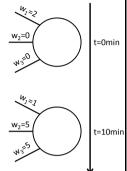
CISC 3250 Systems Neuroscience

Neuroplasticity: Learning in Neurons

> Professor Daniel Leeds dleeds@fordham.edu JMH 332



Review of weights

 $RI(t) = \sum_{k} w_k \alpha_k(t)$

Weights indicate

- Connection (0 or not)
- NT effect
 - w>0 excitatory
 - w<0 inhibitory
- Magnitude of impact of input

Association

We recall information through associations with other information

• Pneumonics:

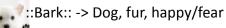
Roy G. Biv

Please Excuse My Dear Aunt Sally () Exp x / + -

• Memories of experiences:

Lake -> Summer vacation 2014

Dealy -> Final exam Fall 2013



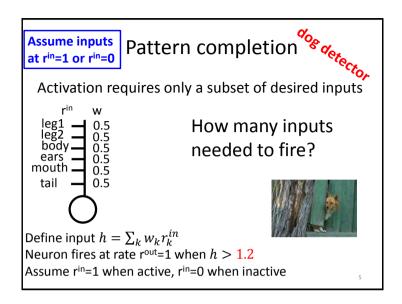
Features of associators

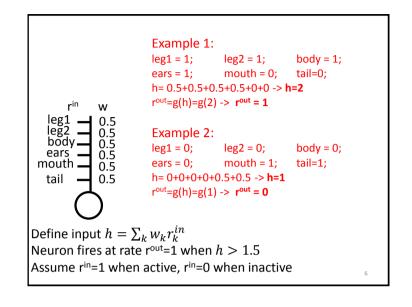
 Pattern completion/ generalization

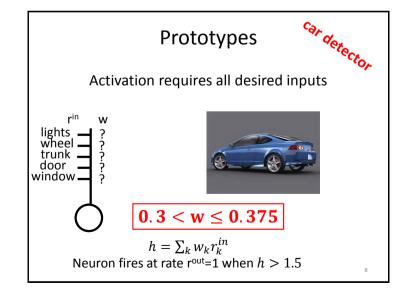
· Recognizing prototypes

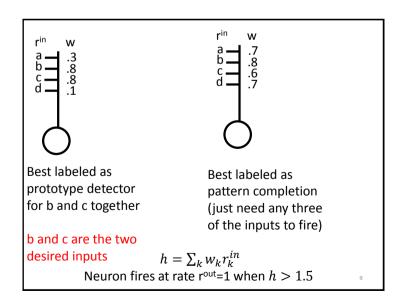
- Neuron firing for common combinations
- Fault tolerance
 - Selected dendrites miss input, post-synaptic neuron still fires

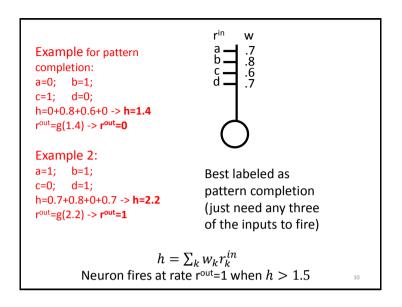
1

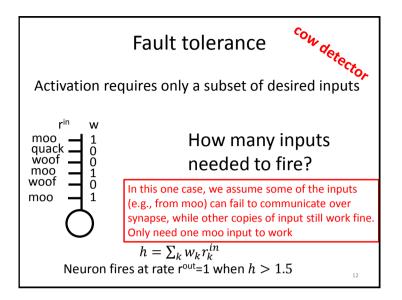




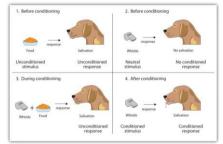






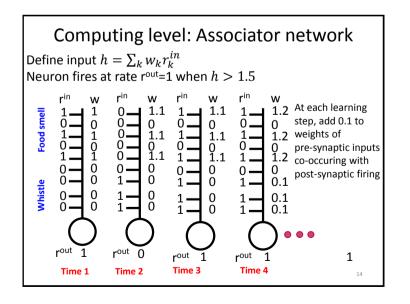


Learning to associate: Conditioning



Associating both smell and whistle with food

- Unconditioned stimulus: smell already associated with food
- Conditioned stimulus: whistle indicates food coming



Two forms of plasticity

- Structural plasticity: generation of new connections between neurons
- Functional plasticity: changing strength of connections between neurons

Hebbian plasticity:

"cells that fire together, wire together"

Chemical level: NT receptors

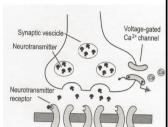
Increase weight by improving NT detection

Post-synaptic:

- Insert more receptors into dendrite membrane
- Improve performance of receptors

Pre-synaptic:

· Increase amount of NT released



Marr's levels of analysis

- Computational theory: Learn associations among sensations
- Representation and algorithm: Associate each sense with set of neural outputs, adjust weights on these outputs into another neuron
- Hardware implementation: Insert/remove NT receptors from dendrites

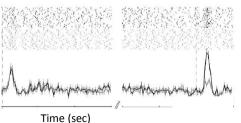
18

Math of Hebbian rate learning

"Cells that fire together, wire together"

$$\Delta w_{ij} = \epsilon(w) r_i r_j$$

 $\Delta w_{ij} = \epsilon(w) r_i r_j$ i.e.: $\Delta w_j = \epsilon(w) r^{out} r_j^{in}$ ϵ learning speed



Using the learning rule

Define input $h=\sum_k w_k r_k^{in}$ Neuron fires at rate $\mathbf{r}^{\mathrm{out}}=1$ when h>1

Weight control and decay

- Synaptic weights are finite
- Propose learning rules that keep weights bounded

$$\Delta w_{ij} = r_i r_j - c w_{ij}$$

 $\Delta w_j = r_{out} (r_j - w_j)$ Willshaw

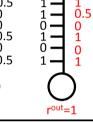
 Or, preserve total synaptic weight across network: "normalization"

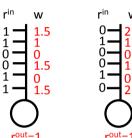
$$w_j \leftarrow \frac{w_j}{\sum_k |w_k|}$$

23

Using the learning rule

Define input $h = \sum_k w_k r_k^{in}$ Neuron fires at rate $r^{\text{out}} = 1$ when h > 1



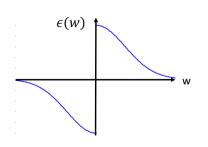


Side note:

Weight control with Hebb

$$\Delta w_{ij} = \epsilon(w) r^{out} r_j^{in}$$

• Higher weight – suppressed weight update

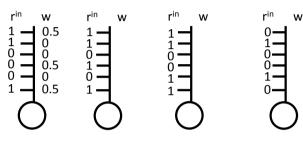


24

Using weight control and decay

Define input $h = \sum_k w_k r_k^{in}$ Neuron fires at rate $r^{\text{out}}=1$ when h>1

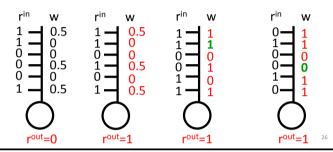
$$\Delta w_j = r_{out}(r_j - w_j)$$



Using weight control and decay

Define input $h = \sum_k w_k r_k^{in}$ Neuron fires at rate $r^{\text{out}}=1$ when h>1

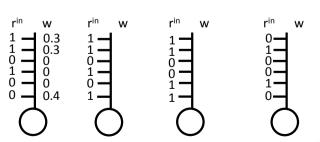
$$\Delta w_j = r_{out}(r_j - w_j)$$



Using weight control and decay

Define input $h = \sum_k w_k r_k^{in}$ $\Delta w_j = \epsilon(w_j) r_{out} r_j$ Neuron fires at rate rout=1 when h > .5

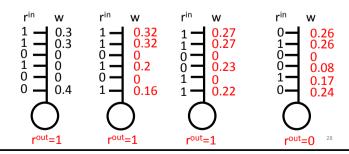
$$\epsilon(w) = \begin{cases} -0.5 & w < 0 \\ 0.5 & w \ge 0 \end{cases} \qquad w_j \leftarrow \frac{w_j}{\sum_k |w_k|}$$



Using weight control and decay

Define input $h = \sum_k w_k r_k^{in}$ Neuron fires at rate r^{out}=1 when h > .5 $\Delta w_{ij} = \epsilon(w) r_i r_j$

$$\epsilon(w) = \begin{cases} -0.5 & w < 0 \\ 0.5 & w \ge 0 \end{cases} \qquad w_{ij} \leftarrow \frac{w_{ij}}{\sum_{j} |w_{ij}|}$$



Hebb + normalization

Step 1: Compute output at time t

Step 2: Use Hebb learning based on r_{out}^{t} , w_{j}^{t} , r_{j}^{t} to find new w_{i}^{t+1} 's

Step 3: Divide new $w_j^{t+1}\mbox{'s}$ by $\sum_k |w_k^{t+1}|$ so new $|\,w_i^{}|\mbox{'s}$ add to 1

9

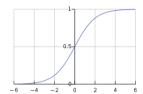
Using weights Input Neuron/Classifier Learning weights Data to learn Neuron/Classifier Update weights Velocity to the control of the co

Al Neural Net Learning

Computed output: $g^{\text{sigmoid}}(\sum_i w_i r_i^{in})$

Desired output: $y^{out} \in [0,1]$

• $\Delta w_j = \epsilon r_i^{in} r^{out} (y^{out} - r^{out}) (1 - r^{out})$



30