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Background Methods: Voxel-model comparisons

Results: Cross-subject comparisons, kernel overlaps

Visual object perception in the human brain is understood to employ a network of brain Each of the 256 CNN Layer 2 kernels serve as candidate models for mid-level e Same kernels have highest correlations with S1 and S2 voxels
regions selective for increasingly complex visual properties. Beyond simple visual properties visual properties. All stimuli are divided into a 13x13 grid and a kernel response is S1, # kernels with |r[>0.3  S2, # kernels with |r[>0.3
in primary visual cortex (V1), the nature of more complex visual properties computed at each position for each kernel. To test the correspondence of a candidate kernel s1 ) F D B KR R 8
encoded in the brain is unclear. to visual encoding in one cortical location (one voxel), we find the correlation Ee5r9nel (():j,g ﬁrgg' (():%g - - - - - - - - U#Of
between the kernel’s responses to the 1750 stimuli with the voxel’s K163 043 K59 0.36 kerns
Recent studies have illustrated the power of computer vision models, and particularly . . - - - - - - -
: : : : responses to the same 1750 stimuli. K82 043 K82 0.34
Con}lolutlo.nal l\.leural Networks (CNNs), to predict cortical region responses Correlations were computed separately for each image position across the 13x13 grid. ﬁgg 8;’8 ﬁgg 82;’ - - - - - - - - !
to visual stimuli. (Yamins 2014; Leeds 2013). However, selectivities of individual neural Maximum (positive or negative) correlation across grid positions is typically reported below. ' ' - - - -
populations within each region require further study. We focus on |r|>0.3 as significant (p*<1e-5). We also study effect of image location on
correlation is studied. e Looking at kernels with strongest correlations
Building on Guclu (2015), we explore the ability of single artificial CNN “neurons” (8 kernels for S1, 6 for S2; near-top correlation > 0.3),  w r iR

to model single fMRI voxel selectivities for mid-level visual properties. most voxels with |r[>0.3 for at least

Results: Distribution of kernels-voxel correlations 1 kernel correlate with most of the .
9
. e eps 0 : o nifi Distribution of - ' ©» o Al g kemels
Methods: Data collection and model definition 47% of Ifernels in S1 had slgmfnc:smt voxel near top” sonolations other strong-correlation kernels too. s £ &0 nlym%
- _ _ correlations (|r|>0.3), and 28% in S2. _ z g Ausexcept K252
Stimuli an-d fMRI data were obtal-ned from Ka.ly (2008) and !\laselarls (2009) The number of high correlations ranged from ol 70 e For S1, onIy two kernels have hlgh 3 40 IIIIK'ﬂO&K183
Their methods are summarized in the first three section below: 1 voxel per kernel to 662 voxels per kernel. >0 zz correlations with 20+ voxels where I...l
V4 . ”, 30 |
o Near top correlations™: For each voxel, we sort o 10 no other kernels correlate equally (K110, K183). 3 Lo
Stimuli absolute correlation values |r]| for all voxels and 01 02 03 04 01 02 03 04 Only one kernel has a unique match for S2 (K175).
1750 grayscale images find the 100th largest |r| value as the “near top” s1 S2
Photographs of scenes & objects correlation. The median “near top” correlations across 256 kernels are 0.18 for
S1 and S2. Results: Effects of kernel image-position
_ I . Both CNNs and biological neural populations are sensitive to the position of visual
Presentation patterns in an image. Each CNN Layer 2 kernel is applied to 169 image positions
1s display: stimulus flashed 3 times Significant correlations were found to be both positive and negative. For a across a 13x13 grid. We assess the effect of image grid position on kernel-voxel
Every eighth trial was null given kernel, high correlations with voxels typically were either all-positive or all-negative correlations. = <2 0,45 .m0
Trial 1 Trial 2 Trial 3 Trial 4 Region key S1, Kernel 183, S2, Kernel 21, - - - - H E kernel i,(m -Km .Km £
1s 3s 1s 3s 1s 3s 1s position (4,4) across all positions Bl i ELE K23 K128 K383 _voxel f 2
Flash Blank Flash Blank Flash Blank Flash 0.45
PIC PIC PIC PIC - - - - m - - - - = - - , , _ e low
Selected high correlation Selected kernels with 0.45 Maximum kernel response
. . . . . . . kernels (|r|>0.3), S1 0.2<|r|<0.3, S1 e at each image position
corr e Top-correlation kernels relatively iInvariant to image position for
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Cortical fMRI data

2 subjects. fMRI coverage of posterior cortex: ventral and dorsal visual pathways.
Voxels 2x2x2.5mm

voxel correlation

Lower-correlation kernels show dependence on image position
for voxel correlation strength, with strongest correlations near borders of image
e Position-based voxel correlation effects not reflect position-based changes in
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Visual processing model strong positive strong negative kernel responses across stimuli

We used Caffe implementation of Convolutional Neural Network (CNN; Jia et al. 2014) correlation correlation m

Network composed of 8 layers, each layer finds patterns in outputs from previous layer o

Each layer consists of artificial neurons, or “kernels” @ @ @ @ @ Distribution of |r|[>0.3 ® 25%-50% of individual Layer 2 CNN kernels can serve as models for individual voxels -

Each kernel (e.g., K1, K2, K3) identifies a Layer 8 across all voxels more than 50% of kernels are relatively weak biological models, despite strength of

distinct Visual paftter’n ’ LA V\+, The VaSt majority Of high COrrE|atiOnS WhOIe Layer 2as mOdEI

at each position in b x b grid @ @ @ @ @ Layer 2 are found in V1 and V2, 49%/43% for S1 II I l ® Strong inverse correlations for several kernels indicate voxel activities may be inhibited

and 54%/41% for S2, respectively. Smaller amount e — for Fomplex kerpel-relevant patterns o i i

Example Position (10,4) @ @ @ @ Layer 1 of high correlations located in V3, and very small Vi V2 V3 V4 Vi V2 V3 V4 e Typically many single kernels each model the same voxel, indicating potential functional
positions: ’ redundancy among Layer 2 kernels

proportion in V4. s1 S2

Position (7,3) ) ) ) )
No high correlations found outside visual areas.

e Position of image analysis affects correlations for weaker Layer 2 kernels - possible
inflated effects of circle stimulus boundary for some supposed voxel-kernel links

Layer 2 kernel responses
are computed for all 1750 stimuli
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