1. (12 Points) Consider the following variable in Matlab:

list=[12, -5, 8, 2, 13, -4, -3];
a) What does the following command output:
list(1:2:7)

b) What is a command (or set of commands) to determine the lowest value of the elements in list?

- c) I have a 1000 element vector fireRates to capture the firing rates of a neuron, calculated every 100ms for 100 seconds.
 - What is the command to plot the firing rates for the neuron?

- How do we compute the average firing rate for the first second (the first 10 elements of fireRates, and place that result in a new variable fireAvel?
- Write a for loop to create fireAveVec so that fireAveVec(1) has the average rate for the 1st second, fireAveVec(2) has the average for the 2nd second, ... fireAveVec(100) has the average for the 100th second?

2. (6 Points) Assume we have a model neuron with v(0)=-65, E_L =-65, v_{reset} =-65, τ =0.01, and v_{thresh} =-50. We have the following input RI(t):

a) Draw the resulting v(t) shown below. (You can estimate RI(t) voltages to the nearest 5mV – if you think the input should plateau, to -42mV, you would label the input as -40mV.)

Name

9. (13 Points) We have a neuron, called neuron 4, that takes input from 3 pre-synaptic neurons. We define $h = \sum_j w_{4j} r_{4j}$ and establish the output of neuron 4, r_4 as simply h (the weighted sum).

a) Use the Hebbian learning rule without normalization discussed in class to determine the new weights and new outputs of neuron 4 after learning step 1 and learning step 2 below. Assume $\epsilon(w) = \begin{cases} .1 & w \ge 0 \\ -.1 & w < 0 \end{cases}$ (The inputs from each pre-synaptic neuron vary at each learning step, as depicted.)

b) Repeat learning step 1 using Hebbian learning with normalization. Again, assume


```
Name
```

5. (6 points) Presume we would like to model the axon voltage/spiking of a neuron using the differential equation and voltage reset rule we used in class.

```
Let us assume the variable values for the model neuron are:

v_{reset}=-60mV v_{thresh}=-30mV \tau=0.1 RI(t)=35 mV (for all time) v(0ms)=-50mV

E_L=-60mV time step: \Deltat=10 ms

Compute v(30ms)
```

10. (5 Points) Compute the output of the following neurons, presuming the output is found by computing the weighted sum of the inputs h, and applying the function g shown below, i.e., $r_{out} = g(h)$.

