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Background Results: Clustering — convergence on visual properties Methods: Neuroimaging analysis
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through clustering of patches from automobile/transit images based on their corresponding % nst?mlg;tlcsgez;oo” o patehes | num patches We find correlation between unit’s and voxel’s responses to same stimuli.
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Clusters with more patches typically have smaller spread We find correlation between cluster-weighted CNN response and voxel’s
Withi t vi | ti Car responses to same stimuli.

Methods: Image patch clusters from AlexNet CNN Ithin-Set visual properties

Results: Correlation of voxels and CNN clusters
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Krizhevsky 2012, Jia 2014), trained on Image-Net (Deng 2009) _ C
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Top correlations in mid-/high-level visual cortex

AlexNet is composed of 8 layers, each layer finds patterns in outputs from previous layer cort

Many hard-to-interpret clusters
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Image patch clustering : w—] representations utilized by artificial CNN model (AlexNet) and by the brain
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