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Q1.  In the reading, it is mentioned that disabling interrupts frequently can affect the 

system's clock. Explain why this can occur? (5pts)  

 

 The system clock is most often implemented as a programmable interval timer 

that periodically interrupts the CPU. In response, the timer interrupt service routine 

increments the clock on tick before doing some housekeeping. Disabling interrupts would 

to often prevent the timer interrupt from happening and would cause the clock to miss 

updates. 

 

        How can such effects be minimized? (5 pts) 

 

 Disabling interrupts less frequently, and for shorter durations can avoid these 

consequences. 

 

        Under which conditions should interrupts be ignored? (5 pts) 

 

 Interrupts should be ignored when servicing another interrupt or when interrupts 

are disabled, or during atomic operations. In some cases, lock arbitration is 

uninterruptible. (if two out of 3, take -1) 
 
Q2.  What is the meaning of the term busy wait? (5 pts) What other kinds of waiting is 

there in an operating system? (5 pts)  

 

 Waiting for a condition in a while loop, consuming CPU cycles while waiting for 

the condition to be satisfied. 

 A blocking call that context switches the process out onto a waiting state queue 

and places the process in the ready queue once the wait condition is satisfied. 

 

        Explain how busy waiting can be avoided altogether? (5 pts) Under what conditions 

is it OK to use a busy wait? (5 pts) 

 

 Busy wait can be avoided using a system call that blocks the thread until a condition 

is met such as a mutex or semaphore.  In a single processor system, it possible to 

protect 

       critical regions by simply turning off (disabling) interrupts, and this is more efficient 

than spinlocks, cutting down on context switching. (5 pts)  



       In a multiprocessor system, it’s difficult to coordinate all the processors turning off 

interrupts at the same time, so spinlocks are a reasonable alternative for small 

critical sections (5 pts) 

 

 

Q3.  Show that, if the wait() and signal() semaphore operations are not executed 

atomically, then mutual exclusion may be violated. (5 pts) 

wait() is defined as: 
wait(S) { 

  while (S <= 0) // if 0 first waiter, <0 means queue 

      ; // busy wait 

  S--; 

} 

If wait() is not atomic, then more than 1 thread/process can see S becoming 

greater than 0, none will have to wait in the loop, all will get access to the critical section 

which defies mutual exclusion. Even a race condition in S-- can cause S to not be 

decremented properly for every access, leaving S one more than it should be. (-1 for 

missing the second part) 

 
signal() is defined as: 

signal(S) { 

   S++; 

} 

The same kind of race condition on S++ can happen where more than 1 

thread/process can increment S at the same time resulting in S being less than it should 

be, This could causing starvation of subsequent threads/processes. 

 

Illustrate how a binary semaphore can be used to implement mutual exclusion 

among n threads. Assume that the threads are running the same code with the same 

critical section. (5 pts) 

 
do { 

     wait(mutex); 

         /* critical section */ 

     signal(mutex); 

        /* remainder section */ 

} while (true); 

This would ensure mutual exclusion 

 

No, deadlock could not happen because there is only one resource under contention, and 

it is accessed by one thread at a time. (take -2) 

 

Yes, starvation can happen because a thread may never be removed from the semaphore 

queue in which it is suspended, usually because of the scheduler. A round-robin 

schedular would not result in starvation. (take -2 or 3 depending on explanation) 

 



Yes, priority inversion can occur because a lower-priority thread can hold a lock needed 

by a higher-priority thread, but the low priority thread would never run. (take -2 or 3) 

 

Q4.  Explain how the synchronization works using semaphores in the Readers-Writers 

Problem 1 where Readers are prioritized (15 pts)    (take -4 to -8 unless not answered) 

 

 In Readers-Writers Problem 1, Readers are prioritized. A mutex protects entry 

into the critical section. Only one writer can be in the critical section at a time, but 

multiple readers are allowed. 

 When a reader enters the critical section, the reader-writer Semaphore is locked. 

A counter keeps track of the number of subsequent readers in the critical section. Writers 

are blocked, possibly indefinitely (starvation), while readers are in the critical section. A 

blocked writer will continue to be blocked until there are no readers in the critical 

section. As readers leave the critical section, the counter is decremented until it reaches 

0, at that point the reader-writer semaphore is released and the writer can proceed. The 

writer then locks the reader-writer semaphore given the critical section over exclusively 

to the writer. If readers come, then subsequent writers will be locked out and if a writer 

comes, before the next reader, the writer will get the lock. Readers will always get the 

next lock before a writer. 

 

        Explain how the synchronization changes in the Readers-Writers Problem 2 where 

Writers are prioritized. (15 pts) )    (take -4 to -8 unless not answered) 

 

 In Readers-Writers Problem 2, Writers are prioritized. A mutex protects entry 

into the critical section. Only one writer can be in the critical section at a time, but 

multiple readers are allowed. 

 A read semaphore controls whether readers can enter the critical section. When a 

reader wants to enter the critical section, if there are no writers waiting, the reader can 

enter the critical section.  

 If a writer is waiting, all subsequent readers block on the read semaphore. As 

readers finish, the count is decremented. When the count reaches 0, the read-write 

semaphore is released allowing the writer to enter the critical region. When the writer 

finishes, if there are writers and readers waiting, the writer will be granter the read-write 

semaphore and the readers will continue to be blocked, possibly indefinitely (starvation). 

There are two controlling semaphores: reader-writer and read as well as a mutex 

protecting the critical regions. 

 

Q5.  Dining Philosophers problem in class uses a monitor. Implement the same solution 

using semaphores (20 pts) Hint: Use a class 

 

 
class DiningPhilosophers 

{  

   enum { THINKING; HUNGRY, EATING) state [5] ; 

   condition self[5]; // struct condition { semaphore x_sem; int 

x_count; } or two parallel arrays, take –1 

   semaphore mutex; 



   semaphore next; 

   int next_count = 0; 

 

   public void pickup (int i) {  

      wait(mutex); 

      state[i] = HUNGRY; 

      test(i); // Tests if chopsticks are available 

      // If philosopher not eating, wait for chopsticks. 

      if (state[i] != EATING) wait(self[i]); // leave it if 

self[i].wait() 

      if (next_count > 0) 

         signal(next);   // Release a thread waiting in monitor 

      else 

         signal(mutex);  // Unlock monitor since no one waiting. 

   } 

  

   public void putdown (int i) {  

   wait(mutex); 

      state[i] = THINKING; 

       // test left and right neighbors want to eat. 

  test((i + 4) % 5); 

  test((i + 1) % 5); 

      if (next_count > 0) 

         signal(next);   // Release a thread waiting in monitor. 

      else 

         signal(mutex);  // Unlock monitor since no one waiting 

   } 

 

   // Important that this method can only be called from 

pickup/putdown. 

   private void test (int i) { // if not private, take -1 

      // both chopsticks must be available 

      if ((state[(i + 4) % 5] != EATING) && 

     (state[i] == HUNGRY) && 

     (state[(i + 1) % 5] != EATING) ) {  

      state[i] = EATING ; // Gets chopsticks 

          signal(self[i]); // leave it if self[i].signal() 

  } 

   } 

 

   private signal(condition need) // take -2 if not implemented 

   { 

      if (need.x_count > 0) { // if any condition waiting 

          next_count++;       // keep track of next queue size 

          signal(need.x_sem); // release condition thread to go 

          wait(next);         // stop this thread, wait next 

          next_count--;       // released from next queue, 1 less 

      } 

   } 

 

   private wait(condition need) // take -2 if not implemented 

   { 



      need.x_count++;     // May end up waiting 

 if (next_count > 0) // Something waiting?  

    signal(next);    // signal next P to go 

 else                // nothing waiting. 

    signal(mutex);   // open monitor 

 wait(need.x_sem);        // wait for x_sem 

 need.x_count--;    

   } 

        

   DiniingPhilosophers() {  

  for (int i = 0; i < 5; i++) { 

         state[i] = THINKING; 

     init(self[i].x_sem);   // take –1 if left out 

     self[i].x_count = 0; 

       } 

       init(mutex, 0, 1); 

       init(next, 0, 0);  // Counting semaphore 

  

   } 

 

   class condition { 

      int x_count = 0; 

      semaphore x_sem; 

 

       WAIT(){ 

          x_count++;          // waiting on condition 

 

          if (next_count > 0) // if any waiting inside the monitor 

             signal(next);    // let the waiter use the monitor 

          else                // none waiting in monitor 

             signal(mutex);   // open it up 

 

          wait(x_sem);        // Now wait on the x.condition… 

          x_count--;          // condition happened. 

       } 

 

       SIGNAL() { 

          if (x_count > 0) { // if any waiting on x.condition 

            next_count++;    // increment the count waiting on the 

monitor 

            signal(x_sem);   // signal the condition, which gives away 

monitor 

            wait(next);      // wait inside the monitor 

            next_count--;    // no longer waiting. 

          } 

       } 

 

      condition() } 

         sem_init(x_sem, 0, 1); 

      } 

   } 

} 

 



 

Accepted the following: 
 
monitor DiningPhilosophers 

{  

   enum { THINKING; HUNGRY, EATING) state [5] ; 

   semaphore self [5]; 

   semaphore mutex; 

 

   void pickup (int i) { 

            wait(mutex);  

        state[i] = HUNGRY; 

        test(i); // Tests if chopsticks are available 

        if (state[i] != EATING) 

   {signal(mutex); wait(self[i]);} 

            else signal(mutex); 

   } 

  

   void putdown (int i) {  

             wait(mutex); 

        state[i] = THINKING; 

                   // test left and right neighbors 

         test((i + 4) % 5); 

         test((i + 1) % 5); 

             signal(mutex); 

   } 

 

   private void test (int i) { 

     // both chopsticks must be available 

         if ((state[(i + 4) % 5] != EATING) && 

         (state[i] == HUNGRY) && 

         (state[(i + 1) % 5] != EATING) ) {  

              state[i] = EATING ; // Gets chopsticks 

         signal(self[i]); 

         } 

   } 

 

   initialization_code() {  

   for (int i = 0; i < 5; i++) { 

     state[i] = THINKING; 

         sem_init(self[i], 0, 0); 

       } 

       sem_init(mutex, 0, 1); 

   } 

} 

     


