Real-time fMRI search for the visual components of

object perception Daniel D Leeds^{1,2}, John A Pyles^{2,3}, Michael J Tarr^{2,3}

¹Computer and Information Science Department, Fordham University, Bronx, NY, ²Center for the Neural Basis of Cognition, Carnegie Mellon University (CMU), Pittsburgh, PA, ³Department of Psychology, CMU

Cortical perception of complex visual properties

- The visual features encoded by mid- and high-level cortical visual regions are not obvious
- Very limited number of stimuli can be shown in neuroimaging study, compared to diversity of potentially cortically-relevant features
- We used realtime fMRI to explore cortical responses to specific features within restricted visual feature spaces for complex real-world or novel objects

Methods

- Participants shown photos of Class real-world or synthesized Fribble objects (Williams. 2000). drawn from 1 of 4 classes
- BOLD signals recorded with fast event-related design (2 sec TR, partial coverage) for 20 subjects

Class 2 Class Class 4

Class

Fribble objects

Search for preferred visual properties

- For each subject, select 4 brain regions associated with 4 stimulus classes
 - Search in class-specific feature space for stimulus most activating brain region

Example stimuli used in search for feature (center red circle) producing greatest activity

Example voxel regions studied

Realtime stimulus selection

Visual feature space

Feature spaces defined to capture visual similarities between stimuli, defined by SIFT (Lowe 2005) and defined by geometric morphs

Two dimensions of SIFT space Fribble dimensions for morph operation

Behavior of search for preferred stimuli Testing for desired performance

• Convergence: focus on stimuli producing maximal response

• **Consistency:** find similar features of interest regardless of where in space we start the search

Searches in Fribble space show above-chance consistency and convergence

Selectivity in visual feature space

COMPUTER AND INFORMATION

ICES DEPARTMEN

- o - search 1 - 🗞 - search 2 space F S 0 S3 S6 **S**8 statues statues containers

Colors

FORDHAM UNIVERSITY

THE IESUIT UNIVERSITY OF NEW YORK

Carnegie Mellon University

- · · - all notential stimuli

Shapes

Invariance across subset of dimensions

Multiple selectivities within brain region

Objects highlighted by search

Stimuli sorted by S3 cortical response magnitude

Surface and shape properties elicit marked cortical responses

Stimuli sorted by S9 cortical response magnitude

Discussion

- Multiple feature-selective centers in the 125-voxel ROI within human ventral pathway
- ROI may be selective to variable sets of features (e.g., variable number of axes in feature space)
- Realtime searches converge on preferred stimuli with limited stimulus displays
- There is room for improvement in search performance

References

M.F. Cardoso et al. The simplex-simulated annealing approach to continuous non-linear optimization. Computers and Chemical Engineering, 20(9):1065-1080, 1996

- C. Hung et ak. Medial axis shape coding in macaque inferotemporal cortex. Neuron, 74(6):1099-1113, 2012.
- E. Nowak, et al. Sampling strategies for bag-of-features image classification. In Computer Vision ECCV 2006, 2006 P. Williams and D.J. Simons. Detecting changes in novel, complex three-dimensional objects. Visual Cognition, 7:297–322, 2000.
- Y. Yamane et al. A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nature Neuroscience, 11(11):1352-1360, 2008.

Acknowledgments

NSF IGERT, R.K. Mellon Foundation, Pennsylvania Department of Health's Commonwealth Universal Research Enhancement Program. NIH EUREKA Award #1R01MH084195A01, and the Temporal Dynamic of Learning Center at UCSD (NSF Science of Learning Center #SMA-1041755)

