
11.0

Class parameters, const

Parameter passing efficiency

A call-by-value parameter less efficient than a
call-by-reference parameter

◼ The parameter is a local variable initialized to
the value of the argument
◼ This results in two copies of the argument

◼ For vectors and strings, it means dynamic allocation
and copying the values. Expensive!!

A call-by-reference parameter is more efficient

◼ The parameter is a placeholder replaced by the
argument
◼ There is only one copy of the argument

Class Parameters

❑ It can be much more efficient to use
call-by-reference parameters when the
parameter
is of a class type

❑ When using a call-by-reference parameter

◼ If the function does not change the value of
the
parameter, mark the parameter so the
compiler
knows it should not be changed

const Parameter Modifier

❑ To mark a call-by-reference parameter so it
cannot be changed:

◼ Use the modifier const before the
parameter type

◼ The parameter becomes a constant
parameter

◼ const used in the function declaration and
definition

Chapter 10

Defining Classes

What Is a Class?

❑ A class is a data type that is defined by a user
to represent an object.

❑ Most of the data types we have used are built-
in types, such as

◼ int, char, float, double, long, char*

❑ We can define our own data types using

◼ typedefs -> typedef type TypeName;

◼ structs

◼ classes

Class Definitions

❑ A class definition includes

◼ Properties and functions that apply to the
entire class [class variables, class methods]

◼ Properties that are common to every
member. [instance variables]

◼ Functions that are available to every
member. [methods or member functions]

❑ We will start by defining structures as a first
step toward defining classes

Overview

10.1 Structures

10.2 Classes

10.3 Abstract Data Types

10.4 Introduction to Inheritance

10.1

Structures

Structures

❑ A structure can be viewed as an object

◼ Used when multiple values are needed to describe
an object. Examples?

◼ Doesn’t need to contain member functions (The
structures used here have no member functions)

◼ Contains multiple values of possibly different types
◼ The multiple values are logically related as a single item

◼ Example: A bank Certificate of Deposit (CD)
has the following values:

a balance
an interest rate
a term (months to maturity)

The CD Definition

❑ The Certificate of Deposit structure can be
defined as

struct CDAccount
{

double balance;
double interest_rate;
int term; //months to maturity

};

❑ Keyword struct begins a structure definition

❑ CDAccount is the structure tag

❑ Member names are identifiers declared in the braces

Remember this semicolon!

Using the Structure

❑ Structure definition is generally placed outside
any function definition in the global space.

◼ This makes the structure type available to all code
that follows the structure definition

❑ To declare two variables of type CDAccount:

CDAccount my_account, your_account;

◼ My_account and your_account contain distinct
member variables balance, interest_rate, and
term

The Structure Value

❑ The Value of a Structure

◼ Consists of the values of the member
variables of the structure

❑ The value of an object of type CDAccount

◼ Consists of the values of the member
variables

balance
interest_rate
term

Specifying Member Variables
❑ Member variables are specific to the

structure variable in which they are declared

◼ Syntax to specify a member variable:

Structure_Variable_Name.Member_Variable_Name

◼ Given the declaration:
CDAccount my_account, your_account;

◼ Use the dot operator to specify a member variable
my_account.balance
my_account.interest_rate
my_account.term

Using Member Variables

❑ Member variables can be used just as any other
variable of the same type

◼ my_account.balance = 1000;
your_account.balance = 2500;
◼ Notice that my_account.balance and
your_account.balance
are different variables!

◼ my_account.balance = my_account.balance +
interest;

Display 10.1 (1)

Display 10.1 (2)

Display
10.1 (1/2)

Display 10.1
(2/2)

Display 10.2

Duplicate Names

❑ Member variable names duplicated between
structure types are not a problem.

❑ super_grow.quantity and apples.quantity are
different variables stored in different locations

struct FertilizerStock

{

double quantity;

double nitrogen_content;

};

FertilizerStock super_grow;

struct CropYield

{

int quantity;

double size;

};

CropYield apples;

Structures as Arguments

❑ Structures can be arguments in function calls

◼ The formal parameter can be call-by-value

◼ The formal parameter can be call-by-reference

❑ Example:
void get_data(CDAccount& the_account);

◼ Uses the structure type CDAccount we saw
earlier as the type for a call-by-reference
parameter

Assignment and Structures

❑ The assignment operator can be used to assign
values to structure types

❑ Using the CDAccount structure again:
CDAccount my_account, your_account;
my_account.balance = 1000.00;
my_account.interest_rate = 5.1;
my_account.term = 12;
your_account = my_account;

◼ Assigns all member variables in your_account the
corresponding values in my_account

Structures as Return Types

❑ Structures can be the type of a value returned by
a function.

❑ Example:
CDAccount shrink_wrap(double the_balance,

double the_rate,
int the_term)

{
CDAccount temp;
temp.balance = the_balance;
temp.interest_rate = the_rate;
temp.term = the_term;
return temp;

}

Using Function shrink_wrap

❑ shrink_wrap builds a complete structure value
in temp, which is returned by the function

❑ We can use shrink_wrap to give a variable of
type CDAccount a value in this way:

CDAccount new_account;

new_account = shrink_wrap(1000.00, 5.1, 11);

The above assignment operator copies the

whole structure content (given by the return

statement) into new_account.

Hierarchical Structures

❑ Structures can contain member variables that
are also structures

❑ struct PersonInfo contains a Date structure

struct Date

{

int month;

int day;

int year;

};

struct PersonInfo

{

double height;

int weight;

Date birthday;

};

Using PersonInfo

❑ A variable of type PersonInfo is declared by

PersonInfo person1;

❑ To display the birth year of person1, first access the
birthday member of person1

cout << person1.birthday…

❑ But we want the year, so we now specify the
year member of the birthday member

cout << person1.birthday.year;

Initializing Classes

❑ A structure can be initialized when declared
❑ Example:

struct Date
{

int month;
int day;
int year;

};

Can be initialized in this way
Date due_date = {12, 31, 2004};

Compare with array initialization

Section 10.1 Exercise

❑ Can you

◼ Write a definition for a structure type for
records consisting of a person’s wage rate,
accrued vacation (in whole days), and status
(hourly or salaried). Represent the status as
one of the two character values ‘H’ and ‘S’.
Call the type EmployeeRecord.

Structure EmployeeRecord

❑ Define a structure called EmployeeRecord that
has the following fields:

◼ A wage rate – to hold a monetary value

◼ Accrued vacation – in whole days

◼ A wage status for hourly vs salaried

❑ What types do these fields have?

Struct EmployeeRecord

❑ Now we can definition the EmployeeRecord

struct EmployeeRecord {

double wage_rate; // hourly or annual rate

int accrued_vacation; // in whole days

char wage_status; // ‘H’ = hourly; ‘S’=annual

};

STRUCTS (AND CLASSES)
AS PARAMETERS

Passing structs as arguments

❑ Pass-by-values copies the struct member by
member onto the stack into the parameters.

- waste of time and space.

❑ Pass-by-reference copies only the address of
the object onto the stack but the argument
can be changed.

- dangerous unless change is expected.

❑ We want an efficient way to pass objects
(structs and classes) as arguments.

Struct as Function Arguments

❑ Using value parameter for structure can slow
down a program, waste space with object copy

❑ Using a reference parameter will speed up
program, but function may change data in
structure

❑ Using a const reference parameter allows
read-only access to reference parameter,
does not waste space, speed
void displayDate(const Date& date) {

cout << date.month << ‘/’ <<

date.day << ‘/’ << date.year;

}

11.9
Pointers to Structures

Pointers to Structures

❑ A structure variable has an address
❑ Pointers to structures are variables that can

hold the address of a structure:
Student *stuPtr;

❑ Can use & operator to assign address:
stuPtr = & stu1;

❑ Structure pointer can be a function parameter

Accessing Structure Members via
Pointer Variables

❑ Must use () to dereference pointer variable,
not field within structure:

cout << (*stuPtr).studentID;

❑ Can use structure pointer operator to
eliminate () and use clearer notation:

cout << stuPtr->studentID;

From Program 11-8

10.2

Classes

Classes

❑ A class is a data type whose variables are
called objects.

◼ The definition of a class includes
◼ Description of the kinds of values of the member

variables

◼ Description of the member functions

◼ A class description is like a structure
definition except that members are private
by default…

A Class Example

❑ To create a new type named DayOfYear as
a class definition

◼ Decide on the values to represent

◼ This example’s values are dates such as July 4
using an integer for the number of the month
◼ Member variable month is an int (Jan = 1, Feb = 2, etc.)

◼ Member variable day is an int

◼ Decide on the member functions needed

◼ We use just one member function named output

Class DayOfYear Definition

class DayOfYear
{

public:
void output();
int month;
int day;

};
Member Function Declaration

Struct vs Class – the true difference!

❑ Structs have public data members and
functions by default

◼ Access struct members directly using the ‘.’
(dot) operator:

cout << bday.month << “/” << bday.year;

❑ Classes have private data members and
functions by default.

◼ Access class members using member
functions called with the ‘.’ (dot) operator

bday.output();

Public or Private Members

❑ The keyword public identifies the members of
a class that can be accessed from outside the
class

◼ Members that follow the keyword public are public
members of the class (can be accessed by anyone)

❑ The keyword private identifies the members of
a class that can be accessed only by member
functions of the class (can only be accessed by class)

◼ Members that follow the keyword private are
private members of the class

Defining a Member Function

❑ Member functions are declared in the class
declaration

❑ Member function definitions identify the class
in which the function is a member

void DayOfYear::output()
{

cout << “month = “ << month
<< “, day = “ << day
<< endl;

}

Member Function Definition

❑ Member function definition syntax:
Returned_Type Class_Name::Function_Name(Parameter_List)
{

Function Body Statements
}

◼ Example:

void DayOfYear::output()

{
cout << “month = “ << month
<< “, day = “ << day << endl;

}

The ‘::’ Operator

❑ ‘::’ is the scope resolution operator
◼ Tells the class a member function is a

member of

◼ void DayOfYear::output() indicates
that function output is a member of the
DayOfYear class

◼ The class name that precedes ‘::’ is a type
qualifier

‘::’ and ‘.’

:: used with classes to identify a member
void DayOfYear::output()
{
// function body

}

. used with variables (or objects) to identify a member

DayOfYear birthday;
birthday.output();

Calling Member Functions

❑ Calling the DayOfYear member function output
is done in this way:

DayOfYear today, birthday;
today.output();
birthday.output();

◼ Note that today and birthday have their
own versions of the month and day variables
for use by the output function

Display 10.3 (1)

Display 10.3 (2)

Display 10.3
(1/2)

Display 10.3
(2/2)

Ideal Class Definitions

❑ Changing the implementation of DayOfYear
requires changes to the program that uses
DayOfYear

❑ An ideal class definition of DayOfYear could
be changed without requiring changes to
the program that uses DayOfYear

Problems With DayOfYear

❑ Changing how the month is stored in the class
DayOfYear requires changes to the main program

❑ If we decide to store the month as four
characters (JAN, FEB, etc.) instead of an int

◼ cin >> today.month will no longer work because
we now have three character variables to read

◼ if(today.month == birthday.month) will no
longer work to compare months

◼ The member function “output” no longer works

Fixing DayOfYear

❑ To fix DayOfYear

◼ We need to add member functions to use when
changing or accessing the member variables

◼ If the program (that uses DayOfYear) never
directly references the member variables
of DayOfYear, changing how the variables are
stored will not require changing the program

◼ We need to be sure that the program does not ever
directly reference the member variables

Public Or Private?

❑ C++ helps us restrict the program from directly
referencing member variables

◼ Private members of a class can only be
referenced within the definitions of member
functions
◼ If the program (other than through member

functions) tries to access a private member, the
compiler gives an error message

◼ Private members can be variables or functions

Private Variables

❑ Private variables cannot be accessed directly by the
program
◼ Changing their values requires the use of public

member functions of the class
◼ To set the private month and day variables in a new
DayOfYear class use a member function such as

void DayOfYear::set(int new_month, int new_day)

{
month = new_month;
day = new_day;

}

Public or Private Members

❑ The keyword private identifies the members of
a class that can be accessed only by member
functions of the class

◼ Members that follow the keyword private are
private members of the class

❑ The keyword public identifies the members of
a class that can be accessed from outside the
class

◼ Members that follow the keyword public are public
members of the class

A New DayOfYear

❑ The new DayOfYear class demonstrated in
Display 10.4…

◼ All member variables are private

◼ Uses member functions to do all manipulation
of the private member variables
◼ Private member variables and member

function definitions can be
changed without changes to the
program that uses DayOfYear

Display 10.4 (1)

Display 10.4 (2)

Display 10.4
(1/2)

Display 10.4
(2/2)

Ideal Class Definitions

❑ Changing the implementation of DayOfYear
requires changes to the program that uses
DayOfYear

❑ An ideal class definition of DayOfYear could
be changed without requiring changes to
the program that uses DayOfYear

❑ Member functions for

◼ set(int month, int day), input(),
output()

◼ get_month() and get_day()

Using Private Variables

❑ It is normal to make all member variables private

❑ Private variables require member functions to
perform all changing and retrieving of values

◼ Accessor functions allow you to obtain the
values of member variables
◼ Example: get_day in class DayOfYear

◼ Mutator functions allow you to change the values
of member variables
◼ Example: set in class DayOfYear

❑ Another term for Accessor is getter and Mutator is
setter.

Even more Ideal

❑ Implement a member function that tells if one
DayOfYear object is equal to another.

❑ Remember that to call a member function
requires an object and the ‘.’ operator.

◼ What is the return type?

◼ What is the parameter type?

◼ What is the code?

bool isEqual(DayOfYear doy)

bool DayOfYear::isEqual(DayOfYear doy)

{

if (month == doy.get_month() &&

day == doy.get_day())

return true;

return false;

}

General Class Definitions

❑ The syntax for a class definition is
class Class_Name
{

public:
Member_Specification_1
Member_Specification_2
…
Member_Specification_3

private:
Member_Specification_n+1
Member_Specification_n+2
…

};

The Assignment Operator

❑ Objects and structures can be assigned values
with the assignment operator (=)

◼ Example:

DayOfYear due_date, tomorrow;

tomorrow.set(11, 19);

due_date = tomorrow;

Structs and classes syntax so far…

Structs
struct NewStruct {

type variable1;

…

};

void passReference(NewStruct& ns);

NewStruct shrink_wrap(var1,…);

NewStruct aStructVar;

NewStruct bStructVar;

// Assignment is supported

aStructVar = shrink_wrap(var1,…);

bStructVar = aStructVar;

Classes
class NewClass {

public:

type set(type var1,…);

private:

type privMemberFunc();

type variable1;

};

void passReference(NewClass& nc);

// Assignment is supported

NewClass aClassVar, bClassVar;

aClassVar.set(var1, …);

bClassVar = aClassVar;

Declaring an Object

❑ Once a class is defined, an object of the class is
declared just as variables of any other type

◼ Example:

To create two objects of type Bicycle:

class Bicycle
{

// class definition lines
};

Bicycle my_bike, your_bike;

Bicycle as a struct or class

struct Bicycle { // all members public

int wheel_height;

int num_wheels;

int num_gears;

}; // separate functions to set values

Bicycle initBicycle(int wht, int nw, int ng)
{

Bicycle tempBike;

tempBike.wheel_height = wht;

tempBike.num_wheels = nw;

tempBike.num_gears = ng;

return tempBike;

}

// myBike and yourBike are distinct.

Bicycle myBike = initBicycle(15,2,10);

Bicycle yourBike = myBike;

class Bicycle { // public methods

public:

void set(int wht, int nw, int ng);

…

private: // private members, functions

int wheel_height;

int num_wheels;

int num_gears;

}; // member functions access fields
directly

void Bicycle::set(int wht, int nw, int ng) {

wheel_height = wht;

num_wheels = nw;

num_gears = ng;

}

Bicycle myBike.set(15, 2, 10);

Encapsulation

❑ Encapsulation is

◼ Combining a number of items, such as
variables and functions, into a single package
such as an object of a class

◼ Keeps the data or properties together with
the functions that operate on them.

❑ Why is encapsulation desirable?

◼ Reusable, Maintainable.

Structs and classes

❑ When do we use structs? When do we use
classes?

◼ Mostly, we use classes but…

◼ Structs are useful when code has to be
accessible to both c and c++.

◼ Structs are useful to describe an object
that is internal to a class or if direct access
to data members is required

◼ But even then, it’s probably better to just
make it a class.

Consider a rectangle class

❑ What is needed to describe a rectangle?

❑ What functions can we do with a rectangle?

❑ Consider using a rectangle in math class?

Class Rectangle

class Rectangle {

public:

int getHeight() const;

int getWidth() const;

int calcPerimeter() const;

int calcArea() const;

void set(int h, int w);

void addTo(int hDim, int wDim);

void draw();

private:

int height;

int width;

};

Private Members

Public Members

Access Specifiers

❑ Used to control access to members of the
class

❑ public: can be accessed by functions outside
of the class

❑ private: can only be called by or accessed
by functions that are members of the class

More on Access Specifiers

❑ Can be listed in any order in a class

❑ Can appear multiple times in a class

❑ If not specified, the default is private

Constructors

❑ Member function that is automatically called
when an object is created

❑ Purpose is to construct an object

❑ Constructor function name is class name

❑ Has no return type

Default Constructors

❑ A default constructor is a constructor that takes no
arguments.

❑ If you write a class with no constructor at all, C++ will
write a default constructor for you, one that does
nothing.

❑ A simple instantiation of a class (with no arguments)
calls the default constructor:

Rectangle r;

Continues...

Contents of Rectangle.ccp Version3

(continued)

Default Constructors

❑ If your program does not provide any
constructor for a class defined by you, C++
generates a default one for you that does
nothing.

❑ If your program does provide some
constructor (maybe only one), but no default
constructor, C++ does NOT generate a default
one.

See the demo program...

13.8
Passing Arguments to Constructors

Passing Arguments to Constructors

❑ To create a constructor that takes
arguments:

◼ indicate parameters in prototype:

Rectangle(double, double);

◼ Use parameters in the definition:

Rectangle::Rectangle(double w, double

len)

{

width = w;

length = len;

}

Passing Arguments to Constructors

❑ You can pass arguments to the constructor
when you create an object:

Rectangle r(10, 5);

Classes with No Default Constructor

❑ When all of a class's constructors require
arguments, then the class has NO default
constructor.

❑ When this is the case, you must pass the
required arguments to the constructor when
creating an object.

Using const With Member Functions

❑ const appearing after the parentheses in a
member function declaration specifies that
the function will not change any data in the
calling object.

Defining a Member Function

❑ When defining a member function:

◼ Put prototype in class declaration

◼ Define function using class name and scope
resolution operator (::)

int Rectangle::setWidth(double w)

{

width = w;

}

Remember Accessors and Mutators

❑ Mutator: a member function that stores a
value in a private member variable, or changes
its value in some way

❑ Accessor: function that retrieves a value from
a private member variable. Accessors do not
change an object's data, so they should be
marked const.

13.3
Defining an Instance of a Class

Defining an Instance of a Class

❑ An object is an instance of a class
❑ Defined like structure variables:

Rectangle r;

❑ Access members using dot operator:
r.setWidth(5.2);

cout << r.getWidth();

❑ Compiler error if attempt to access private
member using dot operator

Program 13-1 (Continued)

Program 13-1 (Continued)

Program 13-1 (Continued)

Avoiding Stale Data

❑ Some data is the result of a calculation.
❑ In the Rectangle class the area of a rectangle is

calculated.
◼ length x width

❑ If we were to use an area variable here in the
Rectangle class, its value would be dependent on the
length and the width.

❑ If we change length or width without updating area,
then area would become stale.

❑ To avoid stale data, it is best to calculate the value of
that data within a member function rather than store
it in a variable.

13.10
Overloading Constructors

Overloading Constructors

❑ A class can have more than one constructor

❑ Overloaded constructors in a class must have
different parameter lists:

Rectangle();

Rectangle(double);

Rectangle(double, double);

More About Default Constructors

❑ If all of a constructor's parameters have
default arguments, then it is a default
constructor. Done in declaration. For example:

Rectangle(double w= 0, double l= 0);

❑ Creating an object and passing no arguments
will cause this constructor to execute:

Rectangle r;

Initialization Section

❑ C++ constructors have a special section that
can be used to initialize data members:

Rectangle::Rectangle(int w, int l) :

width(w), length(l)

{

// purposely left empty

}

Simple InventoryItem

❑ A simple object to describe an InventoryItem
would include:

◼ A text description of the item.

◼ A cost of the item.
◼ A price might also be included (not in book).

◼ The number of units.
◼ A SKU (stock keeping unit) for the item.

Continues...

3.11
Using Private Member Functions

Section 10.2 Exercises

❑ Can you answer the following:

◼ Describe the difference between a class and
a structure?

◼ Explain why member variables are usually private?

◼ Describe the purpose and usage of a constructor?

◼ Use an initialization section in a constructor?

◼ What is the purpose of a default constructor and
when is one supplied automatically in a class.

Answers to Exercises

❑ Describe the difference between a class and
a structure?

◼ structs are public by default; classes are private by
default.

❑ Explain why member variables are usually private?

◼ Protect programs from class changes and objects
from internal corruption.

❑ Describe purpose and usage of a constructor?

◼ Constructors are invoked when an object is created.

◼ Used to declare variables.

Answers to Exercisess

❑ Use initialization section in a constructor?

◼ (See slide 98, see slide 111)

DayOfYear::DayOfYear(int m, int d) : month(m),
day(d) { }

DayOfYear::DayOfYear() : month(1), day(1) { }

❑ What is the purpose and when is a default constructor
provided automatically?

◼ If a class does not provide a constructor, a default
constructor will automatically be provided that does
nothing.

◼ A default constructor is needed to declare objects.

As practice consider the following

Take our DayOfYear class and add two constructors: one
that takes the month and day to initialize both data
members and a default constructor.

Even though, we already added a member function called
isEquals, try it on your own. Remember it takes a
DayOfYear object as parameter.

Add a member function called isAfter that compares the
invoking object to an object passed in as a parameter. if
the calling object is later in the year, then return true.
Otherwise false.

class DayOfYear {

public:

int getMonth();

int getDay();

void output(ostream& outs);

void input(istream& ins);

private:

void check_date();

int month;

int day;

};

Start with the class DayOfYear

❑ On the previous slide is the class DayOfYear
before you make your changes.

❑ The slides that follow show changes

◼ Add the two constructors OR

◼ Add one constructor with default values.
◼ But this is equivalent to 3 constructors:

◼ DayOfYear(); // default month = 1, day=1

◼ DayOfYear(int mon); // default day = 1

◼ DayOfYear(int mon, int day);

class DayOfYear {

public:

DayOfYear();

DayOfYear(int mon, int day);

int getMonth();

int getDay();

void output(ostream& outs);

void input(istream& ins);

private:

void check_date();

int month,day;

};

class DayOfYear {

public:

DayOfYear(int mon=1, int day=1);

int getMonth();

int getDay();

void output(ostream& outs);

void input(istream& ins);

private:

void check_date();

int month,day;

};

Implementation of Constructor

// Set data members in initialization

// section, check_date() exits if not

// valid

DayOfYear::DayOfYear(int m, int d) :

month(m), day(d)

{

check_date();

}

Not necessary to use initialization section!

Overloaded constructors

❑ Remember Rectangle class with the following
constructors:

Rectangle();

Rectangle(double side);

Rectangle(double w, double l);

❑ What if we added?

Rectangle(double w); // Compiler error

Overloaded functions must have different
number and/or types of parameters!!!

isAfter() member function

❑ It’s tempting to pass an int month and int day,
but let’s compare to another DayOfYear!

// Add to public part of class

bool isAfter(DayOfYear d);

// Implementation outside of the class

bool DayOfYear::isAfter(DayOfYear d)

{

return (getMonth() > d.getMonth() ||

(getMonth() == d.getMonth() &&

getDay() > d.getDay()));

}

Practice Finding the errors.
class Automobile {

public:

void setPrice(double price);

void setProfit(double profit);

double get_price();

private:

double get_profit();

double price;

double profit;

}; Automobile jaguar, hyundai;

hyundai.price=4999.99; jaquar.set_price(59,000.00);

double a_price = jaguar.get_price(), a_profit = hyundai.get_profit();

if (hyundai == jaguar)

cout << “Want to swap cars?” << endl;

hyundai = jaguar;

See Errors

❑ If a data member or member function is
private, it cannot be accessed outside of the
class.

◼ Errors are in red.

Practice Finding the errors.
class Automobile {

public:

void set_price(double price);

void set_profit(double profit);

double get_price();

private:

double get_profit();

double price;

double profit;

}; Automobile jaguar, hyundai;

hyundai.price=4999.99; jaquar.set_price(59,000.00);

double a_price = jaguar.get_price(), a_profit = hyundai.get_profit();

if (hyundai == jaguar) // No operator == exists for Automobile

cout << “Want to swap cars?” << endl;

hyundai = jaguar;

Consider a BankAccount class

❑ First ask, what is it?

◼ Answering “what it is?” gives us the data

◼ Could be several data representations

E.g. a rational number could be…

3.1459 or 2/3 but is a fraction.

❑ Then ask, what does it do?

◼ Answering “what it does?” gives us the
functions.

BankAccount

❑ What it is?

◼ A balance (but that balance can be expressed as…)

◼ double balance; // Fractional cents problem

◼ int cents; // More exact

◼ int dollars, int cents; // Multiple components

◼ An interest rate

◼ An account number
◼ unsigned long acctNumber;

◼ string acctNumber; // Mix of chars, digits

BankAccount

❑ When a BankAccount is created, there is an
initial deposit.

◼ BankAccount(int dollars = 0, int cents = 0);

❑ Typical banking functions include:

◼ makeDeposit(double amount)

◼ makeWithdrawl(double amount)

◼ makeTransfer(double amnt, BankAccount ba)

◼ addAccruedInterest(double rate)

◼ issueMonthlyStatement()

BankAccount con’t

❑ In order to issue a monthly statement, we
need to keep track of transactions.

❑ An easy way to do that is to create a
Transaction structure that is used by the
BankAccount object.

❑ Private data for BankAccount includes:

◼ double balance;

◼ double interest_rate;

◼ vector <Transaction> transactions;

struct transaction

❑ Every transaction has a dollar amount.

❑ Every transaction has a date (and time).

❑ Every transaction has a type.

◼ We’ll use a similar construct as wage_status
in a previous example.

❑ There are 5 different transaction types:

◼ Deposits Transfers

◼ Withdrawls Overdraft

◼ Interest payments

Struct transaction

❑ Here’s the struct that represents Transaction
type in our BankAccount application.

❑ struct Transaction {

char type; // ‘D’, ‘W’, ‘O’, ‘I’, ‘T’

double amount;

Date date; // Date struct or class

};

❑ In order to issue a monthly statement, we
need to keep a list of Transactions.

struct Transaction

❑ How do we keep track of transactions for the
month?

◼ vector<Transaction> transactions;

◼ Write a method to shrink_wrap or initialize
a transaction to be stored in transactions.

❑ How do we get a month’s worth of
transactions?

◼ Write a method to start at the end and go
backwards until we hit the previous month.

Class BankAccount
❑ Remember that we want BankAccount to

support normal banking functions such as:

◼ makeDeposit(double amount)

◼ makeWithdrawl(double amount)

◼ makeTransfer(double amnt, BankAccount ba)

◼ addAccruedInterest(double rate)

◼ issueMonthlyStatement(DayOfYear from)
◼ getBalance(), getInterestRate(), getAccountNum()

❑ Each banking function will be represented by a
member function.

Class BankAccount and struct Transaction
/*

* BankAccount class

* keeps the data along with all of the functions that apply to a BankAccount.

*/

class BankAccount {

public:

BankAccount(int dollars = 0, int cents = 0); // Includes default constructor

// Constants that apply to the whole class

static const char DEPOSIT = 'D';

static const char WITHDRAWL = 'W’;

static const char INTEREST = 'I';

static const char OVERDRAFT = ‘O’;

static const char TRANSFER = ‘T’;

// Accessors/Mutators (setters/getters)

void set(double balance, double interest_rate);

double getBalance();

double getInterestRate();

Class BankAccount and struct Transaction
unsigned long getAccountNum();

// Public method interface

double makeDeposit(double deposit);

double makeWithdrawl(double withdrawl);

double makeTransfer(double transfer, BankAccount toAcct);

double addAccruedInterest();

void issueMonthlyStatement(DayOfYear from, DayOfYear until);

private:

// Private utility methods

Transaction shrink_wrap(char type, double amount, time_t date=0);

void record_transaction(unsigned long account, char type, double amount, Date td);

// Instance variables

unsigned long account_num; // Accommodates a long number

int cents; // No danger of fractional cents.

double interest_rate;

vector<Transaction> transactions; // Audit trail of all transactions.

};

10.3

Abstract Data Types

Object-Oriented Programming
Terminology

❑ class: like a struct (allows bundling of related
variables), but variables and functions in the
class can have different properties than in a
struct

❑ object: an instance of a class, in the same
way that a variable can be an instance of a
struct

Classes and Objects

❑ A Class is like a blueprint and objects are like
houses (instances) built from the blueprint

Object-Oriented Programming
Terminology

❑ properties: data members of a class aka
instance variables.

❑ methods or behaviors: member functions of a
class are known as methods.

❑ invoking object is the calling object.

◼ When a method is invoked there is always an
invoking object that is copied into a special
pointer known as the this pointer

Abstract Data Types

❑ A data type consists of a collection of values
together with a set of basic operations
defined on the values

◼ example: int type and its associated valid
operations

❑ A data type is an Abstract Data Type (ADT)
if programmers using the type do not have
access to the details of how the values and
operations are implemented

◼ example: int, double

Procedural and Object-Oriented
Programming

❑ Procedural programming focuses on the
process/actions that occur in a program

❑ Object-Oriented programming is based on the
data and the functions that operate on it.
Objects are instances of ADTs that represent
the data and its functions

Classes To Produce ADTs

❑ To define a class so it is an ADT

◼ Separate the specification of how the type is used
by a programmer from the details of how the type
is implemented

◼ Make all member variables private members

◼ Helper functions should be private members

◼ Basic operations a programmer needs should be
public member functions

◼ Fully specify how to use each public function

More on Objects

❑ data hiding: restricting access to certain
members of an object
◼ Protects programs from changes in classes.
◼ Protects objects from data corruption.

❑ public interface: members of an object that
are available outside of the object. This allows
the object to provide access to some data and
functions without sharing its internal details
and design, and provides some protection from
data corruption

ADT Interface

❑ The ADT interface tells how to use the ADT in
a program

◼ The interface consists of
◼ The public member functions’ declarations or

prototypes

◼ The comments that explain how to use those
functions

◼ The interface should be all that is needed to
know how to use the ADT in a program

ADT Implementation

❑ The ADT implementation tells how the interface is
realized in C++

◼ The implementation consists of

◼ The private members of the class

◼ The definitions of public and private member
functions

◼ The implementation of a class’s interface is needed
to run a program that uses the class.

◼ The implementation is not needed to write the
main part of a program or any non-member
functions

ADT Benefits

❑ Changing an ADT implementation does not
require changing a program that uses the ADT

❑ ADT’s make it easier to divide work among
different programmers
◼ One or more can write the ADT
◼ One or more can write code that uses the

ADT
❑ Writing and using ADTs breaks the larger

programming task into smaller tasks

Program Example
The BankAccount ADT

❑ In the version of the BankAccount ADT shown in
Display 10.7.

◼ Data is stored as three member variables
◼ The dollars part of the account balance

◼ The cents part of the account balance

◼ The interest rate

◼ This version stores the interest rate as a fraction

◼ The public portion of the class definition remains
unchanged from the version of Display 10.6

Display 10.7Display 10.6

Same interface, different implementation

Display 10.6
(1/3)

Display
10.6
(2/3)

Display
10.6
(3/3)

Display 10.7
(1/3)

Display 10.7
(2/3)

Display
10.7 (3/3)

Interface Preservation

❑ To preserve the interface of an ADT so that
programs using it do not need to be changed

◼ Public member declarations cannot be
changed

◼ Public member definitions (i.e.,
implementation or realization) can be changed

◼ Private member functions can be added,
deleted, or changed

Information Hiding

❑ Information hiding was referred to earlier as
writing functions so they can be used like
black boxes

❑ ADT’s does information hiding because

◼ The interface is all that is needed to use the ADT

◼ Implementation details of the ADT are not needed
to know how to use the ADT

◼ Implementation details of the data values are not
needed to know how to use the ADT

Section 10.3 Exercises

❑ Can you

◼ Describe an ADT?

◼ Describe how to implement an ADT in C++?

◼ Define the interface of an ADT?

◼ Define the implementation of an ADT?

Another example

❑ Let’s create an ADT called Rectangle.

❑ When we define an ADT we have to think about what it
needs to do and what it needs to be.

❑ What an ADT needs to be is defined by the member
variables.

❑ What an ADT needs to do is defined by the member
functions.

A Rectangle needs to be…

❑ A shape with a positive, non-zero length and a
height.

❑ A shape that can have equal length and height
which makes it the special case of a Square.

❑ A shape that can be drawn needs a position and
orientation (angle).

Rectangle

❑ What kinds of things do you do with a
Rectangle?

◼ Get length and height

◼ Calculate Perimeter

◼ Calculate Area

◼ isSquare

◼ hasSamePerimeter

◼ hasSameArea

◼ Draw, Move, Rotate… // drawing program.

Rectangle constructors

❑ Define a default constructor

❑ Define a constructor for the special case of
square.

❑ Define a constructor for initializing both
dimensions at creation.

Class Rectangle – public part

class Rectangle {

public:

Rectangle(); //default constructor

Rectangle(int side); // Square

Rectangle(int length, int height);

int get_length(); // length accessor

int get_height(); // height accessor

int calculatePerimeter();

int calculateArea();

bool hasSameArea(const Rectangle& r);

bool hasSamePerimeter(const Rectangle& r);

bool isSquare();

class Rectangle - private

class Rectangle {

public:

// see previous slide

void input(const istream& in);

void output(const ostream& out);

private:

int length; // member variables

int height;

bool check_dimensions();

};

10.4

Introduction to Inheritance

Inheritance

❑ Inheritance refers to derived classes

◼ Derived classes are obtained from another class
by adding features

◼ A derived class inherits the member functions and
variables from its parent class without having to re-
write them

Inheritance Example

❑ Natural hierarchy of
bank accounts

❑ Most general: A Bank
Account stores a
balance

❑ A Checking Account
“IS A” Bank Account
that allows customers
to write checks

❑ A Savings Account
“IS A” Bank Account
without checks but
higher interest

Accounts are more

specific as we go down

the hierarchy

Each box can be a class

Display 10.8

Inheritance Relationships

❑ The more specific class is a derived or child
class

❑ The more general class is the base, super, or
parent class

❑ If class B is derived from class A

◼ Class B is a derived class of class A

◼ Class B is a child of class A

◼ Class A is the parent of class B

◼ Class B inherits the member functions and
variables of class A

Inheritance hierarchy

Base
class A

Derived
class B

Subclass
D

Derived
class C

Subclass
E

More general

Super class

More

specific

Parent class

Child

class

Inheritance hierarchy – general to specific

Shape

Rectangle

Square

Ellipse

Circle

More general

Super class

More

specific

Parent class

Child

class

Define Derived Classes

❑ Give the class name as normal, but add a colon and then
the name of the base class

❑ Objects of type SavingsAccount can access member
functions defined in SavingsAccount or BankAccount

class SavingsAccount : public BankAccount
{

…
}

Display 10.9 (1-3)

Display 10.9
(1/3)

Display 10.9 (2/3)

For more information on type casting,

http://www.cplusplus.com/doc/tutorial/typecasting/

Display 10.9(3/3)

Section 10.4 Exercises

❑ Can you

◼ Define object?

◼ Define class?

◼ Describe the relationship between parent and child
classes?

◼ Describe the benefit of inheritance?

