
9/16/2015

1

CISC 1600/1610
Computer Science I

Programming in C++

Professor Daniel Leeds

dleeds@fordham.edu

JMH 328A

Introduction to programming
with C++

Learn

• Fundamental programming concepts

• Key techniques

• Basic C++ facilities

By the end of the course, you will be able to:

• Write small C++ programs

• Read much larger programs

• Learn the basics of many other languages

• Proceed to advanced C++ courses
2

Requirements

• Lectures and lab sessions

• Labs assignments – roughly 8 across semester

• Quizzes – each 15 minutes, roughly 5 across
semester

• Final project

• Exams – 1 midterm, 1 final

• Academic integrity – discuss assignments with
your classmates, but you MUST write all your code
and all your answers yourself

3

How to succeed in class

Ask questions

• In class

• In office hours, tutor room

• Study together and discuss assignments with
each other (without plagiarizing!)

Textbook

• Read and re-read the material

• Complete practice problems

Start coding and studying early
4

Course textbook

Problem Solving
With C++
Ninth Edition

Walter Savitch

5

Course website

http://storm.cis.fordham.edu/leeds/cisc1600

Go online for

• Lecture slides

• Assignments

• Course materials/handouts

• Announcements

6

9/16/2015

2

Instructor

Prof. Daniel Leeds

dleeds@fordham.edu

Office hours: Tues 1-2p, Fri 10:30-11:30a

Office: JMH 328A

7

A program provides a
computer with a set of
simple instructions to

achieve a goal

8

Programs are everywhere

On your computer:

• Web browser

– Request and display information from distant sites

• Word processor

– Record text, change appearance, save to disk

• Music player

– Organize mp3’s, select time in song, play, stop

9

Programs are everywhere

In the dining hall:

• Cashier

– Compute price of food purchase, charge payment
to account, (if pay cash: compute change)

• HVAC

– Monitor temperature, adjust A/C or heating

• Electronic signs

– Display menus and prices, load and display
university news

10

Programs are everywhere
In humans:

• Sports

– When to run, where to run; when to pass, who to
pass to; when to shoot

• The brain

– Neurons working together to combine information
about an image to recognize a dog or a car

dog

11

Head
detector

Tail
detector

Computer system structure

Central processing unit
(CPU) – performs all the
instructions

Memory – stores data and
instructions for CPU

Input – collects
information from the
world

Output – provides
information to the world

Output

Input

CPU

12

9/16/2015

3

C++ – high-level language

• High-level language

– Uses words to describe
instructions

– More intuitive to people

– Computer-independent

• Machine-language

– Uses binary to describe
instructions

– Less intuitive to people

– Computer-dependent

balance=balance-charge;

10000000 10000100
00110010 01110100

C++ code

assembly code

machine code

C
o

m
p

iler

13

Why C++?

• Popular modern programming language

• In use since 1980’s

• Similar structure to many/most other popular
languages (Java, C#, Perl, Python)

14

Why C++?

Some programming history:

• C++ developed as improvement on C

• C developed as improvement on B

• B developed as improvement on …

• BCPL – Basic Computer Programming
Language

• Various languages before BCPL – ADA, COBOL,
FORTRAN

15

Course outline

• Programming basics, input/output, arithmetic

• Conditional statements

• Loops

• Modularity – functions

• Complex data – arrays, vectors strings, and classes

Throughout the semester:

• Proper programming style

16

Programming basics

• Program structure and components

• Output text

• Variables

• Input information

• Perform arithmetic

• Type safety

17

Our first program: “Hello world!”
// include library of standard input and output commands

#include <iostream>

using namespace std;

int main()

{ // Begin main function

cout << "Hello world!\n"; // output "Hello world!“

return 0; /* indicate successful

program completion */

} // End main function

18

> ./myProgram

Hello world!

>

9/16/2015

4

The components of “Hello world!”

• Comments //, /* */

• main function

• Preprocessor directives #include

19

Using comments
// include library of standard input and output commands

#include <iostream>

using namespace std;

int main()

{ // Begin main function

cout << "Hello world!\n"; // output "Hello world!"

return 0; /* indicate successful

program completion */

} // End main function

20

• Explain programs to other programmers
• Ignored by compiler
• Syntax:

// single line comment

/* multi-line

comment */

Preprocessor directives
// include library of standard input and output commands

#include <iostream>

using namespace std;

int main()

{ // Begin main function

cout << "Hello world!\n"; // output "Hello world!"

return 0; /* indicate successful

program completion */

} // End main function

21

• Lines beginning with #

• Executed before compiling the program

main function
// include library of standard input and output commands

#include <iostream>

using namespace std;

int main()

{ // Begin main function

cout << "Hello world!\n"; // output "Hello world!"

return 0; /* indicate successful

program completion */

} // End main function

22

Every C++ program has the function int main()

• main contains the instructions to be executed by

the program
• The instructions included in the “body” of main are

placed between curly braces { }

Statements
// include library of standard input and output commands

#include <iostream>

using namespace std;

int main()

{ // Begin main function

cout << "Hello world!\n"; // output "Hello world!"

return 0; /* indicate successful

program completion */

} // End main function

23

• Instructions to be performed when the program is
run

• Each statement is completed with a ;

Using “white spaces”
// include library of standard input and output commands

#include <iostream>

using namespace std;

int main()

{ // Begin main function

cout << "Hello world!\n"; // output "Hello world!"

return 0; /* indicate successful

program completion */

} // End main function

24

• “White spaces” are blank lines, space characters,
and tabs

• White spaces are ignored by the compiler
• Use indentation to group pieces of code together

9/16/2015

5

Output command
cout << "Hello world!\n";

25

• cout << "text"; outputs the specified text

to the screen
• cout is the output stream object
• The text is delimited by double-quotes " "

• Only use simple quotes (") not curly quotes (“”)
• << is the “stream insertion operator” directing the

text into cout

Terminology:
A “character” is any single letter or symbol. E.g.:

'b', '?', '&'
A collection of characters is called a “string.” E.g.:

"Hello world", "afe094n", "C++ is fun! "

Output command, part 2
cout << "Hello world!\n";

26

• Escape character: backslash \

• Escape sequence: backslash followed by another
character
• New line: \n
• Tab: \t

cout << "Hello\n world!\n";

> ./myProgram

Hello world!

>

> ./myProgram

Output command, part 3
cout << "Hello world!\n";

27

• We can place multiple stream insertion operators in a
sequence.

cout << "Hello world" << "!!!";

cout << "How are \nyou today?";

> ./myProgram

Hello world!

>

> ./myProgram

> ./myProgram

What is your name?

>

User input: “Hello !”
// include library of standard input and output commands

#include <iostream>

using namespace std;

int main()

{ // Begin main function

string name; // create variable called name

cout << "What is your name?";

cin >> name; // get name from user

cout << "Hello "; // output "Hello "

cout << name << "!\n"; // output "<name>!"

return 0; // end program

} // End main function

28

> ./myProgram

What is your name? Alice

Hello Alice!

>

> ./myProgram

What is your name? Alice

>

Variables

Variables store information

char single character ('a', 'Q')

int integers (-4, 82)

bool logic (true or false)

float real numbers (1.3, -0.45)

string text ("Hello", "reload")

29

Variable declaration
// include library of standard input and output commands

#include <iostream>

using namespace std;

int main()

{ // Begin main function

string name; // create variable called name

cout << "What is your name?";

cin >> name; // get name from user

cout << "Hello "; // output "Hello "

cout << name << "!\n"; // output "<name>!"

return 0; // end program

} // End main function

30

“Declare” new variable by writing type followed by variable name.

More examples:
int age, weight; // multiple declarations

9/16/2015

6

Variable declaration and initialization

• All variables must be declared before they are used

int cost; // declare variable

• Variables are initialized with the first assignment
statement

cost = 25; // initialize variable

• Declaration and initialization can be performed in
one line

int weight = 140;

31

Variable assignment

• Typically, variables are assigned values with the =
operator
string weather;

weather = "sunny";

cout << "The weather today is ";

cout << weather << endl;

• The variable to be changed is always to the left of
the = operator

• The value assigned from the right of the = operator

– Constants: weight = 140;

– Variables: ageErica = ageJen;

– Expressions: balance = balance – cost; 32

Input command
// include library of standard input and output commands

#include <iostream>

using namespace std;

int main()

{ // Begin main function

string name; // create variable called name

cout << "What is your name?";

cin >> name; // get name from user

cout << "Hello "; // output "Hello "

cout << name << "!\n"; // output "<name>!"

return 0; // end program

} // End main function

33

• cin >> varName; receives input from keyboard
saves into the varName

Variable names

• A variable name is any valid identifier that is
not a keyword

– Starts with a letter, contains letters, digits, and
underscores (_) only

– Cannot begin with a digit

– Case sensitive:
username≠userName≠UserName

35

Variable names, part 2

Choose meaningful names

• Avoid acronyms

• Avoid lengthy names

• Good:

age, size, address, count, sumData

x, y, i – single letters as counting variables

• Bad:

rbi, lda, xZ25,
neuron_response_magnitude

36

Keywords

Also known as: “Reserved names”

• Examples

– cout, return, string, int

• Must be used as they are defined in the
programming language

• Cannot be used as variable names

37

9/16/2015

7

Arithmetic in C++

Operators

• Addition: 5 + 2 evaluates to 7

• Subtraction: 5 - 2 evaluates to 3

• Multiplication: 5 * 2 evaluates to 10

• Division: 4 / 2 evaluates to 2

• Modulo: 5 % 2 evaluates to 1 (only integers)

38

What does this program do?

#include <iostream>

using namespace std;

int main()

{

int dollars, coins;

cout << "How many dollars do you have? ";

cin >> dollars;

coins = dollars*4;

cout << "I will give you " << coins;

cout << " coins.\n";

return 0;

}

39

Order of operations

• First: Parentheses

• Second: Multiplication, Division, Modulo

• Third: Add, Subtract

• Evaluate from Left to Right

• Evaluate inner-most parentheses before outer
ones

int a = (4 * (5 + 2) - 4) / 4;

40

Assignment operators

int a = 6;

• Standard assignment: a = 3;

• Other assignments:
– a += 3; // a = a + 3;

– a -= 3; // a = a - 3;

– a *= 3; // a = a * 3;

– a /= 3; // a = a / 3;

– a %= 3; // a = a % 3;

41

Increment and decrement

int c = 12;

• Increment by 1: c++ evaluates to c + 1

• Decrement by 1: c-- evaluates to c - 1

42

The binary representation

• int age = 65; assigns a binary code to
memory: 00000000000000000000000001000001

• char grade = 'A'; assigns a binary code to
memory: 01000001

• Every variable value is a number in binary,
C++ interprets the binary number based on
the variable type

43

9/16/2015

8

Interpreting binary

Base 10

253 -> 253

2x100+5x10+3x1

44

Base 2

128 64 32 16 8 4 2 1

- - - - - - - -

00001001=?

00110000=?

10010010=?

From numbers to symbols:
the ASCII table

45

Variable types, revisited

char single character ('a', 'Q') 1 byte

int integers (-4, 82) 4 bytes

bool logic (true or false) 1 byte

float real numbers (1.3, -0.45) 4 bytes

string text ("Hello", "reload") ? bytes

46

• Each variable is represented by a certain number of 0s and 1s
• Each 0-or-1 is a bit
• 8 bits in a row is a byte

Variables – locations in memory

• Each variable indicates a location in memory

• Each location holds a value

• Value can change as program progresses

• Variable value exists before initialization

47

04201320 A
04201328 ---
04201336
04201344
04201352
04201360
04201368 P

Address Value

weight

grade

140

Assigning between types

int x = 5;

float y = -2.5;

float z = x * y;

int g = y - x;

48

Assigning between types
• int vs float

– If compiler permits, floats will be rounded to nearest
integer and ints will be expanded to a precision float

• int vs char

– If compiler permits, char will be converted to integer
ASCII code and int will be converted to corresponding
ASCII character

• int vs bool

– If compiler permits, bool will be converted to 0 (if
false) or 1 (if true) and int will be converted to false
(of 0) or 1 (if not 0)

int x = 5;

float y = -2.5;

float z = x * y;

int g = y - x; 49

9/16/2015

9

Type safety

• Ideally, every variable will be used only
according to its type

– A variable will only be used after it has been
initialized

– Only operations defined for the variable’s declared
type will be applied

– Every operation defined for a variable leaves the
variable with a valid value

50

