CISC 3250 Systems Neuroscience

Representations in the brain

Professor Daniel Leeds dleeds@fordham.edu JMH 332

Computer storage Memory

Memory for data

- Information stored as billions of numbers (giga-bytes)
- Groups of numbers stored in sequence represent single concept
 - flower 1000 x 1000 x 3 matrix
- Each piece of information has location in memory
- flower starts at address 100,000,5000
- song1 starts at address 103,000,5000

flower: 1,1,red 1,1,green 1,1,blue 1,2,red 1,2,green 1,2,blue 1000,1000,red 1000,1000,green 1000,1000,blue sound at 0ms sound at 10ms sound at 20ms

Computational representations describing a visual object

- A picture is worth a million pixels
 - Digital picture broken into a grid of boxes pixels
 - Each pixel contains a color

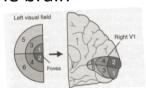


• Translate from pixels to category label:

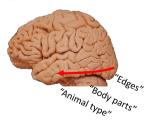
floss flour flower flume flute foam

Data in the brain

 Neural location related to information encoded



 Progression of encoding for increasingly complex concepts



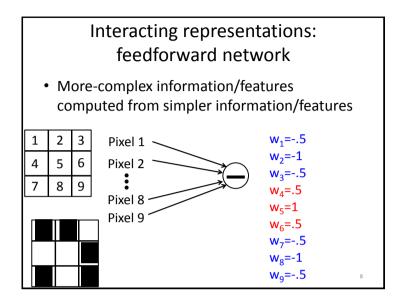
Simple outline of vision pathway

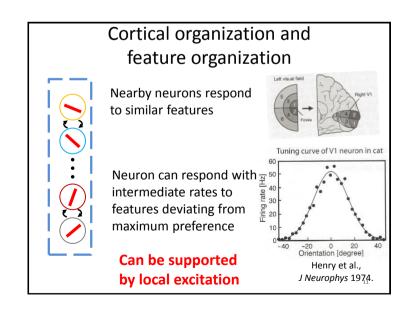
- 1. Retina: pixel detectors
- 2. Primary visual cortex (V1): edge detectors
- 3. Second-cortical layer (V2?): edge combination detectors

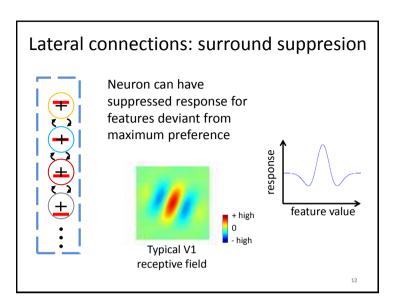
. . .

N. Higher-cortical layer: Full-object detectors

Edge detector in action $w_7 = -.5$ $w_1 = -.5$ Pixel 1 $w_2 = -1$ $w_8 = -1$ Pixel 2 $w_3 = -.5$ $w_0 = -.5$ w₄=.5 8 9 $w_5 = 1$ Pixel 8 $w_6 = .5$ Pixel 9 $p_1=0, p_2=0, p_3=0$ h=.5+1+.5=2 $p_4=1$, $p_5=1$, $p_6=1$ g(2)=0.95 $p_7 = 0$, $p_8 = 0$, $p_9 = 0$ $p_1=0, p_2=1, p_3=0,$ $p_4=0$, $p_5=1$, $p_6=0$, $p_7=0, p_8=1, p_9=0$







The pathway for smell processing

Chemical shape

detection

Hippocampus

rose

Amygdala

vanilla

Orbitofrontal

cortex

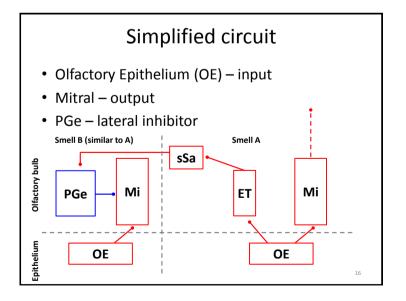
Nose/olfactory

epithelium

Olfactory bulb (in cortex)

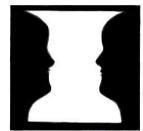
Suppression/competition with interneurons

- In common cortical circuits, there are feedforward excitatory inputs and lateral inhibitory inputs
- Relative weighting achieves balance between activation and suppression



Competition on behavior level

Opposing interpretations of scene

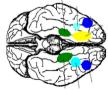


17

Classes of representation

Local representation

- Neural level: "grandmother" cell
- "Region" level: face region, place region

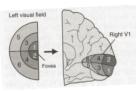


Parahippocampal place area
Fusiform face area
Visual word form area
Lateral occipital cortex (shapes)

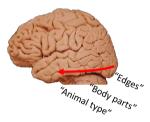
19

Data in the brain

 Neural location related to information encoded



Progression of encoding for increasingly complex concepts



1

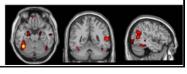
Classes of representation

Fully distributed representation

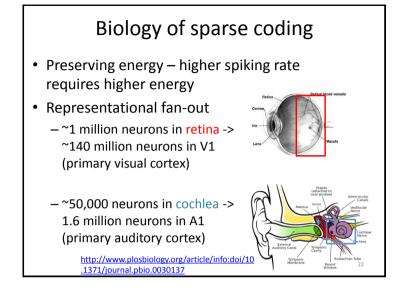
- Every neuron/region plays a part Sparsely-distributed representation
- Neural level: hyper-column for perceptual feature

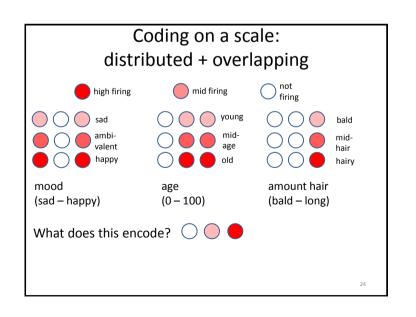
Tanaka 2003, columns of neurons for shape types in IT

 "Region" level: face network in medial temporal, lateral temporal, anterior parietal



Principles of information coding: binary How many things can we represent with n binary (gstep activation function) neurons? • Complete sparse coding: n things firing not firing banana apple pear • Complete distributed coding: 2ⁿ things blueberry banana apple orange No fruit





Coding on a scale:

distributed + overlapping Responses for each property add together

1 - 1 Hz – sad - 1 1 Hz – young - - 1 Hz – bald 25 – 25 Hz – neutral - 25 25 Hz – middle - - 25 Hz – middle 50 – 50 Hz – happy - 50 50 Hz – old - - 50 Hz – full-hair mood age amount hair (sad – happy) (0 – 100) (bald – long)

How do we encode: happy (100%), mid-age (50%), light hair (1%)?

 $\sum_{j} level_{j} pattern_{j}$

5

Coding on a scale:

distributed + overlapping Responses for each property add together

 1 - 1 Hz - sad
 - 1 1 Hz - young
 - - 1 Hz - bald

 25 - 25 Hz - neutral
 - 25 25 Hz - middle
 - - 25 Hz - middle

 50 - 50 Hz - happy
 - 50 50 Hz - old
 - - 50 Hz - full-hair

 mood
 age
 amount hair

 (sad - happy)
 (0 - 100)
 (bald - long)

How do we encode: sad (5%), mid-age (50%), hairy (100%)? $\sum_{i} level_{i} \ pattern_{i}$

27

Coding on a scale:

distributed + overlapping Responses for each property add together

1 - 1 Hz - sad - 1 1 Hz - young - - 1 Hz - bald 25 - 25 Hz - neutral - 25 25 Hz - middle - - 25 Hz - middle 50 - 50 Hz - happy - 50 50 Hz – old - - 50 Hz – full-hair mood amount hair age (sad – happy) (0 - 100)(bald - long) How do we encode: happy (100%), mid-age (50%), light hair (1%)? $\sum_{i} level_{i} pattern_{i}$ n1 n2 n3 50 0 50 happy 0 25 25 mid-age 0 0 5 light hair 50 25 80

Coding on a scale:

distributed + overlapping Responses for each property add together

1 - 1 Hz - sad - 1 1 Hz - young - - 1 Hz - bald 25 - 25 Hz - neutral - 25 25 Hz – middle - - 25 Hz – middle - - 50 Hz – full-hair 50 – 50 Hz – happy - 50 50 Hz – old mood age amount hair (0 - 100)(bald - long) (sad – happy) How do we encode: sad (5%), mid-age (50%), hairy (100%)? $\sum_{i} level_{i} pattern_{i}$ n1 n2 n3 2.5 0 2.5 happy 0 25 25 mid-age light hair 0 0 50 2.5 25 77.5

Coding on a scale: distributed + overlapping

Responses for each property add together

 1 - 1 Hz - sad
 - 1 1 Hz - young
 - - 1 Hz - bald

 25 - 25 Hz - neutral
 - 25 25 Hz - middle
 - - 25 Hz - middle

 50 - 50 Hz - happy
 - 50 50 Hz - old
 - - 50 Hz - full-hair

 mood
 age
 amount hair

 (sad - happy)
 (0 - 100)
 (bald - long)

What does this encode? 0 20 40

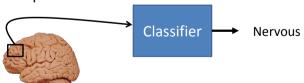
What does this encode? 50 20 75

29

Decoding large neural codes

Classifier:

- If consistent response, can learn pattern
- If irrelevant response, cannot learn helpful pattern



Method:

- 500 trials measure mood, record brain responses
- Make classifier from neural patterns in trials 1-250
- Find accuracy to predict mood in trials 251-500

Decoding large neural codes

Information from neuron patterns

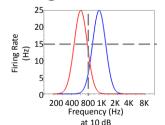
- Hairy
- Loud

Overlay of multiple patterns and noise

• What property is this?

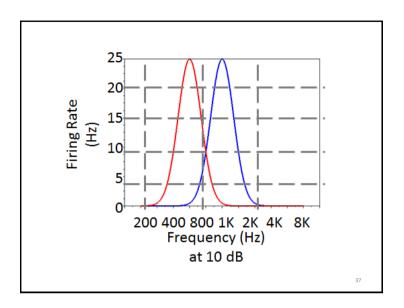
Decoding with tuning curves

Use spiking rates from multiple neurons to determine encoded feature



- 15 Hz firing rate for red neuron means sound 400 or 800 Hz (at 10 dB)
- 15 Hz for red and 6 Hz for blue requires sound 800 Hz (at 10 dB)

Actual decoding incorporates noise/natural variability in spiking



Population coding to find direction of motion

Non-normalized population coding

•
$$s_{dir} = \sum_{i} r_{i} s_{i}^{pref}$$

Population coding to find direction of motion

"Normalized" firing rate

$$\hat{r}_i = \frac{r_i - r_i^{min}}{r_i^{max} - r_i^{min}}$$

If
$$r^{min} = 1$$
, $r^{max} = 6$ for \uparrow
Then $\hat{r_i} = \frac{4-1}{6-1} = \frac{3}{5} = 0.6$

Normalized \hat{r} will always be

$$S^{pref} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

between 0 and 1

Normalized firing rates

rmin=0 Hz, rmax=60 Hz

Population coding to find direction of motion

"Normalized" pop'n coding $\int_{0}^{\infty} e^{-\hat{S}_{pop}} e^{-\hat{S}_{pop}}$

•
$$\hat{s}_{pop} = \sum_{i} \frac{\hat{r}_i}{\sum_{j} \hat{r}_j} s_i^{pref}$$

by sum of all rates in neural population: $\sum_{i} \hat{r}_{i}$

•
$$\hat{s}_{pop} = \sum_{i} \frac{r_i}{\sum_{j} \hat{r}_j} s_i^{pre_j}$$

 \hat{r} 0.05 0.5

0.05

$$s^{pref} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Another example

Assume for all neurons rmin=10 Hz, rmax=100 Hz

10

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

30

Population coding to find direction of motion

"Normalized" pop'n coding $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty$ by sum of all rates in neural population: $\sum_{i} \hat{r}_{i}$

•
$$\hat{s}_{pop} = \sum_{i} \frac{\hat{r}_i}{\sum_{j} \hat{r}_j} s_i^{pref}$$

0.05

0.05

$$\sum_{j} \hat{r}_{j} = 0.05 + 0.5 + 0.05 + 0 = 0.6$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{0.05}{0.6} \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \frac{0.5}{0.6} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{0.05}{0.6} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.83 \\ 0 \end{bmatrix}$$
 motion direction, do no amplify motion distance.

Linear algebra

· Left matrix: data

- Rows: different data points

- Columns: different features

· Right matrix: column contains weights for weighted sum

Matrices and weighted sums

r (

0

$$\begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$1\begin{bmatrix} 0 \\ -1 \end{bmatrix} + 4\begin{bmatrix} 1 \\ 0 \end{bmatrix} + 1\begin{bmatrix} 0 \\ 1 \end{bmatrix} + 0\begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

Matrix multiplication: Sum {left row x right column}

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \end{bmatrix}$$