
CISC 3595 Operating Systems

Fall 2022

Assignment #4

Out 11/04; back 11/18

Q1. In the reading, it is mentioned that disabling interrupts frequently can affect the

system's clock. Explain why this can occur? (5pts)

 The system clock is most often implemented as a programmable interval timer

that periodically interrupts the CPU. In response, the timer interrupt service routine

increments the clock on tick before doing some housekeeping. Disabling interrupts would

to often prevent the timer interrupt from happening and would cause the clock to miss

updates.

 How can such effects be minimized? (5 pts)

 Disabling interrupts less frequently, and for shorter durations can avoid these

consequences.

 Under which conditions should interrupts be ignored? (5 pts)

 Interrupts should be ignored when servicing another interrupt or when interrupts

are disabled, or during atomic operations. In some cases, lock arbitration is

uninterruptible. (if two out of 3, take -1)

Q2. What is the meaning of the term busy wait? (5 pts) What other kinds of waiting is

there in an operating system? (5 pts)

 Waiting for a condition in a while loop, consuming CPU cycles while waiting for

the condition to be satisfied.

 A blocking call that context switches the process out onto a waiting state queue

and places the process in the ready queue once the wait condition is satisfied.

 Explain how busy waiting can be avoided altogether? (5 pts) Under what conditions

is it OK to use a busy wait? (5 pts)

 Busy wait can be avoided using a system call that blocks the thread until a condition

is met such as a mutex or semaphore. In a single processor system, it possible to

protect

 critical regions by simply turning off (disabling) interrupts, and this is more efficient

than spinlocks, cutting down on context switching. (5 pts)

 In a multiprocessor system, it’s difficult to coordinate all the processors turning off

interrupts at the same time, so spinlocks are a reasonable alternative for small

critical sections (5 pts)

Q3. Show that, if the wait() and signal() semaphore operations are not executed

atomically, then mutual exclusion may be violated. (5 pts)

wait() is defined as:
wait(S) {

 while (S <= 0) // if 0 first waiter, <0 means queue

 ; // busy wait

 S--;

}

If wait() is not atomic, then more than 1 thread/process can see S becoming

greater than 0, none will have to wait in the loop, all will get access to the critical section

which defies mutual exclusion. Even a race condition in S-- can cause S to not be

decremented properly for every access, leaving S one more than it should be. (-1 for

missing the second part)

signal() is defined as:

signal(S) {

 S++;

}

The same kind of race condition on S++ can happen where more than 1

thread/process can increment S at the same time resulting in S being less than it should

be, This could causing starvation of subsequent threads/processes.

Illustrate how a binary semaphore can be used to implement mutual exclusion

among n threads. Assume that the threads are running the same code with the same

critical section. (5 pts)

do {

 wait(mutex);

 /* critical section */

 signal(mutex);

 /* remainder section */

} while (true);

This would ensure mutual exclusion

No, deadlock could not happen because there is only one resource under contention, and

it is accessed by one thread at a time. (take -2)

Yes, starvation can happen because a thread may never be removed from the semaphore

queue in which it is suspended, usually because of the scheduler. A round-robin

schedular would not result in starvation. (take -2 or 3 depending on explanation)

Yes, priority inversion can occur because a lower-priority thread can hold a lock needed

by a higher-priority thread, but the low priority thread would never run. (take -2 or 3)

Q4. Explain how the synchronization works using semaphores in the Readers-Writers

Problem 1 where Readers are prioritized (15 pts) (take -4 to -8 unless not answered)

 In Readers-Writers Problem 1, Readers are prioritized. A mutex protects entry

into the critical section. Only one writer can be in the critical section at a time, but

multiple readers are allowed.

 When a reader enters the critical section, the reader-writer Semaphore is locked.

A counter keeps track of the number of subsequent readers in the critical section. Writers

are blocked, possibly indefinitely (starvation), while readers are in the critical section. A

blocked writer will continue to be blocked until there are no readers in the critical

section. As readers leave the critical section, the counter is decremented until it reaches

0, at that point the reader-writer semaphore is released and the writer can proceed. The

writer then locks the reader-writer semaphore given the critical section over exclusively

to the writer. If readers come, then subsequent writers will be locked out and if a writer

comes, before the next reader, the writer will get the lock. Readers will always get the

next lock before a writer.

 Explain how the synchronization changes in the Readers-Writers Problem 2 where

Writers are prioritized. (15 pts)) (take -4 to -8 unless not answered)

 In Readers-Writers Problem 2, Writers are prioritized. A mutex protects entry

into the critical section. Only one writer can be in the critical section at a time, but

multiple readers are allowed.

 A read semaphore controls whether readers can enter the critical section. When a

reader wants to enter the critical section, if there are no writers waiting, the reader can

enter the critical section.

 If a writer is waiting, all subsequent readers block on the read semaphore. As

readers finish, the count is decremented. When the count reaches 0, the read-write

semaphore is released allowing the writer to enter the critical region. When the writer

finishes, if there are writers and readers waiting, the writer will be granter the read-write

semaphore and the readers will continue to be blocked, possibly indefinitely (starvation).

There are two controlling semaphores: reader-writer and read as well as a mutex

protecting the critical regions.

Q5. Dining Philosophers problem in class uses a monitor. Implement the same solution

using semaphores (20 pts) Hint: Use a class

class DiningPhilosophers

{

 enum { THINKING; HUNGRY, EATING) state [5] ;

 condition self[5]; // struct condition { semaphore x_sem; int

x_count; } or two parallel arrays, take –1

 semaphore mutex;

 semaphore next;

 int next_count = 0;

 public void pickup (int i) {

 wait(mutex);

 state[i] = HUNGRY;

 test(i); // Tests if chopsticks are available

 // If philosopher not eating, wait for chopsticks.

 if (state[i] != EATING) wait(self[i]); // leave it if

self[i].wait()

 if (next_count > 0)

 signal(next); // Release a thread waiting in monitor

 else

 signal(mutex); // Unlock monitor since no one waiting.

 }

 public void putdown (int i) {

 wait(mutex);

 state[i] = THINKING;

 // test left and right neighbors want to eat.

 test((i + 4) % 5);

 test((i + 1) % 5);

 if (next_count > 0)

 signal(next); // Release a thread waiting in monitor.

 else

 signal(mutex); // Unlock monitor since no one waiting

 }

 // Important that this method can only be called from

pickup/putdown.

 private void test (int i) { // if not private, take -1

 // both chopsticks must be available

 if ((state[(i + 4) % 5] != EATING) &&

 (state[i] == HUNGRY) &&

 (state[(i + 1) % 5] != EATING)) {

 state[i] = EATING ; // Gets chopsticks

 signal(self[i]); // leave it if self[i].signal()

 }

 }

 private signal(condition need) // take -2 if not implemented

 {

 if (need.x_count > 0) { // if any condition waiting

 next_count++; // keep track of next queue size

 signal(need.x_sem); // release condition thread to go

 wait(next); // stop this thread, wait next

 next_count--; // released from next queue, 1 less

 }

 }

 private wait(condition need) // take -2 if not implemented

 {

 need.x_count++; // May end up waiting

 if (next_count > 0) // Something waiting?

 signal(next); // signal next P to go

 else // nothing waiting.

 signal(mutex); // open monitor

 wait(need.x_sem); // wait for x_sem

 need.x_count--;

 }

 DiniingPhilosophers() {

 for (int i = 0; i < 5; i++) {

 state[i] = THINKING;

 init(self[i].x_sem); // take –1 if left out

 self[i].x_count = 0;

 }

 init(mutex, 0, 1);

 init(next, 0, 0); // Counting semaphore

 }

 class condition {

 int x_count = 0;

 semaphore x_sem;

 WAIT(){

 x_count++; // waiting on condition

 if (next_count > 0) // if any waiting inside the monitor

 signal(next); // let the waiter use the monitor

 else // none waiting in monitor

 signal(mutex); // open it up

 wait(x_sem); // Now wait on the x.condition…

 x_count--; // condition happened.

 }

 SIGNAL() {

 if (x_count > 0) { // if any waiting on x.condition

 next_count++; // increment the count waiting on the

monitor

 signal(x_sem); // signal the condition, which gives away

monitor

 wait(next); // wait inside the monitor

 next_count--; // no longer waiting.

 }

 }

 condition() }

 sem_init(x_sem, 0, 1);

 }

 }

}

Accepted the following:

monitor DiningPhilosophers

{

 enum { THINKING; HUNGRY, EATING) state [5] ;

 semaphore self [5];

 semaphore mutex;

 void pickup (int i) {

 wait(mutex);

 state[i] = HUNGRY;

 test(i); // Tests if chopsticks are available

 if (state[i] != EATING)

 {signal(mutex); wait(self[i]);}

 else signal(mutex);

 }

 void putdown (int i) {

 wait(mutex);

 state[i] = THINKING;

 // test left and right neighbors

 test((i + 4) % 5);

 test((i + 1) % 5);

 signal(mutex);

 }

 private void test (int i) {

 // both chopsticks must be available

 if ((state[(i + 4) % 5] != EATING) &&

 (state[i] == HUNGRY) &&

 (state[(i + 1) % 5] != EATING)) {

 state[i] = EATING ; // Gets chopsticks

 signal(self[i]);

 }

 }

 initialization_code() {

 for (int i = 0; i < 5; i++) {

 state[i] = THINKING;

 sem_init(self[i], 0, 0);

 }

 sem_init(mutex, 0, 1);

 }

}

