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CISC 3250
Systems Neuroscience ¢

-

; Professor Daniel Leeds
dleeds@fordham.edu
JMH 328A

Systems Neuroscience

How groups of neurons work together to
achieve intelligence

How the nervous system
performs computations

¢ Requirement for the Integrative Neuroscience

major

e Elective in Computer and Information Science

Objectives

To understand information processing in

biological neural systems from computational

and anatomical perspectives

¢ Understand the function of key components
of the nervous system

¢ Understand how neurons interact with one
another

¢ Understand how to use computational tools to
examine neural data

Recommended student background

¢ Prerequisite: CISC 2500 Data and Information

Management — not strict requirement this
semester

Computer

Math .
science

Some calculus Some programming

Textbook(s)

Fundamentals of Computational

Neuroscience, Second Edition,

by Trappenberg

¢ Required

* We will focus on the ideas and study
a relatively small set of equations

Lippincott's Pocket Neuroanatomy, o€ ”/
by Gould 2 i?’g;

* Optional, better anatomy diagrams

Website

http://storm.cis.fordham.edu/leeds/cisc3250/

Go online for
— Lecture slides
— Assignments
— Course materials/handouts =
— Announcements
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Requirements

¢ Attendance and participation

— 1 unexcused absence allowed

— Ask and answer questions in class
e Homework: Roughly 5 across the semester
* Exams

— 2 midterms, in February and April

— 1 final, in May

e Don’t cheat

— You may discuss homeworks with other students,
but your submitted work must be your own

Software

We will use Scilab — an environment for numeric
analyses and computational modeling.

e Runs on all popular operating systems

4\

¢ Similar to the very-popular Matlab®

http://www.scilab.org

Your instructor

* Prof. Daniel Leeds
¢ E-mail: dleeds@fordham.edu
¢ Office hours: Tuesday and Thursday, 1-2pm

» Office: 328A (Cn
S D)

computer science + psychology -> brain models

Introducing systems and
computational neuroscience

¢ How groups of neurons work together to
achieve intelligence

* How the nervous system
performs computations

Levels of organization

Examples Scale

From a psychological perspective...

What are the elements
of cognition?
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Systems neuroscience

Regions of the central nervous system

¢ Visual object recognition
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Systems neuroscience

Regions of the central nervous system

associated with particular elements of cognition

* Visual object recognition
* Motion planning and execution
¢ Learning and remembering

Computational neuroscience

Strategy used by the nervous system to solve
problems

* Visual object perception
through biological
hierarchical model
“HMAX"

<Complex Cells
Poaling A

- Simple Cells
Extraction 4

Computational neuroscience as
“theory of the brain”

David Marr’s three levels of analysis (1982):
e Computational theory: What is the

computational goal and the strategy to achieve

it?

¢ Representation and algorithm: What are the

input and output for the computation, and how
do you mathematically convert input to output?

* Hardware implementation: How do the physical

components perform the computation?

Marr’s three levels for “HMAX” vision

¢ Computational theory: Goal is to recognize
objects

* Representation and algorithm:
— Input: Pixels of light and color
— Output: Label of object identity

— Conversion: Through combining local visual
properties

* Hardware implementation:

— Visual properties “computed” by networks of
firing neurons in object recognition pathway

Levels of organization

Examples Scale Examples
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Course outline

¢ Philosophy of neural modeling

¢ The neuron — biology and input/output behavior
¢ Learningin the neuron

¢ Neural systems and neuroanatomy

¢ Information representation with features in
computer science

¢ Representations in the brain
* Perception

* Memory/learning

* Motor control

The neuron
 Building block of all the systems we will study

¢ Cell with special properties

— Soma (cell body) can have 5-100 um diameter, but
axon can stretch over 10-1000 cm in length

— Receives input from neurons through dendrites

— Sends output to neurons through axon
dendrites  nucleus NEURON

/ /
\\ /
[N
/ axon
/ \\\ d
axon ending
. \\
C o
| myelin sheath
cell body

Neuron membrane voltage

¢ Voltage difference across cell membrane
— Resting potential: ~-65 mV
— Action potential: quick positive spike in voltage

e | __________
/'»kJrv"!r\‘r‘fl' ‘r”{-I‘VJ(J‘ fJJNJ'U, MMMHMM
time (ms)

;;,,wr///\«4/*"'«1/;»\/«’“,',,&»/,| ,_/J_LM

Example neural signals

potential (mV)

More on the action potential

¢ Action potential begins at axon hillock and
travels down axon

Voltage-gated

Synaptic vescicle Ca?* channel

¢ At each axon terminal,
spike results in release

of neurotransmitters

Neurotransmitter

¢ Neurotransmitters s ot tes
(NTs) attach to
dendrite of another
neuron, causing voltage change in this second
neuron

Inter-neuron communication

Neuron receives input from 1000s of other neurons

* Excitatory input can increase spiking

* Inhibitory input can decrease spiking

A synapse links neuron A with neuron B

* Neuron A is pre-synaptic:
axon terminal outputs NTs

¢ Neuron B is post-synaptic: y;:;t:é"::

ha

dendrite takes NTs as input

Postsynaptic

Modeling voltage over time

Equations focusing on change in voltage v
Components:

* Resting state potential (voltage) E;

* Input voltages R/

* Timet

dv(t)

T Fr —(w() —EL) +RI(Y)

incorporate new
input information

change towards
resting state
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Applying dv/dt step-by-step

dv(t
T d(t) = —(v(t) — EL) + RI(t)
v=2 t=0 ms
Av/At=-(2-2)+0
Av/At=0 -> Av=0
v=2+Av=2+0=2 t=1ms

Av/At=-(2-2)+1000=1000

Av/.001=1000 -> Av=1

v=2+Av=2+1=3 t=2ms
Av/At=-(3-2)+1000=999

Av/.001=999 -> Av=.999

v=3+Av=3.999 t=3ms
Av/At=-(3.999-2)+1000=998.001
Av/.001=998.001 -> Av=.998001
v=3.999+Av=3.999+.998001=4.997001 t=4 ms

Voltage over time: reset

rw = —(v(t) — EL) + RI(t)

When voltage passes threshold v,,,.,, voltage
reset to v,

V(tf) “Vihresh
V(t+6)=v,,,
6 is small positive number close to 0

Voltage over time
Coding in scilab:
dt=0.001
vCurr=-50
vRest=-70
vThresh=20
tau=20

for time = 1:100 RIY WH-E)

vCurr = vCurr+(input(time)-(vCurr-vRest))*dt/tau

dv(t)
TTat

= —(w(t) — E) + RI(t)

Voltage over time shay close

Aoty et inpt
L —(() — EL) + RI(t)

8888508888530 0

|

Simulated Biological

Accumulating information over inputs

Positive and negative weighted inputs from
dendrites a added together:

I(t) = Z Wjaj(t)
J

jis index over dendrites; first-pass model

Form of dendrite input
dv(t)
—— =~ —E) +RI®

T

| Pre-synaptic neuron spikes |

| Neurotransmitter (NT) released l

NT received by post-synaptic
dendrite at time tf

v
Post-synaptic voltage spikes
and fades, a(t-t/)

a(t-tf
1(t)=22wja(t—t]f) (1)
I
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_tf
I(t) = ZZ wja(t — t]f) a(t-tf)

j f
b

“Leaky integrate-and-fire” neuron

e Sum inputs from

I(t) = z Wjaj(t)
J

t dendrites (“integral”)
. . |€0\ k
Using Scilab: : \ \ \ * Decrease voltage vy o
opts3.input=[100100 100--; 000 --]; - \ \ \ \\ towards resting state 1—2 = —(U(t) _ EL) + Rl(t)
opts3.wts=[0 0; 1300 0]; . \ SR “leak” dt
volts=lifNeurons(10,2,0pts3) = \\ \ \\ ' ( €a )
: NV |
¢ Reset after passing v(t +8) =
Py o res
threshold (“fire”)
Activation function Activation function
Often non-linear relation between dendrite _
inout and axon output dv(t Function type g“IP‘s‘;a? Mathematical formula MATLAB implementation
P put v _ o) - B) + RICH) e
dt Linear / gin(x)=x X
1) = ija}.(t) Sum inputs 7
J step _j_ek)%mm: {li e;:e{v;:(r)c i s
l Threshold- theta (1) = x @ (x) x.*£loor (0.5* (1+sign(x)))
RI(t) Multiply by R inear. / o
| =3 ﬁ\bv‘\'hgr
l' Sigmoid f g%e(x) = Ty 1./ (1+exp(-x)) Versivnod
g(RI() Apply (non-linear?)

transformation to input

Radial-basis ~ 2595 (x) = exp(-x?) exp (-x."2)

Tuning curves

Some single neurons fire in response to
“perceiving” a quality in the world

Tuning curve of V1 neuronin cat

Stretch receptor on frog muscle
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Adrian, Henry et al.,
J Physiol 1926. J Neurophys
1974.

Neural coding

Perception, action, and other cognitive states

represented by firing of neurons

¢ Coding by rate: high rate of pre-synaptic
spiking causes post-synaptic spiking

¢ Coding by spike timing: multiple pre-synaptic
neurons spiking together causes post-synaptic
spiking

trial number

time




Computing spike rate

¢ Add spikes over a period of time

v(t) =

num spikes in AT

AT

¢ Average spikes over a set of neurons

1 num spikes in N neurons

A= a7

N
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