

Systems Neuroscience

- How groups of neurons work together to achieve intelligence
- How the nervous system performs computations

- Requirement for the Integrative Neuroscience major
- Elective in Computer and Information Science

Objectives

To understand information processing in biological neural systems from computational and anatomical perspectives

- Understand the function of key components of the nervous system
- Understand how neurons interact with one another
- Understand how to use computational tools to examine neural data

Recommended student background

Prerequisite:

- Officially: CISC 2500 Data and Information Management
- Unofficially: CISC 2500, or Bioinformatics, or Data Mining or Computer Science I

Math

Computer science

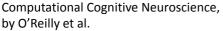
Some calculus

Some programming

Textbook(s)

Fundamentals of Computational Neuroscience, Second Edition, by Trappenberg

- Suggested
- We will focus on the ideas and study a relatively small set of equations



• Optional, alternate perspective

Website

http://storm.cis.fordham.edu/leeds/cisc3250/

Go online for

- Announcements
- Lecture slides
- Course materials/handouts
- Assignments

Requirements

- · Attendance and participation
 - 1 unexcused absence allowed
 - Ask and answer questions in class
- Homework: Roughly 5 across the semester
- Exams
 - 2 midterms, in February and April
 - 1 final, in May
- · Don't cheat
 - You may discuss homeworks with other students, but your submitted work must be your own

Matlab

Popular tool in scientific computing for:

- · Finding patterns in data
- Plotting results
- Running simulations

Student license for \$50 on Mathworks site Available in computers at JMH 330

В

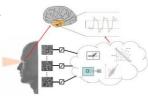
Your instructor

Prof. Daniel Leeds

E-mail: dleeds@fordham.edu

Office hours: Tuesday 12-1pm, 3-4pm

Office: 328A



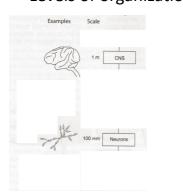
computer science + psychology -> models of vision

Introducing systems and computational neuroscience

- How groups of neurons work together to achieve intelligence
- How the nervous system performs computations

10

Levels of organization



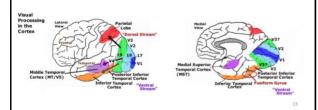
From a psychological perspective...

What are elements of cognition?

Systems neuroscience

Regions of the central nervous system associated with particular elements of cognition

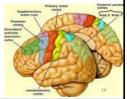
· Visual object recognition



Systems neuroscience

Regions of the central nervous system associated with particular elements of cognition

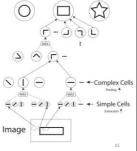
- Visual object recognition
- · Motion planning and execution
- · Learning and remembering



Computational neuroscience

Strategy used by the nervous system to solve problems

 Visual object perception through biological hierarchical model "HMAX"



Computational neuroscience as "theory of the brain"

David Marr's three levels of analysis (1982):

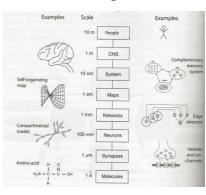
- Computational theory: What is the computational goal and the strategy to achieve it?
- Representation and algorithm: What are the input and output for the computation, and how do you mathematically convert input to output?
- Hardware implementation: How do the physical components perform the computation?

16

Marr's three levels for "HMAX" vision

- Computational theory: Goal is to recognize objects
- · Representation and algorithm:
 - Input: Pixels of light and color
 - Output: Label of object identity
 - Conversion: Through combining local visual properties
- · Hardware implementation:
 - Visual properties "computed" by networks of firing neurons in object recognition pathway

Levels of organization



18

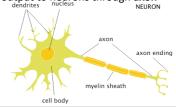
Course outline

- · Philosophy of neural modeling
- The neuron biology and input/output behavior
- Learning in the neuron
- · Neural systems and neuroanatomy
- · Representations in the brain
- Perception
- Memory/learning
- · Motor control

Plus: Matlab programming

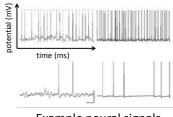
The neuron

- Building block of all the systems we will study
- Cell with special properties
 - Soma (cell body) can have 5-100 μm diameter, but axon can stretch over 10-1000 cm in length
 - Receives input from neurons through dendrites
 - Sends output to neurons through axon



Neuron membrane voltage

- Voltage difference across cell membrane
 - Resting potential: ~-65 mV
 - Action potential: quick upward spike in voltage



Example neural signals

The action potential

- Action potential begins at axon hillock and travels down axon
- At each axon terminal, spike results in release of neurotransmitters
- Neurotransmitters
 (NTs) attach to
 dendrite of another

neuron, causing voltage change in this second neuron

Inter-neuron communication

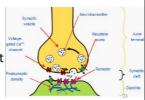
Neuron receives input from 1000s of other neurons

- · Excitatory input can increase spiking
- Inhibitory input can decrease spiking

A synapse links neuron A with neuron B

 Neuron A is pre-synaptic: axon terminal outputs NTs

 Neuron B is post-synaptic: dendrite takes NTs as input



More on neuron membrane voltage

 Given no input, membrane stays at resting potential (~ -65 mV)

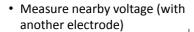
Inputs:

- Excitation temporarily increases potential
- Inhibition temporarily decreases potential

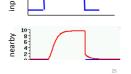
Continual drive to remain at rest

Patch clamp experiment

- · Attach electrode to neuron
- Raise/drop voltage on electrode

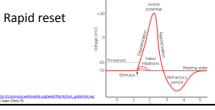


Simplification of neurophysiology experiment



More on the action potential

- 1. Accumulated excitation passes certain level
- 2. Non-linear increase in membrane voltage
- 3. Rapid reset



Modeling voltage over time

Equations focusing on change in voltage v Components:

- Resting state potential (voltage) E₁
- Input voltages RI
- Time t

$$\tau \frac{dv(t)}{dt} = \frac{-(v(t) - E_L) + RI(t)}{\text{change towards}} + \frac{RI(t)}{\text{incorporate new input information}}$$

Simulation

- · Initial voltage
- · Time interval for update
- · Input at each time
- Apply rule to compute new voltage at each time

Applying dv/dt step-by-step

 $E_L = -65 \text{mV}$ v(0ms)=-65mV RI(t)=20mV (from t=0ms to 1000ms) time step: 10ms

 $\frac{dv(t)}{dt} = -(v(t) - E_L) + RI(t)$

 $\tau=1$

• v(10ms) = v(0ms) + $\frac{dv(0ms)}{dt}$ x $\frac{10}{1000}$ $v(0ms) + \frac{x}{dt} \times \frac{x_{1000}}{1000}$ = -65 + [-(-65--65) + 20] x $\frac{10}{1000}$ = -65 + 20 x $\frac{10}{1000}$ = -64.8

• v(20ms) = v(10ms) + $\frac{dv(10\text{ms})}{dt}$ x $\frac{10}{1000}$ $v(10ms) + \frac{x}{dt} \times x_{1000}$ = -64.8 + [-(-64.8--65) + 20] x $\frac{10}{1000}$ $= -65 + -0.2 + 20 \times \frac{10}{1000}$ $= -65 + -19.8 \times \frac{10}{1000}$ $= -65 + -19.8 \times \frac{10^{\circ}}{1000}$ = -64.602

Changing model terms

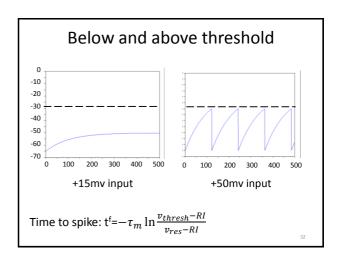
au has inverse effect

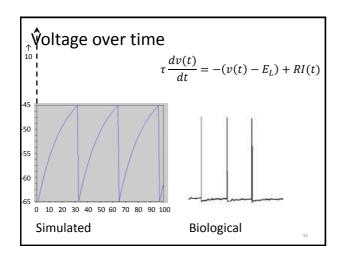
- increase τ decreases update speed
- decrease τ increases update speed

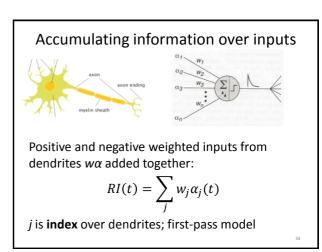
RI(t) has linear effect

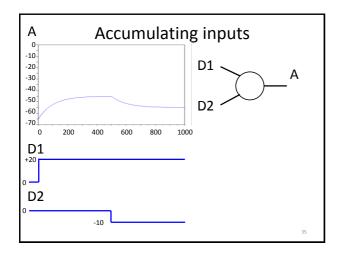
- increase RI(t) increases update speed
- decrease RI(t) decreases update speed

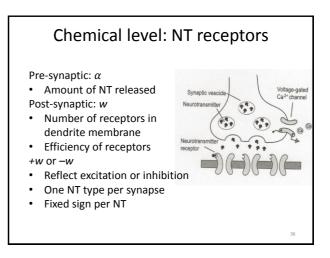
Voltage over time: reset $\tau \frac{dv(t)}{dt} = -(v(t) - E_L) + RI(t)$ When voltage passes threshold v_{thresh} , voltage reset to v_{res} $v(t^f) = v_{thresh}$ $v(t^f + \delta) = v_{res}$ δ is small positive number close to 0

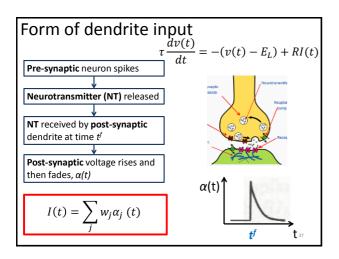


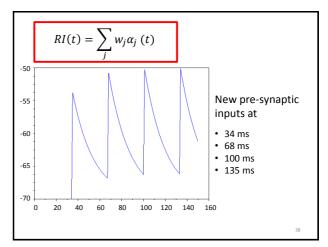












"Leaky integrate-and-fire" neuron

· Sum inputs from dendrites ("integral")

$$RI(t) = \sum_{i} w_{j} \alpha_{j}(t)$$

- Decrease voltage Decrease voltage towards resting state $\tau \frac{dv(t)}{dt} = -(v(t) - E_L) + RI(t)$ ("leak")
- Reset after passing threshold ("fire")

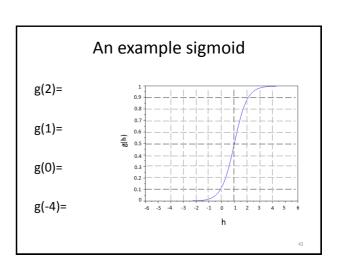
$$v\big(t^f+\delta\big)=v_{res}$$

Activation function Often non-linear relation between dendrite input and axon output $\tau \frac{dv(t)}{dt} = -(v(t) - E_L) + g(RI(t))$ Sum inputs $RI(t) = \sum_{i} w_{j} \alpha_{j}(t)$ Apply (non-linear?)

transformation to input

g(RI(t))

Activation function Mathematical formula MATLAB implementation Function type $g^{\text{step}}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{elsewhere} \end{cases}$ floor(0.5*(1+sign(x))) Step Threshold $g^{\text{theta}}(x) = x \Theta(x)$ Sigmoid $g^{sig}(x) = \frac{1}{1 + \exp(-x)}$ Radial-hasis $gauss(x) = \exp(-x^2)$



Tuning curves Some single neurons fire in response to "perceiving" a quality in the world Stretch receptor on frog muscle Tuning curve of V1 neuron in cat for the property of the property

J Neurophys 1974.

J Physiol 1926.

Variations in activation functions

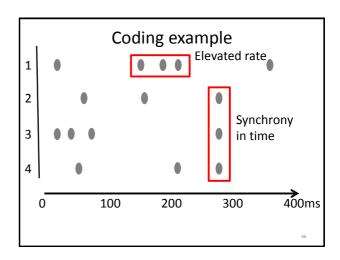
- Activation function has fixed shape
 Sigmoid is S shape, Radial is Bell shape
- By default, transition between 0 and 1
- · Some details of shape may vary
 - Smallest and lowest value
 - Location of transition between values

Neural coding

Perception, action, and other cognitive states represented by firing of neurons

Coding by rate: high rate of pre-synaptic spiking causes post-synaptic spiking

Coding by spike timing: multiple pre-synaptic neurons spiking together causes post-synaptic spiking



Inhibition can be informative

Inputs of interest can produce

- Below-normal spike rate
- · Decreased synchrony among neurons

Computing spike rate

• Add spikes over a period of time

$$v(t) = \frac{num \ spikes \ in \ \Delta T}{\Delta T}$$

• Average spikes over a set of neurons

$$A(t) = \lim_{\Delta T \to 0} \frac{1}{\Delta T} \frac{num \ spikes \ in \ N \ neurons}{N}$$