Review of Everything Arrays

Q Array Basics

Q Arrays in Functions

Q Programming with Arrays

Q Simple linear search, simple selection sort.
Q Multi-dimensional Arrays

Array Basics

Arrays

Q An array is used to process a collection of data
of the same type

» Examples: A list of names
A list of temperatures

a Why do we need arrays?

» Imagine keeping track of 5 test scores, or
100, or 1000 in memory
= How would you name all the variables?
= How would you process each of the variables?

Declaring an Array

Q An array, hamed score, containing five
variables of type int can be declared as
int score[5];

Q This is like declaring 5 variables of type int:
score[@], score[l], .. , score[4]

d The value in brackets is called
= A subscript
= An index
= Eg. Score sub 0, score sub 1, , score sub 4

The Array Variables

QO The variables making up the array are referred to as
» Indexed variables
= Subscripted variables
= Elements of the array

Q The number of indexed variables in an array is
the declared size, or size, of the array

= The largest index is one less than the size
= The first index value is zero
= Not all variables are actually being used all the timel

Array Variable Types

Q An array can have indexed variables of any
Type

Q All indexed variables in an array are of the
same type

» This is the base type of the array

Q An indexed variable can be used anywhere an
ordinary variable of the base type is used

Using [] With Arrays

Q Inan array declaration, []'s enclose the size
of the array such as this array of 5 integers:
int score [5];

Q When referring to one of the indexed variables,
the []'s enclose a number identifying one of the
indexed variables

« E.Q.,
score[3]=7;
score[3] is one of the indexed variables

= The value in the []'s can be any expression that
evaluates to one of the integers O to (size -1)

Indexed Variable Assignment

Q To assign a value to an indexed variable, use
the assignment operator:

int n = 2;
score[n + 1] = 99;
= In this example, variable score[3] is
assigned 99

Loops And Arrays

Q for-loops are commonly used to step through

arrays

First index is O Last index Is (size — 1)

X /

= Example: for (int 1 = 0; 1 < 5; i++)
{

cout << score[i] << " off by “
<< (max - score[i]) << endl;

}
could display the difference between each

score and the maximum score stored in an
array

Display 7.1

Let's write a program with an Array

Q Write a program to read in 5 scores and find
the max score and then print the difference
between each score and the max.

ad What do we have to do?
= Declare some variables

» How do we figure out the max score?
= Where do we start?

» What is the program structure?
« What kind of statements are needed?

Program Using an Array

//Reads in 5 scores and shows how much each

//score differs from the highest score.
#include <iostream>

int mainC)
{
using namespace std;

int i, scorel[5], max;

cout << "Enter 5 scores:\n";
cin >> scorel[0];
max = scorel[0];
for (i = 1; i < 5;
{

i++)

cin >> scorel[i];
7if (scorel[i] > max)
max = scorel[i];
/S/max is the Targest of the values

}

cout << "The highest score is "
<< "The scores and their\n"

score[0], ..

<< max << endl

<< "differences from the highest are:\n";

for (i = 0; i < 5; 1++)
cout << score[i] << "
<< (max -—

off by "
scorel[i]) << endl;

return 0;

3
Sample Dialogue

Enter 5 scores:

5 9 2 10 6

The highest score 1is 10

The scores and their

differences from the highest are:
5 off by 5

9 off by 1

2 off by 8

10 off by O

6 off by 4

=5

score[i].

Display 7.1

Constants and Arrays

Q Use constants to declare the size of an array

= Using a constant allows your code to be easily
altered for use on a smaller or larger set of
data

= Example:

const int NUMBER_OF_STUDENTS = 50;

int score[NUMBER_OF_STUDENTS];

for (i=0;i<NUMBER_OF_STUDENTS; i++)
cout <« score[i] «« " off by " <« (max - score[i]) <« endl;

= Only the value of the constant must be changed to
make this code work for any number of students

Variables and Declarations

Q Most compilers do not allow the use of a
variable to declare the size of an array

'i of students: ";

» This code is illegal on many compilers

= But it works on our version of g++. It is an
extension.

Example:

cout << "
cin >> nu
int score

Array Declaration Syntax

Q To declare an array, use the syntax:
Type Name Array Name[Declared Size];

» Type_Name can be any type

» Declared Size can be a constant to make
your program more versatile

Q Once declared, the array consists of the

indexed variables:
Array Name[©O] to Array Name[Declared Size-1]

Arrays and Memory

Q Declaring the array
int a[6];
= Reserves memory for six variables of type int
= The variables are stored one after another

» The address of a[0] is remembered by C++

=« The addresses of the other indexed variables are
not remembered by C++

= To determine the address of a[3]
« C++ starts at a[0O]
= C++ adds a[0] + 3 * sizeof(int) to get to a[3].

Display 7.2

An Array in Memory

In this example, each int variable uses
Display 7.2 int al6l; 2 bytes, but typically an int variable

uses 4 bytes.

address of a[0]
\ 1022
1023

On this computer each 1024 > alol]
indexed variable uses 1025
2z bytes, so a[3] begins 1026 > all]
2 X3 = 6 bytes after 1027
the start of a[0]. \ 1028 > al2]

1029

1030 > al3]

1031

1032 > al4]
There is no indexed 1033 > als]
variable a[6], butif 1034
there were one, it — >Somc variable
would be here. < named stuff

< > some variable
/ named more_stuff

There is no indexed
variable al[7], but if
there were one, it
would be here.

Array Index Out of Range

Q A common error is using a nonexistent index

= Index values for int a[6] are the values O
through 5

= An index value not allowed by the array
declaration is out of range

» Using an out of range index value does not
produce an error message!

Out of Range Problems

Q If an array is declared as: int a[6];
and an integer is declared as: inti=7;

Q Executing the statement a[i] = 238; causes...
= The computer to calculate the address of the illegal a[7]
(This address could be where some other variable is stored)
= The value 238 is stored at the address calculated for a[7]
= No warning is givenl

Q What happens if i = 6?

Initializing Arrays

Q To initialize an array when it is declared

= The values for the indexed variables are
enclosed in braces and separated by commas

a Example: int children[3]1={2, 12, 1}
is equivalent to:
int children[3];
children[0] = 2;
children[1] = 12;
children[2] = 1;

Default Values

Q If too few values are listed in an initialization
statement

s The listed values are used to initialize the
first of the indexed variables

= The remaining indexed variables are
initialized to a zero of the base type
= Example: int q[10] = {5, 5}
initializes a[0] and a[1] to 5 and
a[2] through a[9] 10 O

Un-initialized Arrays

Q If no values are listed in the array declaration,
some compilers will initialize each variable to
the equivalent of zero of the base type

= Don't rely on this if you are writing code
that will be shared with a large development
community.

Arrays in Functions

Arrays in Functions

Q Indexed variables can be arguments to functions

» Example: If aprogram contains these declarations:
int i, n, a[l0];
void my_ function(int n);

= Variables a[0] through a[9] are of type int, making
these calls legal:

my_function(a[O]);
my_function(a[3 1);
my_function(a[i])

Display 7.3

Program to adjust vacation days

Q Let's assume that a company changes it's policy
to be 5 more vacation days per year.

Q Using an array, ask the user to input the
number of vacation days for each employee.

Q Write a function called adjust_days that adds
5 to the humber passed in and returns the
result.

Q Print the adjusted array.

Indexed Variable as an Argument

//ITlustrates the use of an indexed variable as an argument.
//Adds 5 to each employee’s allowed number of vacation days.
#include <iostream>

const int NUMBER_OF_EMPLOYEES = 3;

int adjust_days(int old_days);
//Returns old_days plus 5.

int main()

{
using namespace std;
int vacation[NUMBER_OF_EMPLOYEES], number;
cout << "Enter allowed vacation days for employees 1"
<< " through " << NUMBER_OF_EMPLOYEES << ":\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cin >> vacation[number-1];
for (number = 0; number < NUMBER_OF_EMPLOYEES; number++)
vacation[number] = adjust_days(vacation[number]);
cout << "The revised number of vacation days are:\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cout << "Employee number " << number
<< " vacation days = " << vacation[number-1] << endT;
return 0;
}
int adjust_days(int old_days)
{
return (old_days + 5);
}

Sample Dialogue

Enter allowed vacation days for employees 1 through 3:
10 20 5
The revised number of vacation days are:

Employee number 1 vacation days = 15
Employee number 2 vacation days = 25
Employee number 3 vacation days = 10

Display 7.3

Arrays as Function Arguments

Q A formal parameter can be for an entire array
= Such a parameter is called

an array parameter
= It is not a call-by-value parameter
= It is not a call-by-reference parameter

= Array parameters behave much like call-by-
reference parameters because

= Array parameters are just pointers to the memory
that was allocated for the array.

void fill_up(int a[], int size);
Stack Frame - Argumentl is 4 bytes for the address of a[]
- Argument2 is 4 bytes for the value in size.

7]
o
% Local N
> | Variables for setup by callee
= function Anchor point (EBP)
ﬁ Return address setup by
o Argument1 - processor
QD
o Argument 2 setup by
—n ATQUI'I'IEI'II: n ____,/Cﬂ"EI‘ -

When a function is called, parameters are placed on the stack in order.

» If itis an array parameter, only the address of the first element is put on the stack
» If itis a call-by-value parameter, the value is copied onto the stack.

> If itis call-by-reference, the address of the variable is put on the stack.

Array Parameter Declaration

Q An array parameter is indicated using empty
brackets in the parameter list such as

void fill_up(int a[], int size);

Q This is why the size is needed.

Q Unless there is a special value at the end that
indicates it's the last value called a terminal or
sentinal value.

Function Calls With Arrays

a If function fill_up is declared in this way:
void fill_up(int a[], int size);

Q and array score is declared this way:
int score[5], number_of_scores;

a fill_up is called in this way:
fill_up(score, number_of_scores):

Display 7.4

Array Parameter Considerations

0Q Because a function does not know the size of

an array argument...

= The programmer should include a formal parameter
that specifies the size of the array

= The function can process arrays of various sizes

= Function fill_up from Display 7.4 can be used to fill
an array of any size:

int score[b];
int Time[10];
fill_up(score, 5);
fill_up(time, 10);

Function Call Details

a A formal parameter is identified as an array
parameter by the []'s with no index
expression

void fill_up(int a[], int size);

Q An array argument does not use the []'s

fill_up(score, number_of_scores);

Array Argument Details

Q What does the computer know about an array
once it is declared?
= The base type
= The address of the first indexed variable
= The number of indexed variables
Q What does a function know about an array
argument during a function call?
= The base type
= The address of the first indexed variable

Returning An Array

3 Recall that functions can return (via return-
statement) a value of type int, double, char, ...

a Functions cannot return arrays

Q We learn later how to return a pointer to an
array

Programming with Arrays

Programming With Arrays

Q The size needed for an array is changeable
= Often varies from one run of a program to another
» Is often not known when the program is written

Q A common solution to the size problem

= Declare the array size to be the largest that could
be needed

» Decide how to deal with partially filled arrays

= Manage two things:
= Capacity - total number of elements allowed
= Size - total number of elements inserted

Partially Filled Arrays

Q When using arrays that are partially filled

= A parameter, number_used, may be sufficient to
ensure that referenced index values are legal

» Functions dealing with the array may not need to
know the declared size of the array, only how many
elements are stored in the array

= A function such as fill_array in Display 7.9 needs to
know the declared size of the array

Display 7.9 (1) | | Display 7.9 (2) | | Display 7.9 (3)

Program to show how golf scores differ
from the average score

aQ Write a program to compute average golf
scores. Show how each score differs from
average. We need...

0 a function called fill_array that gets golf
scores and puts them in an array parameter.

Q a function called compute_average that
computes the average of the scores.

0 a function that shows_difference calls
compute_average.

a main() calls fill_array and shows_difference.

Partially Filled Array (part 1 of 3)

//Shows the difference between each of a 1list of golf scores and their average.
#include <iostream>
const int MAX_NUMBER_SCORES = 10;

void fill_array(int a[], int size, int& number_ used);
//Precondition: size is the declared size of the array a.
//Postcondition: number_used is the number of values stored in a.
//al0] through a[number_used-1] have been filled with

//nonnegative integers read from the keyboard. D iS Ia 7 9
double compute_average(const int a[], int number_used); p y ®
//Precondition: a[0] through a[number_used-1] have values; number_used > 0.

//Returns the average of numbers a[0] through a[number_used-1]. (1/ 3)

void show_difference(const int a[], int number_used);

//Precondition: The first number _used indexed variables of a have values.

//Postcondition: Gives screen output showing how much each of the first
//number_used elements of a differs from their average.

int main()

{
using namespace std;
int score[MAX_NUMBER_SCORES], number_used;
cout << "This program reads golf scores and shows\n"
<< "how much each differs from the average.\n";
cout << "Enter golf scores:\n";
fi1l_array(score, MAX_NUMBER_SCORES, number_ used);
show_difference(score, number used);
return 0;
}

//Uses iostream:
void fill_array(int a[], int size, int& number_used)
{
using namespace std;
cout << "Enter up to " << size << " nonnegative whole numbers.\n"
<< "Mark the end of the Tist with a negative number.\n";

n "

Partially Filled Array (part 2 of 3)

int next, index = 0;
cin >> next;
while ((next >= 0) &% (index < size))

{
a[index] = next;
index++;
cin >> next;

}

o Display 7.9

double compute_average(const int a[], int number_used)

{
double total = 0; 2/3
for (int index = 0; index < number_used; index++)

total = total + a[index];
if (number_used > 0)

{
return (total/number_used);
}
else
{
using namespace std;
cout << "ERROR: number of elements is 0 in compute_average.\n"
<< "compute_average returns 0.\n";
return 0;
}
}
void show_difference(const int a[], int number_used)
{

using namespace std;
double average = compute_average(a, number_used);
cout << "Average of the " << number_used

<< " scores = " << average << endl

<< "The scores are:\n";
for (int index = 0; index < number_used; index++)
cout << afindex] << " differs from average by "

<< (a[index] - average) << endl;

Display 7.9
(3/3)

Partially Filled Array (part 3 of 3)

Sample Dialogue

This program reads golf scores and shows
how much each differs from the average.
Enter golf scores:

Enter up to 10 nonnegative whole numbers.
Mark the end of the Tist with a negative number.
69 74 68 -1

Average of the 3 scores = 70.3333

The scores are:

69 differs from average by -1.33333

74 differs from average by 3.66667

68 differs from average by -2.33333

Searching Arrays

Q A sequential search is one way to search
an array for a given value

= Look at each element from first to last to
see if the target value is equal to any of the
array elements

» The index of the target value can be
returned to indicate where the value was
found in the array

s A value of -1 can be returned if the value
was nhot found

The search Function

Q The search function of Display 7.10...

= Uses a while loop to compare array elements to the
target value

» Sets a variable of type bool to true if the target
value is found, ending the loop

» Checks the boolean variable when the loop ends to
see if the target value was found

= Returns the index of the target value if found,
otherwise returns -1

Display 7.10 (1)| |Display 7.10 (2)

Searching an Array (part 1 of 2)

//Searches a partially filled array of nonnegative integers.
#include <iostream>
const int DECLARED_SIZE = 20;

void fill_array(int a[], int size, int& number_used);
//Precondition: size is the declared size of the array a.
//Postcondition: number_used is the number of values stored in a.

//af0] through afnumber_used-1] have been filled with L4
//nonnegative integers read from the keyboard. lS p ay
°

int search(const int al[], int number_used, 7int target);

//Precondition: number_used is <= the declared size of a.
//Also, a[0] through a[number_used —-1] have values. 2
//Returns the first index such that a[index] == target,

//provided there is such an index; otherwise, returns —1.

int main()

{
using namespace std;
int arr[DECLARED_SIZE], list_size, target;

fi11_array(arr, DECLARED SIZE, Tlist_size);

char ans;
int result;
do

{

cout << "Enter a number to search for: ";
cin >> target;

result = search(arr, Tist_size, target);
if (result == -1)

cout << target <<
else

is not on the Tist.\n";

cout << target << is stored in array position
<< result << endT
<< "(Remember: The first position is 0.)\n";

cout << "Search again?(y/n followed by Return): ";
cin >> ans;

Iwhile ((ans !'= 'n’) && (ans != 'N’));

cout << "End of program.\n";
return 0;

Searching an Array (part 2 of 2)

//Uses iostream:

void fill_array(int a[], int size, int& number_used)
<The rest of the definition of fi11_array is given in Display 10.9.>

int search(const int a[], int number_used, int target)

{

}

int index = 0;
bool found = false;
while ((!found) && (index < number_used))
if (target == a[index])
found = true;
else
index++;

if (found)

return index;
else

return -1;

Sample Dialogue

Enter up to 20 nonnegative whole numbers.

Mark the end of the list with a negative number.

10 20 30 40 50 60 70 80 -1

Enter a number to search for: 10

10 is stored in array position 0
(Remember: The first position is 0.)
Search again?(y/n followed by Return):y
Enter a number to search for: 40

40 is stored in array position 3
(Remember: The first position is 0.)
Search again?(y/n followed by Return):y
Enter a number to search for: 42

42 is not on the Tlist.

Search again?(y/n followed by Return): n
End of program.

Display 7.10
(2/2)

Program Example:
Sorting an Array

Q Sorting a list of values is very common task
= Create an alphabetical listing
» Create a list of values in ascending order
» Create a list of values in descending order
Q Many sorting algorithms exist
= Some are very efficient
= Some are easier to understand

Program Example:
The Selection Sort Algorithm

O When the sort is complete, the elements of the
array are ordered such that

a[O]<a[l] < ..<a [number_used -1]

Outline of the algorithm

for (int index = O; index < number_used; index++)
place the index-th smallest element in a[index]

Program Example:
Sort Algorithm Development

a One array is sufficient to do our sorting

Search for the smallest value in the array

Place this value in a[0], and place the value that was
in a[0] in the location where the smallest was found

Starting at a[1], find the smallest remaining value

swap it with the value currently in a[1]

Starting at a[2], continue the process until the

array is sorted

Display 7.11

Display 7.12 (1-2)

Display 7.11

Selection Sort

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

8 6 10 2 16 4 18 | 14 | 12 | 20

8 6 10 2 16 4 18 14 12 20

2 6 10 8 16 4 18 14 12 20
/ \

2 6 10 8 16 4 18 14 12 20
N 4

2 4 10 8 16 6 18 | 14 | 12 | 20

DISPLAY 7.12 Sorting an Array (part 1 of 2)

//Tests the procedure sort.
#include <iostream>

void fill_array(int a[], int size, int& number_used); °
//Precondition: size is the declared size of the array a. ls a
//Postcondition: number_used is the number of values stored in a. °

//al[0@] through a[number_used — 1] have been filled with

//nonnegative integers read from the keyboard.
void sort(int a[], int number_used); 1 E
9 //Precondition: number_used <= declared size of the array a.

10 //The array elements a[@] through a[number_used — 1] have values.
11 //Postcondition: The values of a[@] through a[number_used — 1] have
12 //been rearranged so that a[0] <= a[l] <= ... <= al[number_used — 1].

O NV AW N

13 void swap_values(int& vl, int& v2);
14 //Interchanges the values of vl and vZ2.

15 int index_of_smallest(const int a[], int start_index, int number_used);

16 //Precondition: 0 <= start_index < number_used. Referenced array elements have
17 //values.

18 //Returns the index i such that a[i] is the smallest of the values

19 //a[start_index], a[start_index + 1], ..., a[number_used — 1].
20 int main()

21 {

22 using namespace std;

23 cout << "This program sorts numbers from lowest to highest.\n";
24 int sample_array[10], number_used;

25 fill_array(sample_array, 10, number_used);

26 sort(sample_array, number_used);

27 cout << "In sorted order the numbers are:\n";

28 for (int index = 0; index < number_used; index++)

29 cout << sample_array[index] << " ";

30 cout << endl;

31 return 0;

32}

33 //Uses iostream:
34 void fill_array(int a[], int size, int& number_used)

35 void sort(int a[], int number_used)
36 {
37 int index_of_next_smallest;

<The rest of the definition of fill_array is given in Display 7.9.>

(continued)

DISPLAY 7.12 Sorting an Array (part 2 of 2)

38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69

for (int index = 0; index < number_used 1; index++)
{//Place the correct value in a[index]:
index_of_next_smallest =
index_of_smallest(a, index, number_used);
swap_values(a[index], a[index_of_next_smallest]);
//al@] <= a[l] <=...<= alindex] are the smallest of the original array
//elements. The rest of the elements are in the remaining positions.

}
}
void swap_values(int& vl1, int& v2)
{
int temp;
temp = vl;
vl = v2;
v2 = temp;
}

int index_of_smallest(const int a[], int start_index, int number_used)

int min = a[start_index],
index_of_min = start_index;

for (int index = start_index + 1; index < number_used; index++)
if (a[index] < min)

{

min = a[index];

index_of_min = index;

//min is the smallest of a[start_index] through a[index]
}

return index_of_min;

Sample Dialogue

This program sorts numbers from lowest to highest.
Enter up to 10 nonnegative whole numbers.

Mark the end of the list with a negative number.
80 30 50 70 60 90 20 30 40 -1

In sorted order the numbers are:

20 30 30 40 50 60 70 80 90

Display 7.12
(2/2)

Exercise

Q Write a program that will read up to 20
letters into an array and write the letters
back to the screen in the reverse order?

abcd should be output as dcba

Use a period as a sentinel value to mark the
end of input

Q Write a program that reverses the contents of
an array.

Multi-dimensional Array

Read Section 7.4

Multi-Dimensional Arrays

Q C++ allows arrays with multiple index values
» char page [30] [100];
declares an array of characters named page

= page has two index values:
The first ranges from O to 29
The second ranges from O to 99

s Each index in enclosed in its own brackets

» Page can be visualized as an array of
30 rows and 100 columns

Index Values of page

A The indexed variables for array page are
page[0][0], page[O][1], ..., page[O][99]
page[1][0], page[1][1], ..., page[1][99]

bage[29][0], page[29][1], ... , page[29][99]

Q page is actually an array of size 30

= page's base type is an array of 100
characters

A Two Dimensional Array in C++ is an
array of arrays: int a[4][5]:

a[0][0] a[0][1] a[0][2] a[0][3] a[0] [4]I
al1][0]| a[1][1] a[1]{2]| a[1][3] ﬂ[l][4]I
al2][0] |a[2][1] a[2][2] a[2][3] 3[21[4]I
al3]1[0] |al3]1[1] al31[2] a[3][3] ﬂ[3][4]I

A two dimensional array is really an array of pointers to arrays
» When declared this way, it is guaranteed to be in sequential memory.
» The first index is the row index, the second index is the column index.

Multidimensional Array Parameters

Q Recall that the size of an array is not needed
when declaring a formal parameter:
void display_line(const char q[], int size);

Q The base type of a multi-dimensional array
must be completely specified in the parameter
declaration

Q C++ treats a as an array of arrays

= void display_page(const char page[] [100],
int size_dimension_1);

Program Example: Grading Program

Q Grade records for a class can be stored in a
two-dimensional array

» For a class with 4 students and 3 quizzes
the array could be declared as

int grade[4][3].
= The first array index refers to the student
number
= The second array index refers to the quiz
number
Q Since student and quiz humbers start with one,
we subtract one to obtain the correct index

Grading Program: average scores

Q The grading program uses one-dimensional
arrays to store...

» Each student’s average score
» Each quiz's average score

Q The functions that calculate these averages
use global constants for the size of the arrays

= This was done because the functions seem
to be particular to this program

Display 7.13 (1-3)

Two-Dimensional Array (part 1 of 3)

//Reads quiz scores for each student into the two-dimensional array grade (but the input
//code is not shown in this display). Computes the average score for each student and
//the average score for each quiz. Displays the quiz scores and the averages.

#include <iostream>

#include <iomanip>

const int NUMBER_STUDENTS = 4, NUMBER QUIZZES = 3;

void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_avel]);
//Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES

//are the dimensions of the array grade. Each of the indexed variables
//grade[st_num-1, quiz_num-1] contains the score for student st_num on quiz quiz_num.
//Postcondition: Each st_ave[st_num-1] contains the average for student number stu_num.

void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double quiz_ave[]);
//Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES

//are the dimensions of the array grade. Each of the indexed variables
//grade[st_num-1, quiz_num-1] contains the score for student st_num on quiz quiz_num.
//Postcondition: Each quiz_ave[quiz_num-1] contains the average for quiz number
//quiz_num.

void display(const int grade[] [NUMBER_QUIZZES]T,

const double st_ave[], const double quiz_ave[]);
//Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES are the
//dimensions of the array grade. Each of the indexed variables grade[st _num-1,
//quiz_num-1] contains the score for student st_num on quiz quiz_num. Each
//st_ave[st _num-1] contains the average for student stu_num. Each quiz_ave[quiz_num-1]
//contains the average for quiz number quiz_num.
//Postcondition: A1l the data in grade, st_ave, and quiz_ave has been output.

int main()

o o s Display 7.13 (1/3)

int grade[NUMBER_STUDENTS] [NUMBER_QUIZZES];
double st_ave[NUMBER_STUDENTS];
double quiz_ave[NUMBER_QUIZZES];

<The code for filling the array grade goes here, but is not shown.>

Two-Dimensional Array (part 2 of 3)

compute_st_ave(grade, st_ave);
compute_quiz_ave(grade, quiz_ave);
display(grade, st_ave, quiz_ave);
return 0;

void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_ave[])

{
for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)

{//Process one st_num:

double sum = 0;
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)

sum = sum + grade[st_num-1][quiz_num-1];
//sum contains the sum of the quiz scores for student number st_num.
st_ave[st_num-1] = sum/NUMBER_QUIZZES;
//Average for student st_num is the value of st_ave[st _num-1]

}

void compute_quiz_ave(const int grade[] [NUMBER_QUIZZES], double quiz_avel[])

{
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)

{//Process one quiz (for all students):

double sum = 0;
for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)

sum = sum + grade[st_num-1][quiz_num-1];

//sum contains the sum of all student scores on quiz number quiz_num.

quiz_ave[quiz_num-1] = sum/NUMBER_STUDENTS;
//Average for quiz quiz_num is the value of quiz_ave[quiz_num-1]

Display 7.13
(2/3)

Two-Dimensional Array (part 3 of 3)

//Uses iostream and iomanip:
void display(const int grade[] [NUMBER_QUIZZES],
const doublest_ave[], const double quiz_ave[])

{
using namespace std; D Y
cout.setf(ios::fixed); I S a
cout.setf(ios::showpoint); °
cout.precision(l);
cout << setw(1l0) << "Student" (3 / 3)
<< setw(5) << "Ave"
<< setw(15) << "Quizzes\n";

for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
{//Display for one st_num:

cout << setw(10) << st_num

<< setw(5) << st_ave[st_num-1] << " ";
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
cout << setw(5) << grade[st_num-1][quiz_num-1];

cout << endl;
}
cout << "Quiz averages = ";
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)

cout << setw(5) << quiz_ave[quiz_num-1];
cout << endl;

}

Sample Dialogue

<The dialogue for filling the array grade is not shown.>

Student Ave Quizzes
1 10.0 10 10 10
2 1.0 2 0 1
3 7.7 8 6 9
4 7.3 8 4 10
Quiz averages = 7.0 5.0 7.5

Display 7.14

The Two-Dimensional Array grade

student |
student 2
student 3

student 4

grade[3][0] /s the
grade that student 4
received on quiz 1.

L quiz 1

— quiz 2

L quiz 3

grade[0] [0]

grade[0] [1]

grade[0] [2]

grade[1] [0]

grade[1][1]

grade[1][2]

_| grade[2][0]

garde[2] [1]

grade[2][2]

_| grade[3][0]

grade[3][1]

grade[3][2]

l

l

grade[3][1] /s the
grade that student 4

received on quiz 2.

l

grade[3][2] /s the
grade that student 4
received on quiz 3.

Multidimensional array flattens in
memory In a row wise manner.

Address of grade[0][0]
Address of grade[0][1]
Address of grade[0][2]
Address of grade[1][0]
Address of grade[1][1]
Address of grade[1][2]
Address of grade[2][0]
Address of grade[2][1]
Address of grade[2][2]
Address of grade[3][0]
Address of grade[3][1]

Ox7ffefe98eafl
Ox7ffefe98eaf4
Ox7ffefe98eaf8
Ox7ffefe98eafc
Ox7ffefe98eb00
Ox7ffefe98eb04
Ox7ffefe98eb08
Ox7ffefe98eb0c
Ox7ffefe98eb10
Ox7ffefe98eb14
Ox7ffefe98eb18

Display 7.15

The Two-Dimensional Array grade (Another View)

student 1
student 2
student 3

student 4

quiz_ave

—quiz 1

L quiz 2

L quiz 3

RRR

10 10 10
2 0 1
8 6 9
8 4 10
Yoy

?Ju-—
wn

7.0 5.0

i [g | [|
o L) o~
—_ —_ —_
()])] [
> > >
ﬂ.jl rul rIL."I
N N N
- - -
| 3 =S
o o o

10.0

1.0

7.7

7.3

st_ave[0]
st_ave[1]
st_ave[2]

st_ave[3]

Showing Decimal Places

0 To specify fixed point notation
s setf(ios::fixed)

QO To specify that the decimal point will always be shown
s setf(ios::showpoint)

Q To specify that two decimal places will always be shown
s precision(2)

O Example: cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(2);
cout << "The price is

<< price << endl;

