Systems Neuroscience CISC 3250

Memory

Professor Daniel Leeds dleeds@fordham.edu JMH 332

Declarative vs. non-declarative memory

- Declarative
 - "Winter break ended on January 15"
 - "Apples are edible, chairs are not edible"
- Non-declarative
 - Throwing a baseball
 - Pattern completion (seeing the dog behind the fence)

Types of memory

Memory

Declarative

Non-declarative

Procedural Conditioning Perceptual Reflet

Hippocampus (MTL)
Cerebral cortex

Motor cortex
Cerebellum

Basal ganglia Basal ganglia Cerebral cortex

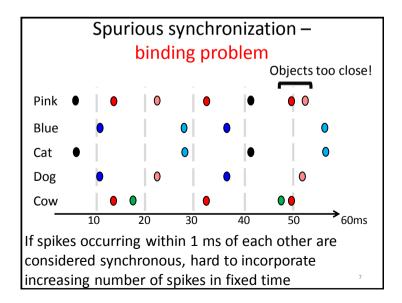
Amygdala
Cerebellum

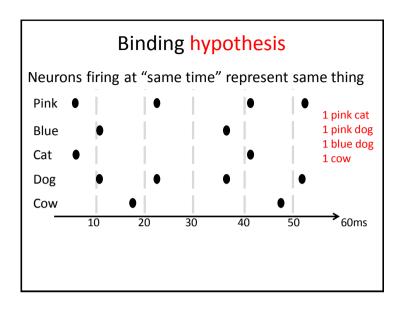
Short-term vs. long-term memory

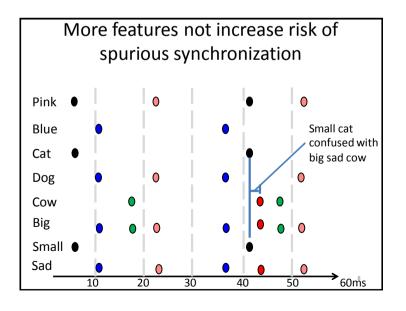
- Short-term memory aka "working" memory
 - Hold facts in memory for 1-200 seconds
 - Sometimes prolonged version of perception
 - Associated with prefrontal cortex (PFC)
- Long-term memory
 - Stores facts over years
 - Associated with hippocampus (also, amygdala)

Modeling limits of working memory

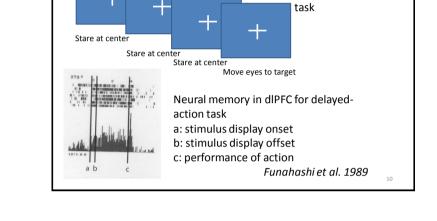
- How much can we hold in working memory?
 - -7 ± 2 things
 - Things can be simple A Q R L G
 - Things can be complex





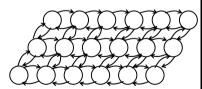


- Why is our working memory limited?
 - Binding hypothesis: distributed code with synchronous spiking – errors with spurious synchronization


5

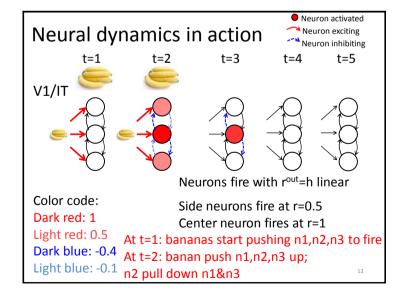
Note adding more features
(with more neurons!) to a concept/object
does **not** cause a problem – no risk of extra
overlap in time with more features

Working memory

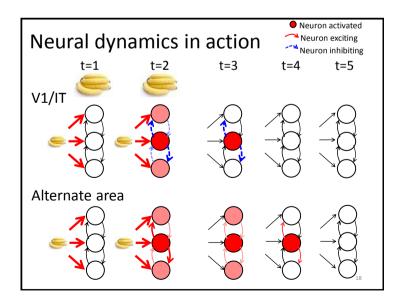

Delayed "saccade"

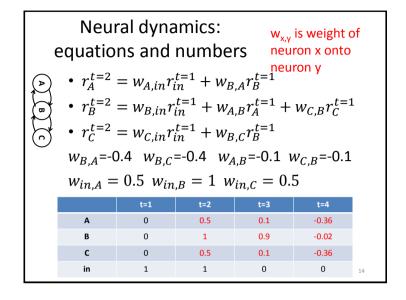
(move eyes) to target

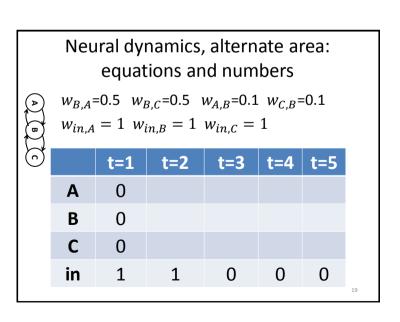
time over experiment

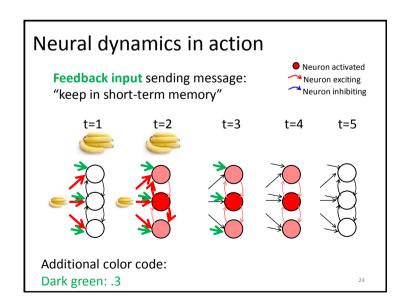

Neural dynamics in "cortical sheet"

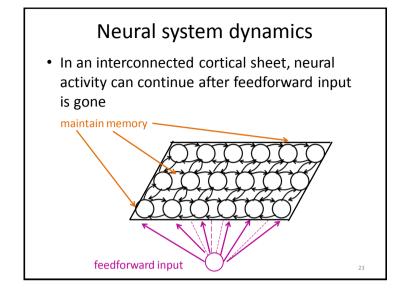
- Cortical sheet: group of neurons on same level of hierarchy interacting with lateral connections
- Balance between local cooperation and local inhibition

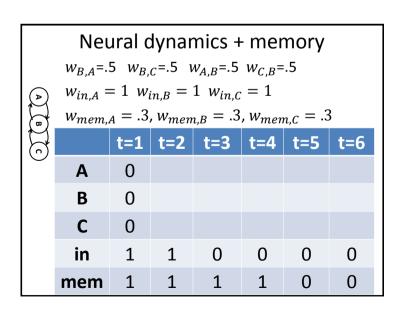



• r^{out} determined from $h = (\sum_{i} w_{i} r_{i}^{feedfwd}) + (\sum_{k} w_{k} r_{k}^{lateral}) + (\sum_{m} w_{m} r_{m}^{feedback})$


In V1, get feedfwd input from "eyes" (actually thalamus)
Get input from other V1 neurons (lat); get input from V2 (fdbk)



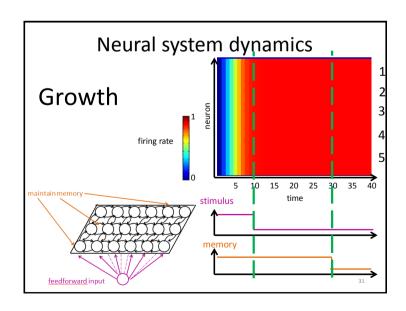

Neural dynamics, alternate area: equations and numbers $w_{B,A}=2 \quad w_{B,C}=2 \quad w_{A,B}=1 \quad w_{C,B}=1$ $w_{in,A}=1 \quad w_{in,B}=1 \quad w_{in,C}=1$ $t=1 \quad t=2 \quad t=3 \quad t=4 \quad t=5$ $A \quad 0$ $B \quad 0$ $C \quad 0$

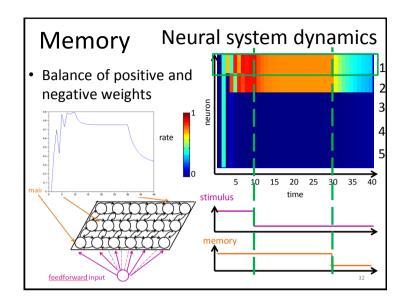

0

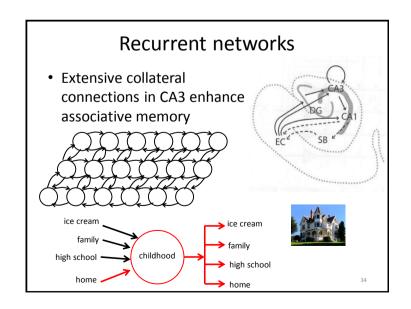
0

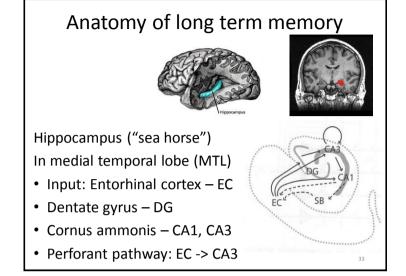
in

A B C	$w_{B,A} = w_{in,A}$	Neural dynamics + memory $w_{B,A}$ =.5 $w_{B,C}$ =.5 $w_{A,B}$ =.5 $w_{C,B}$ =.5 $w_{in,A}$ = 0 $w_{in,B}$ = 1 $w_{in,C}$ = 0 $w_{mem,A}$ = .5, $w_{mem,B}$ = 0, $w_{mem,C}$ = .5							
		t=1	t=2	t=3	t=4	t=5	t=6	t=7	
	Α	0							
	В	0							
	С	0							
	in	1	1	0	0	0	0		
	mem	1	1	1	1	0	0		

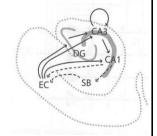

Neural system dynamics								
Decaying firing rate	3							
	5 10 15 20 25 30 35 40 time							


Neural system dynamics


Trappenberg 7.3.2


- Decaying activity: mutual inhibition suppresses continued neural activity after feedforward input is gone – V1
- **Growing activity:** mutual excitation produces global, non-stop activity over time epilepsy
- Memory activity: balance of mutual excitation and mutual inhibition produces maintained activity (sparse) distributed coding during "working memory" time period – PFC

29

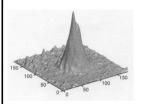


Recurrent networks

- Extensive collateral connections in CA3
- Broader loop: EC -> CA3 -> CA1->EC

$$\Delta w_{ij} = r_i r_j - r_i w_{ij}$$

Cells that fire together, wire together Loop repeatedly increases weight – increasingly encourage simultaneous firing


Learning/remembering

- Learning: neurogenesis in DG
- Retrieval: pattern completion in CA3
- Alternate between learning and retrieval phases Potential model
 - DG granule cells enable learning
 - Perforant pathway probes memory

Further hippocampal representations Grid cells • In dorsocaudal medial EC • Represent multiple locations (CC) Some rights reserved, Torkel Hafting

Learning locations

- Rats learn neural representations of locations within a maze
- Hippocampal place cells in CA1, CA3

Neurons organized in 2D based on similarity of tuning curves