
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: Process

Synchronization

5.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: Process Synchronization

Background

The Critical-Section Problem

Peterson’s Solution

Synchronization Hardware

Mutex Locks

Semaphores

Classic Problems of Synchronization

Monitors

Synchronization Examples

Alternative Approaches

5.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

Describe the critical-section problem and illustrate a race

condition

Illustrate hardware solutions to the critical-section problem

using memory barriers, compare-and-swap operations, and

atomic variables

Demonstrate how mutex locks, semaphores, monitors, and

condition variables can be used to solve the critical section

problem

Evaluate tools that solve the critical-section problem in low-.

Moderate-, and high-contention scenarios

5.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

Processes can execute concurrently

May be interrupted at any time, partially completing

execution

Concurrent access to shared data may result in data

inconsistency

Maintaining data consistency requires mechanisms to ensure

the orderly execution of cooperating processes

Illustration of the problem:

Suppose that we wanted to provide a solution to the

consumer-producer problem that fills all the buffers. We can
do so by having an integer counter that keeps track of the

number of full buffers. Initially, counter is set to 0. It is

incremented by the producer after it produces a new buffer

and is decremented by the consumer after it consumes a

buffer.

5.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What’s the problem?

Suppose that we wanted to provide a solution to the consumer-producer

problem that fills all the buffers.

We can do so by having a shared counter that keeps track of the number

of full buffers.

Initially, counter is set to 0.

It is incremented by the producer after it produces a new buffer

It is decremented by the consumer after it consumes a buffer.

If this is written in C++, what is the code to increment/decrement the

counter?

5.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer

while (true) {

/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

counter++;

in = (in + 1) % BUFFER_SIZE;

}

5.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

5.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition

counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

mov ecx, [counter]
inc ecx
mov [counter], ecx

mov ecx, [counter]
dec ecx
mov [counter], ecx

5.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section

Any code segment that manipulates a shared variable should be part of a

critical section.

In the producer-consumer example, counter should be

incremented/decremented in a critical section.

A critical section is a section that must be synchronized for multiple

processes or threads because lack of synchronization can result in errors.

The simplest case is shared variables, but other shared resources need to

be synchronized as well. Often the code to allocate / return the resource is

part of a critical section.

5.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition

Processes P0 and P1 are creating child process using fork()system call

Race condition on kernel variable next_available_pid which represents

the next available process identifier (pid)

Unless there is mutual exclusion, the same pid could be assigned to two

different processes!

Access to next_available_pid must be an atomic operation.

5.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

Consider system of n processes {p0, p1, … pn-1}

Each process has critical section segment of code

Process may be changing common variables, updating

table, writing file, etc

When one process in critical section, no other may be in its

critical section

Critical section problem is to design protocol to solve this

Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section,

then remainder section

5.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section

General structure of process Pi

5.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical

section, then no other processes can be executing in their

critical sections

2. Progress - If no process is executing in its critical section and

there exist some processes that wish to enter their critical

section, then the selection of the processes that will enter the

critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of

times that other processes are allowed to enter their critical

sections after a process has made a request to enter its critical

section and before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the n

processes

5.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution Synonyms

Mutual Exclusion

Mutual Exclusion guarantees that results are correct and not corrupted.

Each process has access to the critical region and is the only process

that has access at that time

Deadlock happens when one or more processes can’t make progress.

Deadlock generally involves two or more processes vying for the same

resources where Pi has Ri but needs Rj and Pj has Rj but needs Ri.

Deadlock avoidance guarantees that every process makes progress

and there is no process stuck waiting on a resource held by another

process that is also waiting on a resource it can’t get.

Starvation is when a process never gets a chance to run. Waiting is

unbounded.

Usually, starvation is the result of policy such as priority scheduling.

As long as every process gets a chance to run, starvation is avoided.

5.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical-Section Handling in OS

Two approaches depending on if kernel is preemptive or non-

preemptive

Preemptive – allows preemption of process when running

in kernel mode. Hard one!!

Non-preemptive – runs until exits kernel mode, blocks, or

voluntarily yields CPU

Essentially free of race conditions in kernel mode

5.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {

while (turn == j); // In Pj while (turn == i);

critical section

turn = j;

remainder section

} while (true);

Reasons for failure:

Ensures Mutual Exclusion and bounded waiting (P0 and P1 alternate access).

If P0 takes an unduly long time in its remainder section, P1 never gets into the

critical section. Progress is not made for P1 because P0 never sets turn = I;

5.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {

flag[j] = TRUE; // In Pj, flag[i] = TRUE;

while (flag[i]); // while (flag[j]);

critical section

flag[j] = FALSE;

remainder section

} while (true);

Reasons for failure:

Satisfies Mutual Exclusion but not bounded waiting or progress.

Pi sets flag[j] = TRUE; // preempted

Pj sets flag[j] = TRUE; and enters loop while(flag[j]);

Pi enters while(flag[i]);

Neither can progress.

5.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {

while (flag[i]);

flag[j] = TRUE;

critical section

flag[j] = FALSE;

remainder section

} while (true);

Reasons for failure:

Satisfies progress but not bounded waiting. Mutual Exclusion problem

Pj sets flag[i] = FALSE; remainder section gets preempted

Pi leaves loop gets preempted

Pj sets flag[i] = TRUE; in critical section gets preempted

Pi sets flag[j] = TRUE; in critical section at the same time.

5.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

Good algorithmic description of solving the problem

Two process solution

Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted

The two processes share two variables:

int turn;

Boolean flag[2]

The variable turn indicates whose turn it is to enter the critical
section

The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process Pi is

ready!

NEED BOTH THE turn and flag[2] to guarantee Mutual
Exclusion, Bounded waiting, Progress.

5.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Algorithm

Process Pi

do {

flag[i] = true; // intent

turn = j; // giving away

while (flag[j] && turn==j)

; // wait for either

critical section

flag[i] = false;

remainder section

} while (true);

Process Pj

do {

flag[j] = true;

turn = i;

while (flag[i] && turn==i)

;

critical section

flag[j] = false;

remainder section

} while (true);

5.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {

flag[i] = true; // i is ready

turn = j; // Give Pj a chance first

while (flag[j] && turn == j);

critical section

flag[i] = false;

remainder section

} while (true);

Peterson’s says, Pi is ready to enter critical section. Let Pj go first.

If Pj is waiting, then flag[i] == true but turn != i because turn was just set to j..

therefore, Pj proceeds out of loop to critical section and Pi is in the loop.

if Pj is not waiting, then flag[j] == false, so Pi can proceed into the critical

section.

if Pj is in the critical section, then Pi waits because flag[j] == true (Pj set it) and

turn == j (Pi set it). When Pj is done, flag[j] == false, so Pi can proceed.

5.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

Although useful for demonstrating an algorithm, Peterson’s Solution is not

guaranteed to work on modern architectures.

Understanding why it will not work is also useful for better understanding

race conditions.

To improve performance, processors and/or compilers may reorder

operations that have no dependencies.

For single-threaded this is ok as the result will always be the same.

For multithreaded the reordering may produce inconsistent or unexpected

results!

5.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

100 is the expected output. Thread 1 has print x;

However, the operations for Thread 2 may be reordered:
flag[1] = true;

x = 100;

If this occurs, the output may be 0!

The effects of instruction reordering in Peterson’s Solution

This allows both processes to be in their critical section at the same time!

This can happen merely from a race condition because setting turn and flag

must be atomic or it doesn’t work.

5.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A
.
F
r
a
n
k
-
P
.
W
e
i
s
b
e
r
g

Bakery Algorithm (1)

Critical Section for n processes:

Before entering its critical section, a process receives a number

(like in a bakery). Holder of the smallest number enters the

critical section.

The numbering scheme here always generates numbers in

increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...

If processes Pi and Pj receive the same number, if i < j,

then Pi is served first; else Pj is served first (PID

assumed unique).

5.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A

.

F

r

a

n

k

-

P

.

W

e

i

s

b

e

r

g

Bakery Algorithm (2)

Choosing a number (take a ticket):

Number[i] = 1 + max (a0,…, an-1) is a number k, such that k ai

for i = 0, …, n – 1 where (a0,…, an-1) is held by another thread.

Notation for lexicographical order (ticket #, PID #)

(a,b) < (c,d) if a < c or if a == c and b < d

Shared data:

boolean choosing[n];

int number[n];

Data structures are initialized to FALSE and 0, respectively.

To enter critical section: choose a ticket, use the PID to resolve ties.

resource goes to next waiting process with lowest ticket number or

(lowest ticket number, lowest PID).

5.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

Many systems provide hardware support for implementing the
critical section code.

Uniprocessors – could disable interrupts

Currently running code would execute without preemption

Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

We will look at three forms of hardware support:

1. Memory barriers

2. Hardware instructions

3. Atomic variables

5.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory Barriers

Memory models are the memory guarantees a computer architecture

makes to application programs.

Memory models may be either:

➢ Strongly ordered – where a memory modification of one processor is

immediately visible to all other processors.

➢ Weakly ordered – where a memory modification of one processor may

not be immediately visible to all other processors.

A memory barrier is an instruction that forces any change in memory to be

propagated (made visible) to all other processors.

A fence that states all memory accesses before the barrier be complete

so that all accesses after the barrier have the order preserved.

Needed when accessing shared variables on current multicore systems

5.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory Barrier

We could add a memory barrier to the following instructions to ensure

Thread 1 outputs 100:

Thread 1 now performs

while (!flag)

memory_barrier(); // Make sure while before print x

print x

Thread 2 now performs

x = 100;

memory_barrier(); //Make sure x = 100 before flag = TRUE

flag = true

5.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hardware Instructions

Special hardware instructions that allow us to either test-and-modify the

content of a word, or two swap the contents of two words atomically

(uninterruptibly.)

Test-and-Set instruction

Compare-and-Swap instruction

5.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

Many systems provide hardware support for implementing the
critical section code.

All solutions below based on idea of locking

Protecting critical regions via locks

Uniprocessors – could disable interrupts

Currently running code would execute without preemption

Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible

Either test memory word and set value

Or swap contents of two memory words

Test-and-set / Swap(xchg on Intel) are Atomic operations.

5.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to “TRUE”.

4. When target == FALSE, target is set to TRUE but FALSE is
returned, so loop is exited.

5. When target == TRUE, target is set to TRUE, but TRUE is returned,
so continue to loop.

5.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using test_and_set()

Shared Boolean variable lock, initialized to FALSE

Solution:

do {

while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

Think of test_and_set as an atomic version of

i++ except it can only ever be 0 or 1. When

leaving the critical section, lock is reset.

5.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Test and Set Instruction

Mutual exclusion is preserved:

if Pi enters the CS, the other Pj are busy waiting

• Problem: still using busy waiting

• When Pi exits CS, the selection of the Pj who will enter CS is arbitrary: no

bounded waiting. Hence starvation is possible

• Processors (ex: Pentium) often provide an atomic xchg(a,b) instruction

that swaps the content of a and b.

• But xchg(a,b) suffers from the same drawbacks as test-and-set

5.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

compare_and_swap Instruction

Definition:

int compare _and_swap(int *value, int expected, int new_value) {

int temp = *value;

// if *value is FALSE it is unlocked, set to locked

if (*value == expected) // expected = 0; new_value = 1

*value = new_value;

return temp; // return unlocked

}

1. Executed atomically

2. Returns the original value of passed parameter “value”

3. Set the variable “value” the value of the passed parameter “new_value”
but only if “value” ==“expected”. That is, the swap takes place only under
this condition.

5.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using compare_and_swap

Shared integer “lock” initialized to 0;

When lock is 0, lock == expected so 0 is returned but lock is 1

Loops while lock == 1, when another process exits, sets lock = 0

Exits loop when lock == 0.

Solution:

do {

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

} while (true);

5.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

5.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

do {

waiting[i] = true; // i wants to enter CS

key = true; // assume we are locked out

while (waiting[i] && key) // busy wait for lock

key = test_and_set(&lock);

waiting[i] = false; // i no longer waiting, in CS

/* critical section */

j = (i + 1) % n; // select next process j

while ((j != i) && !waiting[j])

j = (j + 1) % n; // does this j want to be next

if (j == i) // no other process waiting

lock = false; // unlock

else // otherwise, give j the lock

waiting[j] = false; // let j in CS

/* remainder section */

} while (true);

Bounded-waiting Mutual Exclusion with test_and_set

Entry

Exit

5.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to “TRUE”.

4. When target == FALSE, target is set to TRUE to lock out others but
FALSE is returned, so loop is exited.

5. When target == TRUE, target is set to TRUE, but TRUE is returned,
so loop continues.

5.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-waiting Mutual Exclusion

with compare-and-swap

while (true) {

waiting[i] = true; // ENTRY SECTION

key = 1;

while (waiting[i] && key == 1) // if lock == 0

key = compare_and_swap(&lock,0,1); // set lock 1

waiting[i] = false; // but 0 returned

/* critical section */

j = (i + 1) % n; // EXIT SECTION

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = 0;

else

waiting[j] = false;

/* remainder section */

}

5.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Atomic Variables

Typically, instructions such as compare-and-swap are used as building

blocks for other synchronization tools.

One tool is an atomic variable that provides atomic (uninterruptible)

updates on basic data types such as integers and booleans.

For example, the increment() operation on the atomic variable

sequence ensures sequence is incremented without interruption:

increment(&sequence);

5.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Atomic Variables

The increment() function can be implemented as follows:

void increment(atomic_int *v)

{

int temp;

do {

temp = *v;

}

while (temp != (compare_and_swap(v,temp,temp+1));

}

int compare _and_swap(int *value, int expected, int new_value) {

int temp = *value;

// if *value is FALSE it is unlocked, set to locked

if (*value == expected) // expected = 0; new_value = 1

*value = new_value;

return temp; // return unlocked

}

5.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Machine Instruction Solution

Advantages

Applicable to any number of processes on either a single processor or

multiple processors sharing main memory

Simple and easy to verify

It can be used to support multiple critical sections; each critical section

can be defined by its own variable

Disadvantages

Busy-waiting is employed, thus while a process is waiting for access to

a critical section it continues to consume processor time

Starvation is possible when a process leaves a critical section and more

than one process is waiting

Deadlock is possible if a low priority process has the critical region and

a higher priority process needs, the higher priority process will obtain

the processor to wait for the critical region

5.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks

Previous solutions are complicated and generally inaccessible
to application programmers

OS designers build software tools to solve critical section
problem – OS ensures it is atomic.

Simplest is mutex lock

Protect a critical section by first acquire() a lock then

release() the lock

Boolean variable indicating if lock is available or not

Calls to acquire() and release() must be atomic

Usually implemented via hardware atomic instructions

But this solution requires busy waiting

This lock therefore called a spinlock

5.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

acquire() and release()

acquire() {

while (!available)

; /* busy wait */

available = false;;

}

release() {

available = true;

}

do {

acquire lock

critical section

release lock

remainder section

} while (true);

5.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore

Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

Semaphore S – integer variable

Can only be accessed via two indivisible (atomic) operations

wait() and signal()

 Originally called P() and V()

Definition of the wait() operation

wait(S) {

while (S <= 0) // 0 means first waiting, <0 means queue

; // busy wait

S--;

}

Definition of the signal() operation

signal(S) {

S++;

}

5.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Usage

Counting semaphore – integer value can range over an unrestricted

domain

Binary semaphore – integer value can range only between 0 and 1

Same as a mutex lock

Can solve various synchronization problems

Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

Can implement a counting semaphore S as a binary semaphore

If P1 gets there first, no problem.
If P2 gets there first, wait for synch.

Process P2 will busy wait for P1.

5.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation

Must guarantee that no two processes can execute the wait()

and signal() on the same semaphore at the same time

Thus, the implementation becomes the critical section problem

where the wait and signal code are placed in the critical

section

Could now have busy waiting in critical section

implementation

 But implementation code is short

 Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in critical sections

and therefore this is not a good solution

5.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation with no Busy waiting

With each semaphore there is an associated waiting queue

Each entry in a waiting queue has two data items:

value (of type integer)

pointer to next record in the list

Two operations:

block – place the process invoking the operation on the

appropriate waiting queue

wakeup – remove one of processes in the waiting queue

and place it in the ready queue

typedef struct{

int value;

struct process *list;

} semaphore;

5.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) { // Process has to wait

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) { // Processes are waiting

remove a process P from S->list;

wakeup(P);

}

}

5.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock and Starvation

Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

Starvation – indefinite blocking

A process may never be removed from the semaphore queue in which it is
suspended

Priority Inversion – Scheduling problem when lower-priority process
holds a lock needed by higher-priority process, low priority never runs

Solved via priority-inheritance protocol

5.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Inversion Mars Pathfinder

Tasks scheduled by VxWorks RTOS

Pre-emptive priority scheduling of threads.

Threads scheduled according to urgency

Meteorological data gathering task ran as an infrequent, low-priority thread

and synchronized the information bus with a mutex.

Higher priority tasks took precedence including

a medium priority, long running Communications Task,

a very high priority Bus Management Task.

Low priority Meterological Task gets preempted by Communications Task in

critical section.

Bus Management Task preempts Communication Task but cannot make

progress because mutex is held by Meteorological data gathering task.

Blocks on mutex. Communication task continues.

A watchdog timer wakes up, notices no Bus Management done, reboots all.

5.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 7: Synchronization

Problems

5.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Classical Problems of Synchronization

Classical problems used to test newly-proposed synchronization

schemes

Bounded-Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem

5.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer Problem

n buffers, each can hold one item

Semaphore mutex initialized to the value 1

Semaphore full initialized to the value 0

Semaphore empty initialized to the value n

5.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

The structure of the producer process

do {

...

/* produce an item in next_produced, see slide 6 */

wait(empty);

wait(mutex);

... Assign the line read into the shared buffer

/* add next produced to the buffer */

... And increment the shared count.4

buffer[in] = inputString;

in = (in + 1) % size;

count ++;

signal(mutex);

signal(full);

…. Fix the in index variable.

} while (true);

5.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

The structure of the consumer process

do {

wait(full);

wait(mutex);

... Grab the next line out of the shared buffer

/* remove an item from buffer to next_consumed */

/* see slide 7 */

... Decrement the shared counter

string ouput = buffer[out];

out = (out + 1) % size;

count --;

signal(mutex);

signal(empty);

... Cout the line and fix the out index

/* consume the item in next consumed */

} while (true);

5.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem

A data set is shared among a number of concurrent processes

Readers – only read the data set; they do not perform any updates

Writers – can both read and write

Problem – allow multiple readers to read at the same time

Only one single writer can access the shared data at the same time

Several variations of how readers and writers are considered – all

involve some form of priorities

Shared Data

Data set

Semaphore rw_mutex initialized to 1 controls access to write.

Semaphore mutex initialized to 1 controls access to read_count

Integer read_count initialized to 0, keeps track of readers.

5.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

The structure of a writer process

do {

wait(rw_mutex);

...

/* writing is performed */

...

signal(rw_mutex);

} while (true);

5.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

The structure of a reader process

do {

wait(mutex); // Only 1 can access read_count

read_count++;

if (read_count == 1)

wait(rw_mutex);// First reader blocks writer.

signal(mutex);

...

/* reading is performed */

...

wait(mutex);

read count--;

if (read_count == 0)

signal(rw_mutex);// No reader, unblock writer

signal(mutex);

} while (true);

5.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem Variations

First variation – no reader kept waiting unless writer has

permission to use shared object

Second variation – once writer is ready, it performs the

write ASAP

Both may have starvation leading to even more variations

Problem is solved on some systems by kernel providing

reader-writer locks

5.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

2nd Reader-Writers, Writers Priority

do { // Reader process, extra mutex

wait(read_mutex);

wait(mutex); // Only 1 can access read_count

read_count++;

if (read_count == 1)

wait(rw_mutex);// First reader blocks writer.

signal(mutex);

//signal(read_mutex); Is this necessary?

...

/* reading is performed */

...

wait(mutex);

read count--;

if (read_count == 0)

signal(rw_mutex);// No reader, unblock writer

signal(mutex);

} while (true);

5.63 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Writer Process, writer priority

do { // Writer process similar to reader, also uses extra mutex

wait(mutex); // Only 1 can access write_count

write_count++;

if (write_count == 1)

wait(read_mutex);// First writer blocks readers.

signal(mutex);

wait(rw_mutex); // A writer has access

...

/* writing is performed */

...

signal(rw_mutex);

wait(mutex);

write_count--;

if (write_count == 0)

signal(read_mutex);// No writer, unblock writer

signal(mutex);

} while (true);

5.64 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem

Philosophers spend their lives alternating thinking and eating

Don’t interact with their neighbors, occasionally try to pick up 2

chopsticks (one at a time) to eat from bowl

Need both to eat, then release both when done

In the case of 5 philosophers

Shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

5.65 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm

The structure of Philosopher i:

do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

What is the problem with this algorithm?

5.66 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm (Cont.)

Deadlock handling

Allow at most 4 philosophers to be sitting

simultaneously at the table. Leaves an extra.

Allow a philosopher to pick up the forks only if both

are available (picking must be done in a critical

section.

Use an asymmetric solution -- an odd-numbered

philosopher picks up first the left chopstick and then

the right chopstick. Even-numbered philosopher picks

up first the right chopstick and then the left chopstick.

5.67 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Problems with Semaphores

Semaphores are complicated and hard to get right.

Extremely error prone!

Incorrect use of semaphore operations:

signal (mutex) …. wait (mutex)

wait (mutex) … wait (mutex)

Omitting of wait (mutex) or signal (mutex) (or both)

Deadlock and starvation are possible.

5.68 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitors

A high-level abstraction that provides a convenient and effective
mechanism for process synchronization using mutual exclusion.

Abstract data type, internal variables only accessible by code within the
procedure

Only one process may be active within the monitor at a time.

Great for ensuring mutual exclusion.

Monitor keeps track of waiting threads/processes.

But not powerful enough to model some synchronization schemes

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }

}

}

5.69 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitors – Abstract Data Type

Has an initialization section which runs once.

Shared data that is often the reason for synchronization.

One or more operations that access the shared data.

A queue of waiting tasks (threads/processes).

A simple monitor cannot control inter-task dependencies such as

T1 must perform some operation which is required before T2 can

proceed.

5.70 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schematic view of a Monitor

5.71 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables

condition x, y;

Two operations are allowed on a condition variable:

x.wait() – a process that invokes the operation is

suspended until x.signal()

x.signal() – resumes one of processes (if any) that

invoked x.wait()

 If no x.wait() on the variable, then it has no effect on

the variable (different from semaphores)

If a thread issues x.wait() on condition x, if another thread has the

resource, then the thread blocks and is put on the queue for x.

Another thread now has access to the monitor.

5.72 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor with Condition Variables

5.73 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables Choices

If process P invokes x.signal(), and process Q is suspended in

x.wait(), what should happen next?

Both Q and P cannot execute in parallel. One must continue, but

which one?

Options include

Signal and wait – P waits, Q continues until Q either leaves the

monitor or it waits for another condition

Signal and continue – P continues until it either leaves the monitor

or it waits for another condition, Q waits for P to relinquish monitor

Both have pros and cons – language implementer can decide

Monitors implemented in Concurrent Pascal compromise

 P executing signal immediately leaves the monitor, Q is

resumed

Implemented in other languages including Mesa, C#, Java

5.74 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Solution to Dining Philosophers

Problem: Philosophers all sitting around a table with one chopstick between

each pair.

Solution is for a Philosopher to only pick up chopsticks when the two closest

chopsticks are available.

Means that the Philosophers on either side do not have the chopsticks.

Monitor is helpful because both conditions can be checked and

synchronized

A Philosopher can either be: HUNGRY, THINKING or EATING.

If a Philosopher is HUNGRY, request access to the chopsticks on either

side:

Must test if Philosophers on either side are NOT EATING.

If a Philosopher is running a function of the Monitor, that Philosopher

has exclusive access to the Monitor.

5.75 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{

enum { THINKING, HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i); // Tests if chopsticks are available

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

5.76 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Dining Philosophers (Cont.)

void test (int i) {

// both chopsticks must be available L/R

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ; // Gets chopsticks

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

5.77 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Initialization

Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

5.78 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm

The structure of Philosopher i:

do { // Can’t just put a mutex around these.

// need to test both atomically for availability

// need to be able to grab them both, if not, wait

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

What is the problem with this algorithm?

5.79 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation Using Semaphores

Variables
semaphore mutex; // (initially = 1)

semaphore next; // (initially = 0)

int next_count = 0;

Each procedure F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else

signal(mutex);

Mutual exclusion within a monitor is ensured

5.80 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation – Condition Variables

For each condition variable x, we have:

semaphore x_sem; // (initially = 0)

int x_count = 0;

Implementation Q waits for condition x, signals waiting P or leave open.

The operation x.wait can be implemented as:

x_count++; // May end up waiting

if (next_count > 0) // Something waiting?

signal(next); // signal next P to go

else // nothing waiting.

signal(mutex); // open monitor

wait(x_sem); // wait for x_sem

x_count--; // No longer waiting

5.81 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation (Cont.)

Implementation P waits when Q continues because condition x is met.

The operation x.signal can be implemented as:

if (x_count > 0) { // something waiting

next_count++; // Current may end up waiting

signal(x_sem); // Schedule next P for x_sem

wait(next); // Current now waiting

next_count--; // P released, no longer wait

}

5.82 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resuming Processes within a Monitor

If several processes queued on condition x, and x.signal()

executed, which should be resumed?

FCFS frequently not adequate

conditional-wait construct of the form x.wait(c)

Where c is priority number

Process with lowest number (highest priority) is

scheduled next

Remember to avoid priority inversion with priority

inheritance protocol. What’s this?

5.83 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process
plans to use the resource

R.acquire(t);

...

access the resurce;

...

R.release;

Where R is an instance of type ResourceAllocator

Allocate the resource to the process that requests the
shortest time.

Back to the problem where programmers have to manage
acquire and release calls which is error prone.

Single Resource allocation

5.84 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = TRUE;

}

void release() {

busy = FALSE;

x.signal();

}

initialization code() {

busy = FALSE;

}

}

5.85 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Examples

Windows

Linux

Pthreads

5.86 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Synchronization

Uses interrupt masks to protect access to global resources on

uniprocessor systems

Uses spinlocks on multiprocessor systems

Spinlocking-thread will never be preempted

Also provides dispatcher objects in user-land which may act

as mutexes, semaphores, events, and timers

Events

 An event acts much like a condition variable

Timers notify one or more thread when time expired

Dispatcher objects either signaled-state (object available)

or non-signaled state (thread will block)

5.87 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Synchronization

Linux:

Prior to kernel Version 2.6, disables interrupts to

implement short critical sections

Version 2.6 and later, fully preemptive

Linux provides:

Semaphores

atomic integers

spinlocks

reader-writer versions of both (atomic integers and

spinlocks).

On single-cpu system, spinlocks replaced by enabling and

disabling kernel preemption

5.88 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pthreads Synchronization

Pthreads API is OS-independent

It provides:

mutex locks

condition variable

Non-portable extensions include:

read-write locks

spinlocks

5.89 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Alternative Approaches

Transactional Memory

OpenMP

Functional Programming Languages

5.90 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A memory transaction is a sequence of read-write operations
to memory that are performed atomically.

void update()

{

acquire();

/* read/write memory */

release();

}

Mimics a transactional database. Keeps a log on changes that can
be either committed or roll-back depending on if the transaction
finishes. Not interrupted during atomic operation below.

void update ()

{

atomic { /* transactional */

/* read/write memory */

}

}

Transactional Memory

5.91 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Transactional Memory

Transactional memory system is responsible for guarding the memory

access.

Relieves the programmer from responsibility of complex synchronization

code with locks and semaphores.

Can be software or hardware based.

Software transactional memory compiler inserts instrumentation code

inside transaction blocks and can determine where concurrent access can

be implemented and where low-level locking is required.

No hardware support needed.

Hardware transactional memory uses hardware cache hierarchies and

cache coherency protocols to manage conflicts and involving shared data

No instrumentation needed, lower overhead than STM.

STM/HTM has been around a while, multicore processors have motivated

research into multiprocessor applications.

5.92 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

OpenMP is a set of compiler directives and API that support
parallel progamming.

void update(int value)

{

#pragma omp critical

{

count += value

}

}

The code contained within the #pragma omp critical directive
is treated as a critical section and performed atomically.

OpenMP

5.93 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Functional programming languages offer a different paradigm
than procedural languages in that they do not maintain state.

Variables are treated as immutable and cannot change state
once they have been assigned a value.

Eliminates side-effects. A function f(a) called with arg a will
always have the same result regardless of when it is called.

Lazy evaluation - synchronous mechanism in a concurrent
environment. Lightweight, easy way to create a reference to a
computation and share the results among many threads.

If multiple threads attempt to access an unevaluated
expression, one will execute it while the others block. In this
way, synchronization is built-in.

There is increasing interest in functional languages such as
Erlang and Scala for their approach in handling data races.

Haskell

Clojure

Functional Programming Languages

5.94 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Lab

Initialize three semaphores mutex, full and empty. Using the sem_init call,

set the mutex to 1, full to 0 and empty to buffer size.

The simplest implementation would have the semaphores as global

variables that can be accessed by any function. You can make the in and

out indices global, as well as the string array.

You also need a ifstream for reading the file. In both producer and

consumer, test for infile is not EOF.

while (getline(infile, next)) // this will stop on eof.

The producer will be ahead of the consumer, most likely. Leave a space

free in the buffer. It makes it easier to stop.

producer: in = (in + 1) % (size – 1); // set buffer[in], increment count

consumer: out = (out + 1) % (size – 1); // take buffer[out], decrement

Use a counter++ in producer and counter– in consumer.

If there are no remaining strings in the buffer, you want to exit the loop.

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 7

