
Inheritance

Chapter 15
& additional topics

Overview

❑ Inheritance Introduction

❑ Three different kinds of inheritance

❑ Changing an inherited member function

❑ More Inheritance Details

❑ Polymorphism

Inheritance Introduction

Motivating Example: Employee Classes

❑ Design a record-keeping program with
records for salaried and hourly employees
◼ Salaried and hourly employees belong to a class of

people who share the property "employee"

◼ Salaried employee
◼ A subset of employees with a fixed wage

◼ Hourly employees
◼ Another subset of employees earn hourly wages

❑ All employees have a name and SSN
◼ Functions to manipulate name and SSN are the same

for hourly and salaried employees

❑ First define a class called Employee for all
kinds of employees

❑ The Employee class will be used later to define
classes for hourly and salaried employees

employee.h

name

Employee()

get_name() get_net_pay()

Employee(string, string)

get_ssn()

Employee ssn

net_pay

set_name() set_net_pay()set_ssn()

print_check()

../examples/Chapter15/employee.h

We now use Employee class to create an
HourlyEmployee class

see book
Display 15.3

hourlyemployee.h

❑ HourlyEmployee is derived from Class Employee

❑ HourlyEmployee inherits all member functions and
member variables of Employee

◼ NOT SHOWN explicitly in HourlyEmployee’s
defn

❑ The class definition begins
class HourlyEmployee : public Employee

◼ note that :public Employee shows that
HourlyEmployee is derived from class Employee

❑ HourlyEmployee declares additional member
variables wage_rate and hours

name

Employee()

get_name() get_net_pay()

Employee(string, string)

get_ssn()

Employee ssn

net_pay

set_name() set_net_pay()set_ssn()

print_check()

name

Employee()

get_name() get_net_pay()

Employee(string, string)

get_ssn()

HourlyEmploye

e

ssn

net_pay

set_name() set_net_pay()set_ssn()

print_check()

wage_rate hours

set_rate() get_rate()

set_hours () get_hours ()

is

❑ Inheritance：

a new class, called a derived class,
is created from another class (i.e.,
the base class)

❑ A derived class automatically
has all the member variables and
functions of the base class

❑ A derived class can have
additional member variables
and/or member functions

A derived class automatically has all the
member variables and functions of the base
class.

But, the derived class might not have the same
access rights as the base class when accessing
those inherited members! (To be discussed
soon…)

Inherited Members

❑ A derived class inherits all the members (data
members, functions) of the parent class

❑ The derived class should not re-declare or re-define a
member function inherited from the parent unless …
◼ The derived class wants to use the inherited member function

for doing something different

❑ The derived class can add member variables & member
functions

Display 15.3

hourlyemployee.h

Only list the declaration of

an inherited member

function if you want to

change the defn of the

function.

Why re-define print_check() ?

A practical concern here…

❑ print_check will have different
definitions to print different checks for each
type of employee

◼ An Employee object lacks sufficient
information to print a check

◼ Each derived class will have sufficient
information to print a check

employee.cpp

employee.cpp

Implementing a Derived Class

❑ Any member function added in the derived
class are defined in the implementation file for
the derived class
◼ Definitions are not given for inherited functions

that are not to be changed

❑ The HourlyEmployee class is implemented in
HourlyEmployee.cpp

Textbook Display 15.5

Display 15.5
(1/2)

Display 15.5
(2/2)

We now use Employee class to create
an SalariedEmployee class

Class SalariedEmployee

❑ The class SalariedEmployee is also derived
from Employee
◼ Function print_check is redefined to have a

meaning specific to salaried employees

◼ SalariedEmployee adds a member variable
salary

salariedemployee.h

Display
15.6 (1/2)

salariedemployee.cpp

Display 15.6
(2/2)

Parent and Child Classes
❑ Recall that a child class automatically has all the members

of the parent class

❑ The parent class is an ancestor of the child class

❑ The child class is a descendent of the parent class

❑ The parent class (Employee) contains all the
code common to the child classes

◼ You do not have to re-write the code for each child

Employee

HourlyEmployee SalariedEmployee

Is-A relationship is one way

❑ The child is-a version of the parent, but the
parent is NOT a version of the child.

❑ The child has ALL features of the parent but
the child has ADDED features.

❑ Only the child knows about the parent. The
parent does not know about the children.

Parent and Child Classes (cont’d)

❑ An hourly employee is an
employee
◼ An object of type
HourlyEmployee can be
used wherever an object of
type Employee can be used
◼ An object of a class type can

be used wherever any of its
ancestors can be used

◼ An ancestor cannot be used
in a place where one of its
descendents is expected

void fun1(Employee x);
void fun2(HourlyEmployee y);
int main()
{
Employee a;
HourlyEmployee b;
fun1(a); //correct
fun1(b); //correct
fun2(a); //incorrect
fun2(b); //correct

}

public inheritance is an

is-a relationship

Derived Class’s Constructors

❑ A base class’s constructor is not inherited in a
derived class

❑ The base class constructor can be invoked by the
constructor of the derived class

❑ The constructor of a derived class begins by invoking
the constructor of the base class in the initialization
section:

HourlyEmployee::HourlyEmployee : Employee(), wage_rate(
0), hours(0)
{ //no code needed }

Call a constructor for Employee

Default Initialization

❑ If a derived class constructor does not invoke a
base class constructor explicitly, the base class
default constructor will be used automatically

❑ If class B is derived from class A and class C
is derived from class B

◼ When a object of class C is created
◼ The base class A's constructor is the first invoked

◼ Class B's constructor is invoked next

◼ C's constructor completes execution

What is the order?

class A {

public:

A() { cout << “A()” << “ “; }

};

class B : public A {

public:

B(): A(){ cout << “B()” << “ “; }

};

class C : public B {

public:

C() : B() { cout << “C()” << “ “; }

};

A() B() C()

int main()

{

C c;

}

Private is Private
❑ A member variable (or function) that is private

in the parent class is not directly accessible by the
member functions in the child class

❑ This code is illegal as net_pay is a private member of
Employee!
void HourlyEmployee::print_check()
{

net_pay = hours * wage_rage;

}

❑ The parent class member functions must be used to
access the private members of the parent

A member function of a class can NOT directly access its

own member variable (inherited, private to its base class)!

The protected Qualifier

❑ protected members of a class appear to be
private outside the class, but are directly
accessible within a derived classes

❑ If member variables name, net_pay, is listed
as protected (not private) in the Employee class,
this code becomes legal:
HourlyEmployee::print_check()
{

net_pay = hours * wage_rage;

access_specifiers_demo.cpp

Using protected or not?

❑ Using protected members of a class is a
convenience to facilitate writing the code of
derived classes.

❑ Protected members are not necessary
◼ Derived classes can use the public methods of their

ancestor classes to access private members

❑ Many programming authorities consider it
bad style to use protected member variables

◼ It breaks encapsulation forcing changes in
the base class to be handled in children.

Overview

❑ Inheritance Introduction

❑ Three different kinds of inheritance

❑ Changing an inherited member function

❑ More Inheritance Details

❑ Polymorphism

Three different kinds of inheritance

Inherit Visibility of Access Qualifiers

private is visible only to parent

protected visible to parent & child

public

visible

To All

Parent – Base class

Child – Derived class

Outside
World

public

p

r

i

v

a

t

e

p

r

o

t

e

c

t

e

d

Three different ways for classes to inherit from
other classes: public, private, and protected.

// Inherit from Base publicly

class D1: public Base

{ };

// Inherit from Base privately

class D2: private Base

{ };

// Inherit from Base protectedly

class D3: protected Base

{ };

class D4: Base // Defaults to private inheritance

{ };

If you do not choose an

inheritance type, C++ defaults

to private inheritance (just like

members default to private

access if you do not specify

otherwise).

Public inheritance
// Inherit from Base publicly

class D1: public Base

{ };

❑ All members keep their original access specifications.

❑ Private members stay private, protected members stay
protected, and public members stay public.

public inheritance

Base class

access specifier

Derived class

access specifiier

(implicitly given)

Directly

accessible in

member functions

of derived class?

Directly

accessible in any

other code?

public public yes yes

private private no no

protected protected yes no

Private inheritance
// Inherit from Base privately

class D2: private Base

{ };
❑ All members from the base class are inherited as private.

◼ private members stay private, and protected and public
members become private.

❑ This does not affect that way that the derived class accesses
members inherited from its parent! It only affects the code
trying to access those members through the derived class.

private inheritance

Base class

access specifier

Derived class

access specifiier

(implicitly given)

Directly

accessible in

member functions

of derived class?

Directly

accessible thru

objects of derived

class in any other

code?

public private yes no

private private no no

protected private yes no

Protected inheritance

// Inherit from Base protectedly

class D3: protected Base

{ };

❑ Rarely used. The public and protected members
become protected, and private members stay private.

protected inheritance

Base class

access specifier

Derived class

access specifiier

(implicitly given)

Directly accessible

in member

functions of

derived class?

Directly accessible

thru objects of

derived class in

any other code?

public protected yes no

private private no no

protected protected yes no

❑ Member functions of a derived classes have access to its inherited
members based ONLY on the access specifiers of its immediate
parent, not affected by the inheritance method used!

protected inheritance

public protected yes no

private private no no

protected protected yes no

private inheritance

public private yes no

private private no no

protected private yes no

Base class

access specifier

for members

Derived class access

specifiier (implicitly

given for inherited

members)

Directly accessible in

member functions of

derived class?

Directly accessible in

any other code?

public inheritance

public public yes yes

private private no no

protected protected yes no

class A

{

public:

int x;

protected:

int y;

private:

int z;

};

class D : private A { // defaults to ‘private’

Outside of class: {

public maintains access ‘as-is’ // x is private

protected makes it all inaccessible // y is private

private makes it all inaccessible // z is not accessible from D

};

IMPORTANT NOTE: Classes B, C and D all contain the variables x, y and z. It is just a

question of access

class B : public A // B’s children can access x,y

{

// x is public

// y is protected

// z is not accessible from B

};

class C : protected A // C’s children can access x,y

{

// x is protected

// y is protected

// z is not accessible from C

};

Access Qualifiers

Inheritance Qualifiers

❑ When derived public, all qualifiers of the
parent stay the same in the derived.

◼ “As-is” inheritance.

❑ When derived protected, both public and
protected base members become protected in
the derived.

◼ Not visible outside, but visible to children

❑ When derived private, both public and
protected become private in the derived.

◼ Not visible outside, not visible to children.

Overview

❑ Inheritance Introduction

❑ Three different kinds of inheritance

❑ Changing an inherited member function

❑ More Inheritance Details

❑ Polymorphism

Changing an inherited member
function

Redefinition of Member Functions

❑ When defining a derived class, list
the inherited functions that you wish to
change for the derived class
◼ The function is declared in the class definition

◼ HourlyEmployee and SalariedEmployee each have
their own definitions of print_check

❑ Next page demonstrates the use of
the derived classes defined in
HourlyEmployee.h and SalariedEmployee.h.

Functions defined in Employee class

set_name()

set_ssn()

print_check()

Functions defined in HourlyEmployee class

set_rate()

set_hours()

print_check()

Redefining vs. Overloading

❑ A function redefined in a derived class has the
same number and type of parameters
◼ The prototype (return value, function name, and parameters) of

the function in the derived class must be exactly identical to that
in the base class.

◼ The derived class has only one function with the same name as the
base class

❑ An overloaded function has a different number
and/or type of parameters than the base class
◼ For example, the derived class has two functions with the same

name as the base class: one is overloading, one is redefining.
void set_name(string first_name, string last_name);//overloading

void set_name(string new_name); //redefine

A side note: function signatures

❑ An overloaded function has multiple signatures
◼ A function signature is the function's name

with the sequence of types in the parameter
list, not including any const or '&'

◼ Some compilers allow overloading based on
including const or not including const

Change access specifier for an
inherited member (data or function)

❑ When re-define a function in a derived class,

◼ The re-defined function uses whatever access specifier it is
given in the derived class

◼ The re-defined function does not inherit the access specifier
of the function with the same prototype in the base class.

❑ Therefore,

◼ You can hide an inherited member (originally public in base
class) by specifying it as private or protected

◼ You can expose an inherited member (originally protected in
base class) by specifying it as public

❑ However, you can only change the access specifiers of base
members the class are accessible in the derived class.

◼ You can never change the access specifier of a base member
from private to protected or public, because derived classes
do not have access to private members of the base class.

Changing Access Qualifiers in Child

❑ A base class member that is private

◼ CANNOT BE CHANGED!

❑ A base class member that is protected

◼ Can be changed to public or private in child.

❑ A base class member that is public

◼ Can be changed to protected or private in
child.

Access to a Redefined Base Function

❑ When a function of a base class is redefined in
a derived class, the base class function can
still be used
◼ To specify that you want to use the base class

version of the redefined function:

int main()

{

HourlyEmployee sally_h;
sally_h.Employee::print_check();

}

Hierarchy with DayOfYear to Date
❑ class DayOfYear {

public:

DayOfYear(int mon, int day);

void set(int mon, int day);

private:

int month, day;

};

class Date : public DayOfYear {

public:

Date(int mon, int day, int y) : DayOfYear(mon, day), year(y) {}

using DayOfYear::set; // Make visible in Child

void set(int mon, int day, int y);

private:

int year;

};

Overloaded function between classes

int main() {

Date birthday(4, 19, 2001);

birthday.set(4, 17); // Can’t do this, hidden

birthday.DayOfYear::set(4,17);

}

Adding new functionality to an
inherited member function

❑ See derived_changes_inherited_members.cpp file.

void HourlyEmployee::print_check()

{

set_net_pay(hours*rate);

Employee::print_check();

cout << “Hours worked: “ << hours;

…

}

Hide the functionality of an inherited
member function
Hide the functionality of an inherited member function
from any other code.

❑ Redefine the member function (discussed before)

❑ Or, give it a new access specifier private when re-
defining it in the derived class.

❑ Or, simply list it in the private section like this:

class Circle : public Shape()

{

private:

using Shape::display;

//display() is a function defined as public in Shape

without even re-defining it.

See
derived_changes_inherited_
members.cpp file

Expose an inherited member
(originally protected in base class)

❑ Read this file
derived_exposes_inherited_members.cpp

stopped here 4/4.

Overview

❑ Inheritance Introduction

❑ Three different kinds of inheritance

❑ Changing an inherited member function

❑ More Inheritance Details

❑ Polymorphism

Review what was covered so far…

❑ What is the relationship between parent class
and child class?

❑ What are some names for parent class and
some names for child class?

❑ What is an access qualifier? Name them.

❑ When should a member function that is
defined in the parent be included in the child
declaration?

❑ How do we access member functions in the
parent class from child objects?

More Inheritance Details

❑ Some special functions are not inherited by a
derived class. They include

◼ The assignment operator

◼ Copy constructors

◼ Destructors

❑ Even though they are not inherited derived
classes still benefit from the base class.

❑ Derived classes only have to implement the big
three when they allocate memory.

The Assignment Operator

❑ In implementing an assignment operator
(operator=) in a derived class
◼ It is normal to use the assignment operator from

the base class in the definition of the derived
class's assignment operator

◼ Recall that the assignment operator is written as a
member function of a class

◼ Only implement the assignment operator in the
derived class if it is required in the derived class.

◼ The default behavior is correct.

The Operator = Implementation

❑ This code segment shows how to begin the
implementation of the = operator for a derived
class when required:
Derived& Derived::operator= (const Derived& rhs)
{

Base::operator=(rhs);

/*

Base is the name of the parent class

This line handles the assignment of the inherited member variables
by calling the base class assignment operator

The remaining code would assign the member variables introduced
in the derived class

*/

Operator = and Derived Classes

❑ If a base class has a defined assignment
operator= but the derived class does not, then

◼ The derived class operator= will automatically
call the base class version.

◼ That’s because there is only one assignment
operator= in any class.

Copy Constructors and Derived Classes

❑ If a copy constructor is not defined in a
derived class, C++ will generate a default copy
constructor

◼ This copy constructor calls the base class copy
constructor by default.

◼ Since there is only one copy constructor, the
derived class calls the one that hanldes dynamic
memory.

The Copy Constructor

❑ Implementation of the derived class copy
constructor is much like that of any other derived
class constructor, pass up the parameter to the base in
the initializer section:
Derived::Derived(const Derived& object)

:Base(object), <other initializing>
{…}

◼ Invoking the base class copy constructor sets up
the inherited member variables
◼ Since object is of type Derived it is also of type Base

Destructors and Derived Classes

❑ A destructor is not inherited by a derived
class

❑ The derived class should define its own
destructor if necessary

❑ If the base class defines a destructor, there
is no need to define a destructor in the
derived class unless it is needed for dynamic
member variables declared in the derived
class.

Destructors in Derived Classes

❑ If the base class has a programmer-defined
destructor, then defining the destructor for
the derived class is relatively easy
◼ When the destructor for a derived class is called,

the destructor for the base class is automatically
called

◼ The derived class destructor only need to release
memory for the dynamic variables added in the
derived class

Destruction Sequence

❑ A is at the root of the hierarchy.

❑ If class B is derived from class A

and class C is derived from class B…

◼ When an object of class C goes out of scope
◼ The destructor of class C is called

◼ Then the destructor of class B

◼ Then the destructor of class A

◼ Notice that destructors are called in the
reverse order of constructor calls

Overview

❑ Inheritance Introduction

❑ Three different kinds of inheritance

❑ Changing an inherited member function

❑ More Inheritance Details

❑ Polymorphism

Polymorphism

Polymorphism

❑ Polymorphism refers to the ability to associate
multiple definitions with one function
declaration using a mechanism called late
binding

❑ Polymorphism is a key component of the
philosophy of object oriented programming

Binding & Early binding
❑ Binding

The process to convert identifiers (such as variable and function
names) into machine language addresses.

❑ Early binding (or static binding)

An C++ compiler directly associates an identifier name (such as a
function or variable name) with a machine address during compilation
process.

Note that all functions have a unique machine address.

When the compiler encounters a function call, it replaces the
function call with an instruction that tells the CPU to jump to the
address of the function.

❑ Late binding (or dynamic binding)

◼ To be discussed very soon…

Compile-time binding

Functions defined in Employee class

set_name()

set_ssn()

print_check()

Functions defined in HourlyEmployee class

set_rate()

set_hours()

print_check()

A motivating example

❑ Imagine a graphics program with several types
of figures

❑ Each figure may be an object of a different
class, such as a circle, oval, rectangle, etc.

❑ Each is a descendant of a class Figure

❑ Each has a function draw() implemented with
code specific to each shape

❑ Class Figure has functions common to all figures

class Figure

public:

center()

{ …

draw()

…

}

draw()

Circle

public:

draw()//re-defined

//center() is inherited

Triangle

public:

draw()//re-defined

//center() is inherited

int man()

{

Circle c;

c.draw(); //which draw() is called?

c.center(); //which draw() is called inside center()?

}

Look at : figure_demo.cpp

c.center();
When a member function is called with a

derived class object, the compiler first looks to

see if that member exists in the derived class. If

not, it begins walking up the inheritance chain

and checking whether the member has been

defined in any of the inherited classes or the

top base class. It uses the first one it finds.

A Problem
❑ Class Figure has a function center

◼ Function center moves a figure to the center of the
screen by erasing the figure and redrawing it in the
center of the screen

❑ Function center is inherited by each of the derived
classes

◼ Function center SHOULD use each derived
object's draw function to draw the figure

◼ But, Figure class does not know about its derived
classes, so how can it know how to invoke a derived
object's draw function?

Virtual Functions

❑ Virtual functions can be used to address the previous
problem.

❑ Making a function virtual tells the compiler that ...
◼ The programmer doesn't know how the function is

implemented when the programmer is defining a base class

◼ The programmer wants to wait until the function of an object
is used in a program. Only at that time, the implementation of
the function is clear, i.e., it is given by the class type of the
object.

❑ This is called late binding

How to use virtual functions?
❑ Add keyword virtual to a function’s declaration in the

base class
❑ virtual is not added to the function definition

❑ Define the function differently in a derived class

◼ This is the intention of introducing virtual function

❑ virtual is not needed for the function declaration in
the derived class, but is often included

❑ Note that, virtual functions require considerable
overhead so excessive use reduces program efficiency

◼ However, don’t sacrifice design for efficiency.

figure_demo_virtual.cpp

class Figure

void center()

{ …

draw()

…

}

virtual void draw()

Circle

virtual void draw()//re-defined

//center() is inherited

Traingle

virtual void draw()//re-defined

//center() is inherited

int main()

{

Circle c;

c.draw() //which draw() is called?

c.center() //which draw() is called inside center()?

}

Look at :

figure_demo_virtual.cpp

Another Example of Virtual Functions

❑ As another example, let's design a record-
keeping program for an auto parts store

❑ We want to introduce a bill function, and we want a
versatile program, and we do not know all the possible
types of sales we might have to account for

◼ Later we may add mail-order and discount sales

◼ Functions to compute bills will have to be added
later when we know what type of sales to add

◼ To accommodate the future possibilities, we will
make the bill function a virtual function

The Sale Class

❑ All sales will be derived from the base class
Sale

❑ The bill function of the Sale class is virtual

❑ The Sale class interface and implementation
are shown in

Display 15.8 Display 15.9

Display 15.8

Sale, DiscountSale

DiscountSale::bill

❑ Class DiscountSale has its own version of
virtual function bill
◼ Even though class Sale is already compiled,
Sale::savings() and Sale::operator< can still
use function bill from the DiscountSale class

◼ The keyword virtual tells C++ to wait until bill is
used in a program to get the implementation of bill
from the calling object

Display 15.9

❑ Because function bill is virtual in
class Sale, function savings and
operator<, defined only in the
base class, can in turn use a
version of bill found in a derived
class

◼ When a DiscountSale object
calls its savings function,
defined only in the base
class, function savings calls
function bill

◼ Because bill is a virtual
function in class Sale, C++
uses the version of bill
defined in the object that
called savings

Sale

virtual bill()

savings()

DiscountSale

virtual bill()

//no re-defined savings()

Sale simple(10.00);

DiscountSale d1(11.0, 10);

DiscountSale d2(11.0, 10);

if (d1 < simple)

{

cout << “Saving is $” <<

simple.savings(d1);

}

if (d1 < d2)

{

cout << “Saving is $” <<

d2.savings(d1);

}

Q:

Since bill() is a virtual function,

what will happen in the

following code?

If bill() is not a virtual function,

what will happen in the

following code?

Display 15.11

Override vs. Redefine

❑ Virtual functions whose definitions are
changed in a derived class are said to be
overridden

❑ Non-virtual functions whose definitions are
changed in a derived class are redefined

A potential slicing problem
if we do not use virtual functions.

Preliminary: C++’s Type Checking

❑ C++ carefully checks for type mismatches in
the use of values and variables
◼ This is referred to as strong type checking

◼ Generally, the type of a value assigned to a variable
must match the type of the variable

◼ E.g., double a = “Hello”; //incorrect. No relationship

◼ Recall that some automatic type casting occurs
◼ E.g., int a = 20.34; //correct, but what happens?

❑ When a double is assigned to an int, what
happens?

Slicing Problem is special to C++

❑ C++ is one of the few OOP languages to
support objects as automatic variables

❑ Automatic variables are local variables or value
parameters.

❑ Memory for these objects is “automatically”
allocated and destroyed on the stack by scope.

❑ Java, C#, python only allow primitive types and
object references as local variables.

◼ No slicing problem when everything is a
reference

❑ OOP=object-oriented programming

Type Checking and Inheritance

❑ Consider
class Pet
{
public:

virtual void print();
string name;

}

class Dog : public Pet
{
public:

virtual void print();
string breed;

}

Pet

Pet::print()

name

Dog

Dog::print() //overridden

name

breed

Slicing problem: A Sliced Dog is a Pet
❑ C++ allows the following assignments: Dog vdog; Pet vpet;

vdog.name = "Tiny";
vdog.breed = "Great Dane";
vpet = vdog;

❑ However, vpet will lose the breed member of
vdog since an object of class Pet has no breed
member, copying member for member.

◼ This code would be illegal:
cout << vpet.breed;

Pet

Pet::print()

name

Dog

Dog::print() //overridden

name

breed

vpet

vdog

Only the Pet part gets copied over

❑ vpet = vdog;

Pet

Pet::name=“Fluffy”

Pet::print()

vpet

Dog

Pet::name

Dog::print() //overridden

Dog::breed

vdog

Pet

Pet::name=“Tiny”

Pet::print()

vpet

Dog

Pet::name= “Fluffy”

Dog::print() //overridden

Dog::breed=“Shitzhu”

vdog

The Slicing Problem

❑ It is legal to assign a derived class object into
a base class variable (not a reference),
however...

◼ This slices off data in the derived class that
is not also part of the base class

◼ Some member functions and member
variables are lost

Pet

Pet::print()

name

Dog

Dog::print() //overridden

name

breed

vpet

vdog

Extended Type Compatibility

❑ It is possible in C++ to avoid the slicing
problem

◼ Using pointers to dynamic variables and
virtual functions, we can still access the
added members of the derived class object.

Dynamic Variables and Derived Classes
❑ Example:

ppet->print(); is legal and produces:
name: Tiny

breed: Great Dane

void Dog::print()

{

cout << "name: "

<< name << endl;

cout << "breed: "

<< breed << endl;

}

Pet *ppet;

Dog *pdog;

pdog = new Dog;

pdog->name = "Tiny";

pdog->breed = "Great

Dane";

ppet = pdog; //or &vdog

Display 15.12 (1-2)

Display 15.12
(1/2)

Display 15.12
(2/2)

Use Virtual Functions

❑ The previous example:
ppet->print();

worked because print was declared as a virtual
function

❑ The following code would still produce an error:
cout << "name: " << ppet->name

<< "breed: " << ppet->breed;
//breed is a public member
//but we still cannot use a base class pointer
//to DIRECTLY access it! However,
//We can use virtual functions to access them.

Why?
❑ ppet->breed is still illegal because ppet is a

pointer to a Pet object that has no breed
member
◼ breed is just a data member, not a virtual function!

❑ Function print() was declared virtual by
class Pet
◼ When the computer sees ppet->print(), it checks

the virtual table for classes Pet and Dog and finds
that ppet points to an object of type Dog

◼ Because ppet points to a Dog object, code for
Dog::print() is used

Remember this…

❑ If the type of the pointer p_ancestor is a base class
for the pointer p_descendant, the following assignment

p_ancestor = p_descendant;

❑ Allows us to use p_ancestor to call virtual functions.
The invoking object is still p_descendant,therefore
◼ It will invoke the derived class function which has

access to all derived class data members.
◼ (i.e., no data members will be inaccessible)

◼ BUT we CANNOT directly access a derived
class member from p_ancestor

A side note on reference (1/3)

❑ A reference has to be initialized at the time when
declared (except as a function parameter)

int x=10;

int& y = x;

// Reference y is another name for x, see the address of x

cout << &x <<endl;

// Here, the address of y will be exactly the same as x!

cout << &y <<endl;

❑ A reference cannot be redirected to refer to
something else once it is defined. Cannot be changed!

Use references

Use reference as

function parameters

Recall this example

(from the textbook)

A side note on
reference
(2/3)

C++

❑ reference to a variable (or object) ---- another name
for a variable, and it will never be changed to be a
reference to a different variable, immutable

❑ pointer to a variable (or object) ---- can be modified to
point to different variables , mutable

◼ imagine it as an erasable address tag

Java

❑ reference to a variable---- can be modified to refer to
different variables

◼ imagine it as an erasable name tag, or a named hat
that can be given to different persons to wear

A side note on reference (3/3):
Variable name, reference, pointer

Benefits of virtual functions…

❑ Allow us to refer to each derived object by the base
class but still behaves like the derived class.

❑ Allow us to add derived types as needed.

❑ Allow us to use a pass-by-reference for the base class,
but pass in derived class arguments to get the desired
result.

❑ Allow us to define collections of the base class (eg.
vector<base*> list). We can call a function on every
element knowing that the correct one will be called (eg.
employeePtrs[i]->print_check(), list[i]->draw())

So far…

❑ What is the difference between non-virtual
and virtual functions?

❑ What is the advantage of virtual functions?

❑ What is the slicing problem? How can we avoid
it?

❑ How do we access derived data members using
base class objects?

❑ What is the difference between references in
C++ and other object-oriented languages like
Java?

Animal

virtual getClassName()

Pet

virtual getClassName()

Dog

virtual getClassName()

Dog d ;
Animal &animal_ref = d;
cout << animal_ref.GetClassName();

C++ will check every inherited

class between Animal and Dog

(including Animal and Dog) and

use the most-derived version of

the function that it finds.

inheritance hierarchy

virtual_functions_demo_2.cpp

More than two classes in a chain of
inheritance hierarchy

More details

❑ Pure virtual functions

◼ Don’t redefine, better to override functions

◼ Abstraction – interfaces

❑ Virtual destructors

◼ When working with base classes, virtual
destructors ensure no memory leaks

❑ Covariant return types

◼ Overriding functions that return an object
pointer or reference

PURE VIRTUAL FUNCTIONS
Abstract classes

Refers to the Figure::center example

❑ The base class assumes that there is an
implementation of all needed functions.

❑ If Figure::center() function uses erase(),
move(int x, int y) and draw() function,
all but one must be done in the child.

❑ Move just sets x, y for the Figure. Can be done
in Figure.

❑ Figure::erase() and Figure::draw() must be
defined virtual because only the child knows
how to implement them.

Pure virtual function – abstract class

❑ Let’s say we need to declare a function in the base
class, but only the derived classes know how to
implement the function.

Ex. Shape::draw(), Employee::get_net_pay()

❑ Make the function pure virtual.

❑ Classes with pure virtual functions are abstract.

◼ No concrete variables can be created

◼ Only references and pointers

Pure virtual function

❑ If a class has a pure virtual function, then the class
cannot be instantiated, and the derived classes of the
class have to define these function before they can be
instantiated.

◼ This ensures the derived classes NOT forget to
redefine those pure virtual functions (which is what
the base class hopes)

◼ Syntax of pure virtual function:

virtual return-type function(type parameter) = 0;

This tells the compiler that the class is abstract so it
cannot be used to directly declare object instances.

Revisit Employee class

❑ get_net_pay() function should be a pure virtual
function in the declaration of Employee class.

◼ Find the error at compile time instead of
waitin until runtime.

◼ When a base class contains pure virtual
functions, it cannot be used to declare
variables. It can only be used as a
parameter, a reference or a pointer.

virtual_functions_demo_4.cpp

Calling a base class’s virtual function

Calling a base class’s virtual function

❑ We’ve actually seen this in the overridden
assignment operator=(const Derived& obj).

❑ Remember that the overloading operator= in a
derived class starts with Base::operator=(obj)

Derived& operator=(const Derived& obj) {

if (this != &obj) {

Base::operator=(obj);

// Derived assignment part.

return *this;

} }

Why call base implementation of virtual
function?

❑ There are many cases where you might want to call the
base class implementation of a virtual function inside
of a derived class function:

◼ Assignment of base member variables

◼ Common functionality like print_check(), where
presentation of base class components could be
done first followed by derived class info.

◼ Serialization – reading and writing the object
into/from a file.

◼ Data members of the base class should handled
before the derived class just like operator=

Virtual Destructors

❑ Destructors should be made virtual

Example: destructors.cpp

❑ What about copy assignment operators?

◼ Virtual assignment operators, allow

Base* b = &vDerived;

*b = otherDerived;

❑ Consider Base *pBase = new Derived;
…

delete pBase;

❑ If the destructor in Base is virtual, the destructor for
Derived is invoked when pBase points to a Derived
object, returning Derived members to the freestore

◼ The Derived destructor in turn automatically calls
the Base destructor

❑ If the Base destructor is not virtual, only the Base
destructor is invoked

❑ This leaves Derived members, not part of Base, in
memory

virtual_functions_demo_3.cpp

//illustrate covariant return type

Covariant return type

Covariant Return type Motivation
class Base {

public:
virtual Base * clone() const {

return new Base(*this);

}

};

class Derived : public Base {

public:

virtual Base * clone() const override {

return new Derived(*this);

}

};

Derived *d1 = new Derived();

Base * b = d1->clone();

Derived *d2 = dynamic_cast<Derived *>(b);

d2->Derived::OtherFunc();

❑ Base class defines a virtual
member function Base::clone
that returns a copy of the
given object.

❑ Derived class overrides this
function and ends up returning
a pointer of type Base class
even though what we really
want is a Derived*.

❑ C++ allows the derived type to
implement a overridden
function with return type that
is a sub-type of the return
type of the base function.

Covariant Return Types

class Base {

public:

virtual Base * clone() const {

return new Base(*this);

}

};

class Derived : public Base {

public:

virtual Derived * clone() const override
{

return new Derived(*this);

}

};

Derived *d1 = new Derived();

Derived *d2 = d1->clone();

d2->Derived::OtherFunc();

❑ Covariant Return Types
help avoid awkward
dynamic_cast.

❑ This is one reason that a
C++ function signature
does not include the
return type.

❑ The Derived::clone()
function overrides the
Base::clone() function
even though return types
are different.

❑ Simple virtual function

◼ Inheriting it implies → inherit both interface and a
default implementation.

◼ In your derive class, you need to support this
function, but if you don’t want to write your own,
you can fall back on the default version in base
class.

◼ Danger: if a derived class might not want to use the
default implementation from the base class, but
forget to define its own, then it will use the
inherited one (which is not what it wants!)

Design suggestions

❑ Pure virtual function

◼ Inheriting it implies → inherit interface only

◼ In your derived class (that can be
instantiated), you must define it, but the
base class has no idea how you are going to
implement it.

◼ The danger mentioned for the simple virtual
function does not exist.

Design suggestions

❑ Regular non-virtual
function

◼ Don’t redefine an
inherited non-
virtual function
(even though
allowed by C++).
Make sure the “is-
a” relationship
always true for
public inheritance.

Design suggestions
class B

{ public:

void fun1();

}

class D: public B

{public: void fun1(//different implementation);}

//inconsistent, confusing behavior.

//same object D, but different fun1() is called,

// when D is pointed to by different ptr types

// (also true if references used)

D d;

B *pB=&d;

pB ->fun1();// B::fun1() is called!!

D *pD=&d;

pD ->fun1();//D::fun1() is called!!

Interface Class

❑ An interface class is a class that …
◼ has no members variables,

◼ all of the functions are pure virtual!

❑ The class is only an interface definition, no
actual implementation.

❑ Why use interface?
◼ When you want to define the functionality that

derived classes must implement, but leave the
details of how the derived class implements that
functionality entirely up to the derived class.

virtual_functions_demo_6.cpp

