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System Model

@ There are non-shared computer resources
= Maybe more than one instance
= Printers, Semaphores, Tape drives, CPU

# Processes need access to these resources

= Acquire resource
+ If resource is available, access is granted
+ If not available, the process is blocked

= Use resource
= Release resource

# Undesirable scenario:
= Process A acquires resource 1, and is waiting for resource 2
= Process B acquires resource 2, and is waiting for resource 1
=> Deadlock!



Example 1: Semaphores

semaphore: file_mutex = 1 /* protects file resource */
printer_mutex = 1 /* protects printer resource */
Process A code: Process B code:
{ {

/* initial compute */ /* initial compute */
P(file_mutex ) P(printer_mutex)
P(printer_mutex) P(file_mutex)

/* use both resources */ /* use both resources */
V(printer_mutex) V(file_mutex)
V(file_mutex ) V(printer_mutex)

} }



Example 2: Dining Philosophers

class Philosopher:

chopsticks[N] = [Semaphore(1),..]
\ / Def __init__(mynum)

self.id = mynum

O Def eat():
O right = (self.id+1) % N
left = (self.id-1+N) % N
while True:

— AN
O 0

# Philosophers go out for Chinese food

# They need exclusive access to two chopsticks to
eat their food )



Example 2: Dining Philosophers

class Philosopher:

chopsticks[N] = [Semaphore(1),..]
\ / Def __init__(mynum)

self.id = mynum

O Def eat():
O right = (self.id+1) % N
left = (self.id-1+N) % N
while True:

——
N P(left)
O P(right)
/ Q # om nom nom
V(right)

V(left)
# Philosophers go out for Chinese food

# They need exclusive access to two chopsticks to
eat their food >



Classic Deadlock




Four Conditions for Deadlock

Necessary conditions for deadlock to exist:
= Mutual Exclusion
+ At least one resource must be held in non-sharable mode

= Hold and wait

» There exists a process holding a resource, and waiting for
another

= No preemption
» Resources cannot be preempted

= Circular wait
» There exists a set of processes {P4, P,, ... Py}, such that
m P, is waiting for P,, P, for P5, .... and Py for P,

All four conditions must hold for deadlock to occur
(Edward Coffman, 1971)



Real World Deadlocks?

* Truck A has to wait for truck B to move

1. Mutual Exclusion
2. Hold and wait

3. No preemption
4.
D

Circular wait
eadlock? g



Real World Deadlocks?

Sl

* Gridlock

1. Mutual Exclusion
2. Hold and wait

3. No preemption
4. Circular wait
Deadlock? |




Deadlock in Real Life?

Mutual Exclusion
Hold and walit
No preemption

. Circular wait
eadlock? |

O =




Deadlock in Real Life?

#No circular wait!

#Not a deadlock!

@ At least, not as far as we
can see from the picture

@Will ultimately
resolve itself given
enough time




ife

in Real L

Deadlock
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Avoiding deadlock

®How do cars do it?
= Try not to block an intersection
= Must back up if you find yourself doing so

®Why does this work?
m 'Breaks” a wait-for relationship

» Intransigent waiting (refusing to release a

resource) is one of the four key elements of a
deadlock
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Can we fix Dining Philosophers?
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Testing for deadlock

(1) Create a Wait-For Graph
* 1 Node per Process

* 1 Edge per Waiting Process, P
(from P to the process it's waiting for)
Note: Do this in a single instant of time, not as things change

(2) Cycles in graph indicate deadlock
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Testing for cycles (= deadlock)

* Find a node with no outgoing edges

s Erase node

= Erase any edges coming into it

Intuition: This was a process waiting on nothing. It will eventually
finish, and anyone waiting on it, will no longer be waiting.

Erase whole graph < graph has no cycles
Graph remains < deadlock
This is a graph reduction algorithm.
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Graph reduction example
0

// "
° ol yd \@

This graph can be “fully reduced”, hence there was no
deadlock at the time the graph was drawn.

(Obviously, things could change later!)
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Graph reduction example
O

/ ‘
/ )
Irreducible graph ® \
@ contains a cycle

(only some processes are in the cycle)

@ represents a deadlock
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Resource waits

@ Processes usually don’t wait for each other
= They wait for resources used by other processes

s P1 needs access to the critical section of
memory P2 is using

#Can we extend our graphs to represent
resource wait?
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Resource Allocation Graphs

@ 2 kinds of nodes

* A process: P; represented as e

* A resource: R, will be represented as:
= multiple identical units of the resource
(e.g., blocks of memory) = circles in the box Rl

K
4 Edge from P;to Rg: e—»n
“P3 wants k units of Rg"
5 %
00

(default k = 1)
4 Edge from R; to Pg:
“Pg has 2 units of R5”
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Example RAG

21



Reduction rules

# Find satisfiable process P:
= available amount of resource > amount requested

@ Erase P

Intuition: Grant the request, let it run, eventually it
will release the resource

5 2 1
N —0—[1Is

# Repeat until all processes gone (yay!) or irreducible
(boo!)
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Is this graph reducible?
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Is this graph reducible?

24



Deadlock Detection Algorithm

Data structures:

n.

m.

available[1..m]:
allocation[1..n,1.m]:
request[l.n,1.m]:

number of processes

number of resource types

available[j] is #available resources of type j
current allocation of resource Rj to Pi
current demand of each Pi for each R}
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Deadlock Detection Algorithm

free[] = available[]

2. for all processes i: finish[i] = (allocation[i] == [0, O, ..., 0])

3. find a process i such that finish[i] = false and request[i] < free

N o O s

if no such i exists, goto 7
free = free + allocation[i]
finish[i] = true
goto 3

system is deadlocked iff finish[i] = false for some process i
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Example

Finished={F, F, F, F};
Free = Available = (0, O, 1);

R; R; Rs R, R, R;
P, 1 1 1 P, 3 2 1
P, 2 1 2
Ps 1 1 0
P4 1 1 1

Allocation
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Example

Finished = {F, F, T, F};

Free=(1,1,1);
Ri | Rz | Rs R, R,
P, 1 1 1 P, 3 2
P, 2 1 2 P, 2 2
P3 P,
Py 1 1 1 é

Allocation Request




Example

Finished={F,F, T, T},

Free = (2, 2, 2);
Rt | Re | Rs R« | R, | Ry
Py | 1 1 ! P, 3 2 1
P P,
P4 3

Allocation Request

29



Example

Finished={F, T, T, T}

Free = (4, 3, 4);
R R, R;
P, 1 1 1
P>
P3
P4
Allocation

Request
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Question 1 you might ask

Does order of reduction matter?
s Answer: No.

A candidate node for reduction at step i, and we

don't pick it, remains a candidate for reduction at
step i+1

Eventually—regardless of order—we’ll reduce by
every node where feasible
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Question 2 you might ask

If a system is deadlocked, could the deadlock go
away on its own?

= Answer: No, unless someone kills one of the threads
or something causes a process to release a resource

= Many real systems put time limits on “waiting”
precisely for this reason. When a process gets a
timeout exception, it gives up waiting; this can
eliminate the deadlock

= Process may be forced to terminate itself because
often, if a process can't get what it needs, there are no
other options available!
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Question 3 you might ask

Suppose a system isn’t deadlocked at time T.
Can we assume it will still be free of deadlock at
time T+17

= Answer: No, because the very next thing it might
do is to run some process that will request a
resource...

... establishing a cyclic wait
... and causing deadlock
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Dealing with Deadlocks (1)

Reactive Approaches:

s Periodically check for evidence of deadlock
+ (graph reduction algorithm)

= Need a way to recover
+ Could blue screen and reboot the computer
+ Could pick a "victim” and terminate that thread
m  Only possible in certain kinds of applications
+ Often thread “retry” from scratch

(despite drawbacks, database systems do this)
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Dealing with Deadlocks (2)

Proactive Approaches:

s Deadlock Prevention & Avoidance
* Prevent 1 of the 4 necessary conditions from arising
+ .... This will prevent deadlock from occurring
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Deadlock Prevention
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Deadlock Prevention

# Can the OS prevent deadlocks?
# Prevention: Negate one of necessary conditions

1.

Mutual exclusion:
+ Make resources sharable without locks
» Not always possible (printers, pinned memory for DMA)

Hold and wait

+ Do not hold resources when waiting for another

=> Request all resources before beginning execution

— Processes do not know what resources they will need ahead of time
— Starvation (if waiting on many popular resources)

— Low utilization (need resource only for a bit)

+ Optimization: Release all resources before requesting anything new
m Still has the last two problems
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Deadlock Prevention

@ Prevention cont'd: Negate one of necessary conditions
3.

No preemption:
+ Make resources preemptable (2 approaches)

m Preempt requesting processes’ resources if all not available
m Preempt resources of waiting processes to satisfy request

+ Good when easy to save and restore state of resource
m CPU registers, memory virtualization
Circular wait: (2 approaches)
+ Single lock for entire system? (Problems)
» Impose partial ordering on resources, request them in order
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Deadlock Prevention

# Prevention: Breaking circular wait
= Order resources (lockl, lock2, ...)
= Acquire resources in strictly increasing/decreasing order

= Intuition: Cycle requires an edge from low to high, and from high to low
numbered node, or to same node

= Ordering not always easy...

N
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Deadlock Avoidance

40



Deadlock Avoidance

@ If we have future information
s Max resource requirement of each process before they execute

# Can we guarantee that deadlocks will never occur?

# Avoidance Approach:
m Before granting resource, check if resulting state is safe
» If the state is safe = no deadlock!
s Otherwise, wait
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Safe State

# A state is said to be safe, if there exists a sequence of processes
[P, P,,..., P,] such that for each P; the resources that P; can still

request can be satisfied by the currently available resources plus the
resources held by all Py wherej <i

# State is safe because OS can definitely avoid deadlock
= by blocking any new requests until safe order is executed

# This avoids circular wait condition from ever happening
= Process waits until safe state is guaranteed
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Safe State Example

# Suppose there are 12 tape drives and three processes, p0, p1, and p2

max need  current usage could ask for

pO 10 5 5
pl 4 2 2
p2 9 2 7

3 drives remain (12 - (5+2+2))

# current state is safe because a safe sequence exists: [p1, p0, p2]
pl can complete with remaining resources
p0 can complete with remaining+p1
p2 can complete with remaining+p1+p0

@ if p2 requests 1 drive, then it must wait to avoid unsafe state.
43



Banker’s Algorithm

@ Suppose we know the “worst case” resource needs of
processes in advance

= A bit like knowing the credit limit on your credit cards. (This is
why they call it the Banker’s Algorithm)

@ Observation: Suppose we just give some process ALL the
resources it could need...
= Then it will execute to completion.
m After which it will give back the resources.

@ Like a bank: If Visa just hands you all the money your
credit lines permit, at the end of the month, you'll pay
your entire bill, right?
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Banker’s Algorithm

@ So...
m A process pre-declares its worst-case needs
= Then it asks for what it “really” needs, a little at a time
= The algorithm decides when to grant requests

@ It delays a request unless:
s It can find a sequence of processes...
= .... such that it could grant their outstanding need...
= ... SO they would terminate...
= ... letting it collect their resources...
= ... and in this way it can execute everything to completion!
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Banker’s Algorithm

@ How will it really do this?

= The algorithm will just implement the graph reduction method for
resource graphs

= Graph reduction is “like” finding a sequence of processes that can
be executed to completion

# S0: given a request
m Build a resource allocation graph assuming the request is granted
m See if it is reducible, only actually grant request if so

m Else must delay the request until someone releases some
resources, at which point can test again
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Banker’s AlgOI‘Ith m Dijkstra 1977

# Decides whether to grant a resource request.
# Data structures (similar to before):

n: # of processes

m: # of resource types

available[1..m]: available[j] is # of avail resources of type |
max[1..n,1.m]: max demand of each Pi for each Ri
allocation[1l..n,1..m]:  current allocation of resource Rj to Pi
nheed[l..n,1..m]: max # resource Rj that Pi may still request

(need = max - allocation)
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How to check safety?

free[l..m] = available /* how many resources are available */
finish[1..n] = false (for all i) /* none finished yet */

Step 1: Find a process i such that finish[i] = false and need[i] < free
If f no such i exists, go to Step 3 /* we're done */

Step 2: Found an i:
finish [i] = true
free = free + allocation [i]
go to Step 1

Step 3: The system is safe iff finish[i] = true for all i,
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Full Banker’s Algorithm

Let process i be the next process that is scheduled to run

Let request[i] be vector of # of resource Rj Process Pi wants in addition to
the resources it already has

1. If request[i]> need[i] then error (asked for too much)
2. If request[i]> available then wait (can’t supply it now)
3. Resources are currently available to satisfy the request

Let’s tentatively assume that we satisfy the request. Then we would
have:

available = available - request[i]
allocation[i] = allocation[i] + request[i]
need[i] = need[i] - request[i]

Now, check if this would leave us in a safe state:
if yes, grant the request,

. . . 49
if no, then leave the state as is and cause process to wait.



Banker’s Algorithm: Example

Allocation Max Available
A B C A B C A B C
PO 010 7 5 3 3 3 2
PIL 2 00 3 2 2
P2 3 0 2 9 0 2
P3 211 2 2 2
P4 O 0 2 4 3 3

this is a safe state:
safe sequence [P1, P3, P4, P2, PO]
Now suppose that P1 requests (1,0,2)
add it to P1’s allocation
subtract it from Available ”



Banker’s Algorithm: Example

Allocation
A B C
PO 010
P1 3 02
P2 3 0 2
P3 21 1
P4 O O 2

HANVOWN D

Max

WNONOIW
WNNDNWO

Available
A B C

2 30

This is still safe: safe seq [P1, P3, P4, PO, P2].
In this new state, P4 requests (3,3,0)
- hot enough available resources: has to wait
Now PO requests (0,2,0)
- there are enough resources, but...

51



Banker’s Algorithm: Example

Allocation Max Available
A B C A B C A B C
PO O30 7 5 3 210
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 O 0 2 4 3 3

This is unsafe state (why?)
So PO has to wait

Problems with Banker’s Algorithm? .



Problems with Bankers

#®The number of processes is fixed

#Need to know how many resources each
process Will request ahead of time
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The story so far..

# We saw that you can prevent deadlocks.

= By negating one of the four necessary conditions.
(which are..?)

#® We saw that the OS can schedule processes in a
careful way so as to avoid deadlocks.

= By preventing circular waiting to ever occur
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Deadlock Detection & Recovery

@ If neither avoidance or prevention is implemented,
deadlocks can (and will) occur.

# Coping with this requires:
m Detection: finding out if deadlock has occurred

+ Keep track of resource allocation (who has what)
+ Keep track of pending requests (who is waiting for what)

m Recovery: untangle the mess.

@ Expensive to detect, as well as recover
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When to run Detection Algorithm?

@ For every resource request?

@ For every request that cannot be immediately satisfied?
# Once every hour?

® When CPU utilization drops below 40%°?

4 Some combination of the last two?
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Deadlock Recovery

# Killing one/all deadlocked processes
= Crude, but effective
= Keep killing processes, until deadlock broken
= Repeat the entire computation

@ Preempt resource/processes until deadlock broken
= Selecting a victim (# resources held, how long executed)

= Rollback (partial or total)
= Starvation (prevent a process from being executed)
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