CISC 3250
 Systems Neuroscience

Representations
 in the brain

Professor Daniel Leeds
dleeds@fordham.edu
JMH 332

Computer storage		
Memory for data		
- Information stored as billions of numbers (giga-bytes)		1,1,red 1,1,1,gee
Groups of numbers stored in		
sequence represent single		1,2, blue
concept		\vdots
- flower $1000 \times 1000 \times 3$ matrix		
- Each piece of information has location in memory	song1:	sound at 0 ms sound at 10 ms sound at 20 ms
- flower starts at address 100,000,		
- song1 starts at address 103,000,5000		

Computational representations describing a visual object

- A picture is worth a million pixels
- Digital picture broken into a grid of boxes - pixels
- Each pixel contains a color

- Translate from pixels to category label:
floss flour flower flume flute foam

Data in the brain	
- Neural location related to information encoded	
- Progression of encoding for increasingly complex concepts	

Simple outline of vision pathway

1. Retina: pixel detectors
2. Primary visual cortex (V1): edge detectors
3. Second-cortical layer (V2?): edge combination detectors
N. Higher-cortical layer: Full-object detectors

Interacting representations: feedforward network

- More-complex information/features computed from simpler information/features

Lateral connections: surround suppresion

Suppression/competition with interneurons

Neuron can have suppressed response for features deviant from maximum preference

$\xrightarrow[\text { feature value }]{\stackrel{\sim}{0}}$

- In common cortical circuits, there are feedforward excitatory inputs and lateral inhibitory inputs
- Relative weighting achieves balance between activation and suppression

Competition on behavior level

Opposing interpretations of scene

Data in the brain

- Neural location related to information encoded
- Progression of encoding for increasingly complex concepts

Classes of representation

Fully distributed representation

- Every neuron/region plays a part

Sparsely-distributed representation

- Neural level: hyper-column for perceptual feature

Tanaka 2003, columns of
neurons for shape types in IT

- "Region" level:
face network in medial temporal, lateral temporal, anterior parietal

Principles of information coding: binary

How many things can we represent with n binary ($\mathrm{g}^{\text {step }}$ activation function) neurons?

- Complete sparse coding: n things
$\int_{\text {firing }}^{\text {not }}$ banana applepear
- Complete distributed coding: 2^{n} things

Biology of sparse coding

- Preserving energy - higher spiking rate requires higher energy
- Representational fan-out
- ~1 million neurons in retina -> ~140 million neurons in V1 (primary visual cortex)
- ~50,000 neurons in cochlea -> 1.6 million neurons in A1 (primary auditory cortex)
http://www.plosbiology.org/article/info:doi/10
$.1371 /$ iournal.pbio. 0030137

Coding on a scale:

distributed + overlapping

high firing
\bigcirc mid firing
$\bigcirc_{\text {firing }}^{\text {not }}$
\bigcirc young$0 \bigcirc 0$
bald

mood
(sad - happy)

age (0-100) (bald - long)

What does this encode? \square

Coding on a scale:

distributed + overlapping Responses for each property add together

$1-1 \mathrm{~Hz}$ - sad	-11 Hz - young	--1 Hz - bald
$25-25 \mathrm{~Hz}$ - neutral	-2525 Hz -middle	-25 Hz - middle
$50-50 \mathrm{~Hz}$ - happy	-5050 Hz - old	-50 Hz - full-hair
mood	age	amount hair
(sad - happy)	$(0-100)$	(bald - long)

How do we encode: happy (100\%), mid-age (50\%),
light hair (1\%)?
\sum_{j} level $_{j}$ pattern $_{j}$

Coding on a scale:

distributed + overlapping
Responses for each property add together

$1-1 \mathrm{~Hz}$ - sad	-11 Hz -young	--1 Hz - bald
$25-25 \mathrm{~Hz}$-neutral	-2525 Hz -middle	-25 Hz - middle
$50-50 \mathrm{~Hz}$ - happy	-5050 Hz - old	-50 Hz - full-hair
mood	age	amount hair
(sad - happy)	$(0-100)$	(bald - long)

How do we encode: sad (5\%), mid-age (50\%), hairy (100\%)? \sum_{j} level $_{j}$ pattern $_{j}$

Coding on a scale:

distributed + overlapping
Responses for each property add together

$1-1 \mathrm{~Hz}$-sad	-11 Hz -young	--1 Hz - bald
$25-25 \mathrm{~Hz}$ - neutral	-2525 Hz -middle	-25 Hz - middle
$50-50 \mathrm{~Hz}$ - happy	-5050 Hz - old	-50 Hz - full-hair
mood	age	amount hair
(sad - happy)	$(0-100)$	(bald - long)

How do we encode: happy (100\%), mid-age (50\%),
light hair (1\%)?
\sum_{j} level $_{j}$ pattern $_{j}$
n1 n2 n3
50050 happy
02525 mid-age
$0 \quad 0 \quad 5$ light hair
502580

Coding on a scale:

distributed + overlapping

Responses for each property add together

n1 n2 n3
2.502 .5 happy

02525 mid-age
$\begin{array}{lll}0 & 0 \quad 50 & \text { light hair }\end{array}$
2.52577 .5

Decoding large neural codes

Information from neuron patterns

Responses for each property add together

$1-1 \mathrm{~Hz}$ - sad	-11 Hz - young	--1 Hz - bald
$25-25 \mathrm{~Hz}$ - neutral	-2525 Hz - middle -25 Hz - middle	
$50-50 \mathrm{~Hz}$ - happy	-5050 Hz - old	--50 Hz - full-hair
mood	age	amount hair
(sad - happy)	$(0-100)$	(bald - long)

What does this encode? 02040
What does this encode? 502075

- Happy
- Old
- Hairy

- Loud

Overlay of multiple patterns and noise

- What property is this?

Decoding large neural codes

Classifier:

- If consistent response, can learn pattern
- If irrelevant response, cannot learn helpful pattern

Method:

- 500 trials - measure mood, record brain responses
- Make classifier from neural patterns in trials 1-250
- Find accuracy to predict mood in trials 251-500

Decoding with tuning curves

Use spiking rates from
multiple neurons to
determine encoded feature

- 15 Hz firing rate for red neuron means sound 400
 or 800 Hz (at 10 dB)
- 15 Hz for red and 6 Hz for blue requires sound 800 Hz (at 10 dB)

Actual decoding incorporates noise/natural variability in spiking

Population coding to find direction of motion

Non-normalized population coding

- $s_{d i r}=\sum_{i} r_{i} s_{i}^{\text {pref }}$

Population coding to find direction of motion
"Normalized" firing rate

- $\hat{r}_{i}=\frac{r_{i}-r_{i}^{\text {min }}}{r_{i}^{\text {max }}-r_{i}^{\min }}$

If $r^{\text {min }}=1, r^{\text {max }}=6$ for
Then $\hat{r}_{i}=\frac{4-1}{6-1}=\frac{3}{5}=0.6^{\text {i }}$
Normalized \hat{r} will always be between 0 and 1
$s^{\text {pref }}$
$\left[\begin{array}{l}x \\ y\end{array}\right]$

Normalized firing rates

$r^{\min }=0 \mathrm{~Hz}, r^{\max }=60 \mathrm{~Hz}$

$\stackrel{\circ}{\leftarrow}$

Population coding to find direction of motion
"Normalized" pop'n coding

- $\hat{S}_{\text {pop }}=\sum_{i} \frac{\hat{r}_{i}}{\sum_{j} \hat{r}_{j}} s_{i}^{\text {pref }}$

For $\hat{s}_{\text {pop }}$, divide normalized rate by sum of all rates in neural
$s_{\text {pop }} \sum_{i} \sum_{j} \hat{r}_{j} s_{i}$

Population coding to find direction of motion
"Normalized" pop'n coding
For $\hat{s}_{\text {pop }}$, divide normalized rate by sum of all rates in neural

- $\hat{s}_{\text {pop }}=\sum_{i} \frac{\hat{r}_{i}}{\sum_{j} \hat{r}_{j}} s_{i}^{\text {pref }}$ population: $\sum_{j} \hat{r}_{j}$
$\hat{r} 0.05$

$\underline{\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{0.05}{0.6}\left[\begin{array}{c}0 \\ -1\end{array}\right]+\frac{0.5}{0.6}\left[\begin{array}{l}1 \\ 0\end{array}\right]+\frac{0.05}{0.6}\left[\begin{array}{l}0 \\ 1\end{array}\right]+0\left[\begin{array}{c}-1 \\ 0\end{array}\right]=\left[\begin{array}{c}0.83 \\ 0\end{array}\right] \begin{array}{c}\text { motion direction, do no } \\ \text { amplify motion distance }\end{array}}$

Linear algebra

- Left matrix: data
- Rows: different data points
- Columns: different features
- Right matrix: column contains weights for weighted sum

Matrices and weighted sums

$$
\begin{aligned}
& \stackrel{1}{\downarrow} \stackrel{4}{↔} \stackrel{1}{\oplus} \stackrel{0}{\oplus} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\left[\begin{array}{c}
-1 \\
0
\end{array}\right]} \\
& 1\left[\begin{array}{c}
0 \\
-1
\end{array}\right]+4\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1\left[\begin{array}{l}
0 \\
1
\end{array}\right]+0\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cccc}
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
4 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{ll}
4 \\
0
\end{array}\right] \quad \begin{array}{l}
\text { Matrix multiplication: } \\
\text { Sum \{left row } \mathrm{x} \text { right column }\}
\end{array}} \\
& {\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a x+b y+c z \\
d x+e y+f z
\end{array}\right]}
\end{aligned}
$$

