through 5

◼ An index value not allowed by the array
declaration is out of range

◼ Using an out of range index value does not
produce an error message!

Out of Range Problems

❑ If an array is declared as: int a[6];
and an integer is declared as: int i = 7;

❑ Executing the statement a[i] = 238; causes…
◼ The computer to calculate the address of the illegal a[7]

(This address could be where some other variable is stored)

◼ The value 238 is stored at the address calculated for a[7]

◼ No warning is given!

❑ What happens if i = 6?

Initializing Arrays

❑ To initialize an array when it is declared

◼ The values for the indexed variables are
enclosed in braces and separated by commas

❑ Example: int children[3] = { 2, 12, 1 };
is equivalent to:

int children[3];
children[0] = 2;
children[1] = 12;
children[2] = 1;

Default Values

❑ If too few values are listed in an initialization
statement

◼ The listed values are used to initialize the
first of the indexed variables

◼ The remaining indexed variables are
initialized to a zero of the base type

◼ Example: int a[10] = {5, 5};
initializes a[0] and a[1] to 5 and
a[2] through a[9] to 0

Un-initialized Arrays

❑ If no values are listed in the array declaration,
some compilers will initialize each variable to
the equivalent of zero of the base type

◼ Don’t rely on this if you are writing code
that will be shared with a large development
community.

Arrays in Functions

Arrays in Functions

❑ Indexed variables can be arguments to functions
◼ Example: If a program contains these declarations:

int i, n, a[10];
void my_function(int n);

◼ Variables a[0] through a[9] are of type int, making
these calls legal:

my_function(a[0]);
my_function(a[3]);

my_function(a[i]);

Display 7.3

Program to adjust vacation days

❑ Let’s assume that a company changes it’s policy
to be 5 more vacation days per year.

❑ Using an array, ask the user to input the
number of vacation days for each employee.

❑ Write a function called adjust_days that adds
5 to the number passed in and returns the
result.

❑ Print the adjusted array.

Display 7.3

Arrays as Function Arguments

❑ A formal parameter can be for an entire array

◼ Such a parameter is called

an array parameter
◼ It is not a call-by-value parameter

◼ It is not a call-by-reference parameter

◼ Array parameters behave much like call-by-
reference parameters because

◼ Array parameters are just pointers to the memory
that was allocated for the array.

void fill_up(int a[], int size);

- Argument1 is 4 bytes for the address of a[]

- Argument2 is 4 bytes for the value in size.
Stack Frame

When a function is called, parameters are placed on the stack in order.

➢ If it is an array parameter, only the address of the first element is put on the stack

➢ If it is a call-by-value parameter, the value is copied onto the stack.

➢ If it is call-by-reference, the address of the variable is put on the stack.

Array Parameter Declaration

❑ An array parameter is indicated using empty
brackets in the parameter list such as

void fill_up(int a[], int size);

❑ This is why the size is needed.

❑ Unless there is a special value at the end that
indicates it’s the last value called a terminal or
sentinal value.

Function Calls With Arrays

❑ If function fill_up is declared in this way:
void fill_up(int a[] , int size);

❑ and array score is declared this way:
int score[5], number_of_scores;

❑ fill_up is called in this way:
fill_up(score, number_of_scores);

Display 7.4

Array Parameter Considerations

❑ Because a function does not know the size of
an array argument…
◼ The programmer should include a formal parameter

that specifies the size of the array

◼ The function can process arrays of various sizes
◼ Function fill_up from Display 7.4 can be used to fill

an array of any size:

int score[5];

int time[10];

fill_up(score, 5);

fill_up(time, 10);

Function Call Details

❑ A formal parameter is identified as an array
parameter by the []'s with no index
expression

void fill_up(int a[], int size);

❑ An array argument does not use the []'s

fill_up(score, number_of_scores);

Array Argument Details

❑ What does the computer know about an array
once it is declared?
◼ The base type

◼ The address of the first indexed variable

◼ The number of indexed variables

❑ What does a function know about an array
argument during a function call?
◼ The base type

◼ The address of the first indexed variable

Returning An Array

❑ Recall that functions can return (via return-
statement) a value of type int, double, char, …

❑ Functions cannot return arrays

❑ We learn later how to return a pointer to an
array

Programming with Arrays

Programming With Arrays

❑ The size needed for an array is changeable
◼ Often varies from one run of a program to another

◼ Is often not known when the program is written

❑ A common solution to the size problem
◼ Declare the array size to be the largest that could

be needed

◼ Decide how to deal with partially filled arrays

◼ Manage two things:
◼ Capacity – total number of elements allowed

◼ Size – total number of elements inserted

Partially Filled Arrays
❑ When using arrays that are partially filled

◼ A parameter, number_used, may be sufficient to
ensure that referenced index values are legal

◼ Functions dealing with the array may not need to
know the declared size of the array, only how many
elements are stored in the array

◼ A function such as fill_array in Display 7.9 needs to

know the declared size of the array

Display 7.9 (1) Display 7.9 (2) Display 7.9 (3)

Program to show how golf scores differ
from the average score

❑ Write a program to compute average golf
scores. Show how each score differs from
average. We need…

❑ a function called fill_array that gets golf
scores and puts them in an array parameter.

❑ a function called compute_average that
computes the average of the scores.

❑ a function that shows_difference calls
compute_average.

❑ main() calls fill_array and shows_difference.

Display 7.9
(1/3)

Display 7.9
(2/3)

Display 7.9
(3/3)

Searching Arrays

❑ A sequential search is one way to search
an array for a given value

◼ Look at each element from first to last to
see if the target value is equal to any of the
array elements

◼ The index of the target value can be
returned to indicate where the value was
found in the array

◼ A value of -1 can be returned if the value
was not found

The search Function
❑ The search function of Display 7.10…

◼ Uses a while loop to compare array elements to the
target value

◼ Sets a variable of type bool to true if the target
value is found, ending the loop

◼ Checks the boolean variable when the loop ends to
see if the target value was found

◼ Returns the index of the target value if found,
otherwise returns -1

Display 7.10 (1) Display 7.10 (2)

Display 7.10
(1/2)

Display 7.10
(2/2)

Program Example:
Sorting an Array

❑ Sorting a list of values is very common task

◼ Create an alphabetical listing

◼ Create a list of values in ascending order

◼ Create a list of values in descending order

❑ Many sorting algorithms exist

◼ Some are very efficient

◼ Some are easier to understand

Program Example:
The Selection Sort Algorithm

❑ When the sort is complete, the elements of the
array are ordered such that

a[0] < a[1] < … < a [number_used -1]

Outline of the algorithm

for (int index = 0; index < number_used; index++)
place the index-th smallest element in a[index]

Program Example:
Sort Algorithm Development

❑ One array is sufficient to do our sorting
◼ Search for the smallest value in the array

◼ Place this value in a[0], and place the value that was
in a[0] in the location where the smallest was found

◼ Starting at a[1], find the smallest remaining value
swap it with the value currently in a[1]

◼ Starting at a[2], continue the process until the
array is sorted

Display 7.11 Display 7.12 (1-2)

Display 7.11

Display 7.12
(1/2)

Display 7.12
(2/2)

Exercise

❑ Write a program that will read up to 20
letters into an array and write the letters
back to the screen in the reverse order?

abcd should be output as dcba

Use a period as a sentinel value to mark the
end of input

❑ Write a program that reverses the contents of
an array.

Multi-dimensional Array

Read Section 7.4

Multi-Dimensional Arrays

❑ C++ allows arrays with multiple index values

◼ char page [30] [100];
declares an array of characters named page
◼ page has two index values:

The first ranges from 0 to 29
The second ranges from 0 to 99

◼ Each index in enclosed in its own brackets

◼ Page can be visualized as an array of
30 rows and 100 columns

Index Values of page

❑ The indexed variables for array page are
page[0][0], page[0][1], …, page[0][99]
page[1][0], page[1][1], …, page[1][99]

…
page[29][0], page[29][1], … , page[29][99]

❑ page is actually an array of size 30

◼ page's base type is an array of 100
characters

A Two Dimensional Array in C++ is an
array of arrays: int a[4][5];

A two dimensional array is really an array of pointers to arrays

➢ When declared this way, it is guaranteed to be in sequential memory.

➢ The first index is the row index, the second index is the column index.

Multidimensional Array Parameters

❑ Recall that the size of an array is not needed
when declaring a formal parameter:

void display_line(const char a[], int size);

❑ The base type of a multi-dimensional array
must be completely specified in the parameter
declaration

❑ C++ treats a as an array of arrays

◼ void display_page(const char page[] [100],
int size_dimension_1);

Program Example: Grading Program

❑ Grade records for a class can be stored in a
two-dimensional array

◼ For a class with 4 students and 3 quizzes
the array could be declared as

int grade[4][3];
◼ The first array index refers to the student

number

◼ The second array index refers to the quiz
number

❑ Since student and quiz numbers start with one,
we subtract one to obtain the correct index

Grading Program: average scores

❑ The grading program uses one-dimensional
arrays to store…

◼ Each student's average score

◼ Each quiz's average score

❑ The functions that calculate these averages
use global constants for the size of the arrays

◼ This was done because the functions seem
to be particular to this program

Display 7.13 (1-3)

Display 7.13 (1/3)

Display 7.13
(2/3)

Display 7.13
(3/3)

Display 7.14

Multidimensional array flattens in
memory in a row wise manner.

Array Cell Address in Memory

Address of grade[0][0] 0x7ffefe98eaf0

Address of grade[0][1] 0x7ffefe98eaf4

Address of grade[0][2] 0x7ffefe98eaf8

Address of grade[1][0] 0x7ffefe98eafc

Address of grade[1][1] 0x7ffefe98eb00

Address of grade[1][2] 0x7ffefe98eb04

Address of grade[2][0] 0x7ffefe98eb08

Address of grade[2][1] 0x7ffefe98eb0c

Address of grade[2][2] 0x7ffefe98eb10

Address of grade[3][0] 0x7ffefe98eb14

Address of grade[3][1] 0x7ffefe98eb18

Display 7.15

Showing Decimal Places

❑ To specify fixed point notation
◼ setf(ios::fixed)

❑ To specify that the decimal point will always be shown
◼ setf(ios::showpoint)

❑ To specify that two decimal places will always be shown
◼ precision(2)

❑ Example: cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
cout << "The price is "

<< price << endl;

