
Both CNNs and biological neural populations are sensitive to the position of visual 

patterns in an image. Each CNN Layer 2 kernel is applied to 169 image positions 

across a 13x13 grid. We assess the effect of image grid position on kernel-voxel 

correlations.

● Same kernels have highest correlations with S1 and S2 voxels

● Looking at kernels with strongest correlations

(8 kernels for S1, 6 for S2; near-top correlation > 0.3), 

most voxels with |r|>0.3 for at least 

1 kernel correlate with most of the 

other strong-correlation kernels too.

● For S1, only two kernels have high 

correlations with 20+ voxels where 

no other kernels correlate equally (K110, K183).

Only one kernel has a unique match for S2 (K175).

Results: Cross-subject comparisons, kernel overlaps
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47% of kernels in S1 had significant voxel 
correlations (|r|>0.3), and 28% in S2.
The number of high correlations ranged from 
1 voxel per kernel to 662 voxels per kernel. 
“Near top correlations”: For each voxel, we sort
absolute correlation values |r| for all voxels and
find the 100th largest |r| value as the “near top”

correlation. The median “near top” correlations across 256 kernels are 0.18 for 
S1 and S2.

Significant correlations were found to be both positive and negative. For a 

given kernel, high correlations with voxels typically were either all-positive or all-negative

The vast majority of high correlations 
are found in V1 and V2, 49%/43% for S1 

and 54%/41% for S2, respectively. Smaller amount 
of high correlations located in V3, and very small 
proportion in V4. 
No high correlations found outside visual areas.

Each of the 256 CNN Layer 2 kernels serve as candidate models for mid-level 
visual properties. All stimuli are divided into a 13x13 grid and a kernel response is 

computed at each position for each kernel. To test the correspondence of a candidate kernel 

to visual encoding in one cortical location (one voxel), we find the correlation 
between the kernel’s responses to the 1750 stimuli with the voxel’s 
responses to the same 1750 stimuli.
Correlations were computed separately for each image position across the 13x13 grid. 
Maximum (positive or negative) correlation across grid positions is typically reported below. 
We focus on |r|>0.3 as significant (p*≪1e-5). We also study effect of image location on 
correlation is studied. 

Methods: Voxel-model comparisons

● 25%-50% of individual Layer 2 CNN kernels can serve as models for individual voxels -
more than 50% of kernels are relatively weak biological models, despite strength of 
whole Layer 2 as model

● Strong inverse correlations for several kernels indicate voxel activities may be inhibited 
for complex kernel-relevant patterns

● Typically many single kernels each model the same voxel, indicating potential functional 
redundancy among Layer 2 kernels

● Position of image analysis affects correlations for weaker Layer 2 kernels - possible 
inflated effects of circle stimulus boundary for some supposed voxel-kernel links

Discussion

Results: Distribution of kernels-voxel correlations

Selected high correlation 

kernels (|r|>0.3), S1
Selected kernels with 

0.2<|r|<0.3, S1

Visual object perception in the human brain is understood to employ a network of brain 
regions selective for increasingly complex visual properties. Beyond simple visual properties 

in primary visual cortex (V1), the nature of more complex visual properties 
encoded in the brain is unclear.

Recent studies have illustrated the power of computer vision models, and particularly 

Convolutional Neural Networks (CNNs), to predict cortical region responses 
to visual stimuli. (Yamins 2014; Leeds 2013). However, selectivities of individual neural 

populations within each region require further study.

Building on Guclu (2015), we explore the ability of single artificial CNN “neurons” 
to model single fMRI voxel selectivities for mid-level visual properties.

Background

Stimuli and fMRI data were obtained from Kay (2008) and Naselaris (2009) 
Their methods are summarized in the first three section below:

Stimuli 
1750 grayscale images
Photographs of scenes & objects

Presentation
1s display: stimulus flashed 3 times
Every eighth trial was null

Cortical fMRI data
2 subjects. fMRI coverage of posterior cortex: ventral and dorsal visual pathways.
Voxels 2x2x2.5mm

Visual processing model
We used Caffe implementation of Convolutional Neural Network (CNN; Jia et al. 2014)
Network composed of 8 layers, each layer finds patterns in outputs from previous layer
Each layer consists of artificial neurons, or “kernels”

Each kernel (e.g., K1, K2, K3) identifies a
distinct visual pattern 
at each position in b x b grid

Methods: Data collection and model definition
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● Top-correlation kernels relatively invariant to image position for 

voxel correlation

● Lower-correlation kernels show dependence on image position
for voxel correlation strength, with strongest correlations near borders of image

● Position-based voxel correlation effects not reflect position-based changes in 

kernel responses across stimuli
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Results: Effects of kernel image-position

Maximum kernel response 

at each image position
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S2, Kernel 21, 
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kernel Corr kernel Corr

K59 0.45 K163 0.38

K163 0.43 K59 0.36

K82 0.43 K82 0.34

K183 0.40 K252 0.34

K252 0.39 K183 0.32
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