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CISC 3250
Systems Neuroscience

Professor Daniel Leeds

dleeds@fordham.edu

JMH 328A

Systems Neuroscience

• How groups of neurons work together to 
achieve intelligence

• How the nervous system 
performs computations

• Requirement for the Integrative Neuroscience 
major

• Elective in Computer and Information Science
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Objectives

To understand information processing in 
biological neural systems from computational 
and anatomical perspectives

• Understand the function of key components 
of the nervous system

• Understand how neurons interact with one 
another

• Understand how to use computational tools to 
examine neural data
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Recommended student background

Prerequisite:

• Officially: CISC 2500 Data and Information 
Management

• Unofficially: CISC 2500, or Bioinformatics, or 
Data Mining or Computer Science I

Math
Computer 

science

Some calculus Some programming
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Textbook(s)

Fundamentals of Computational 
Neuroscience, Second Edition, 
by Trappenberg

• Suggested

• We will focus on the ideas and study
a relatively small set of equations

Computational Cognitive Neuroscience, 
by O’Reilly et al.

• Optional, alternate perspective 5

Website

http://storm.cis.fordham.edu/leeds/cisc3250/

Go online for

– Announcements

– Lecture slides

– Course materials/handouts

– Assignments
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Requirements

• Attendance and participation

– 1 unexcused absence allowed

– Ask and answer questions in class

• Homework: Roughly 5 across the semester

• Exams

– 2 midterms, in February and April

– 1 final, in May

• Don’t cheat

– You may discuss homeworks with other students, 
but your submitted work must be your own 7

Matlab

Popular tool in scientific computing for:

• Finding patterns in data

• Plotting results

• Running simulations

Student license for $50 on Mathworks site

Available in computers at JMH 330
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Your instructor

Prof. Daniel Leeds

E-mail: dleeds@fordham.edu

Office hours: Tuesday 12-1pm, 3-4pm

Office: 328A

computer science + psychology -> models of vision
9

Introducing systems and 
computational neuroscience

• How groups of neurons work together to 
achieve intelligence

• How the nervous system 
performs computations
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Levels of organization
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From a psychological perspective…

What are elements 
of cognition?
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Systems neuroscience

Regions of the central nervous system 
associated with particular elements of cognition

• Visual object recognition
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Systems neuroscience

Regions of the central nervous system 
associated with particular elements of cognition

• Visual object recognition

• Motion planning and execution

• Learning and remembering

– Show pictures!
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Computational neuroscience

Strategy used by the nervous system to solve 
problems

• Visual object perception 
through biological 
hierarchical model
“HMAX”
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Computational neuroscience as 
“theory of the brain”

David Marr’s three levels of analysis (1982):

• Computational theory: What is the 
computational goal and the strategy to achieve 
it?

• Representation and algorithm: What are the 
input and output for the computation, and how 
do you mathematically convert input to output?

• Hardware implementation: How do the physical 
components perform the computation?
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Marr’s three levels for “HMAX” vision

• Computational theory: Goal is to recognize 
objects

• Representation and algorithm:

– Input: Pixels of light and color

– Output: Label of object identity

– Conversion: Through combining local visual 
properties

• Hardware implementation:

– Visual properties “computed” by networks of 
firing neurons in object recognition pathway

17

Levels of organization

18
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Course outline

• Philosophy of neural modeling

• The neuron – biology and input/output behavior

• Learning in the neuron

• Neural systems and neuroanatomy

• Representations in the brain

• Perception

• Memory/learning

• Motor control

19

Plus: Matlab
programming

The neuron
• Building block of all the systems we will study

• Cell with special properties
– Soma (cell body) can have 5-100 μm diameter, but 

axon can stretch over 10-1000 cm in length

– Receives input from neurons through dendrites

– Sends output to neurons through axon

20

Neuron membrane voltage

• Voltage difference across cell membrane

– Resting potential: ~-65 mV

– Action potential: quick upward spike in voltage
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Example neural signals 21

The action potential

• Action potential begins at axon hillock and 
travels down axon

• At each axon terminal, 
spike results in release 
of neurotransmitters

• Neurotransmitters
(NTs) attach to 
dendrite of another 
neuron, causing voltage change in this second 
neuron
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Inter-neuron communication

Neuron receives input from 1000s of other neurons

• Excitatory input can increase spiking

• Inhibitory input can decrease spiking

A synapse links neuron A with neuron B

• Neuron A is pre-synaptic: 
axon terminal outputs NTs

• Neuron B is post-synaptic: 
dendrite takes NTs as input

23

More on neuron membrane voltage

• Given no input, membrane stays at resting 
potential (~ -65 mV)

Inputs:

• Excitation temporarily increases potential

• Inhibition temporarily decreases potential

Continual drive to remain at rest

24
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Patch clamp experiment

• Attach electrode to neuron

• Raise/drop voltage on electrode

• Measure nearby voltage (with
another electrode)
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More on the action potential

1. Accumulated excitation passes certain level

2. Non-linear increase in membrane voltage

3. Rapid reset

26http://commons.wikimedia.org/wiki/File:Action_potential.svg
CC User: Chris 73

Modeling voltage over time

Equations focusing on change in voltage v

Components:

• Resting state potential (voltage) EL

• Input voltages RI

• Time t

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

change towards 
resting state

incorporate  new
input information

27

Simulation

• Initial voltage

• Time interval for update

• Input at each time

• Apply rule to compute new voltage at each 
time

28

Applying dv/dt step-by-step

EL=-65mV v(0ms)=-65mV 𝜏=1
RI(t)=20mV (from t=0ms to 1000ms)
time step: 10ms

• v(10ms) = v(0ms) + 
𝑑𝑣(0ms)

𝑑𝑡
x
10

1000
= -65 + [-(-65- -65) + 20] x 

10

1000
= -65 + 20 x 

10

1000
= -64.8

• v(20ms) = v(10ms) + 
𝑑𝑣(10ms)

𝑑𝑡
x
10

1000
= -64.8 + [-(-64.8- -65) + 20] x 

10

1000
= -65 + -0.2+20 x 

10

1000
= -65 + -19.8 x 

10

1000
= -64.602

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

29

Changing model terms

𝜏 has inverse effect

• increase 𝜏 decreases update speed

• decrease 𝜏 increases update speed

RI(t) has linear effect

• increase RI(t) increases update speed

• decrease RI(t) decreases update speed

30
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Voltage over time: reset

When voltage passes threshold vthresh, voltage 
reset to vres

v(tf)=vthresh

v(tf+δ)=vres

δ is small positive number close to 0

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

31

Below and above threshold

Time to spike: tf=−𝜏𝑚 ln
𝑣𝑡ℎ𝑟𝑒𝑠ℎ−𝑅𝐼

𝑣𝑟𝑒𝑠−𝑅𝐼
32
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Voltage over time

Simulated Biological

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

33
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Accumulating information over inputs

Positive and negative weighted inputs from 
dendrites wα added together:

𝑅𝐼 𝑡 = 

𝑗

𝑤𝑗𝛼𝑗(𝑡)

j is index over dendrites; first-pass model
34

Accumulating inputs

35
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A Chemical level: NT receptors

Pre-synaptic: 𝛼
• Amount of NT released
Post-synaptic: w
• Number of receptors in 

dendrite membrane
• Efficiency of receptors
+w or –w
• Reflect excitation or inhibition
• One NT type per synapse
• Fixed sign per NT

36
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Form of dendrite input

Pre-synaptic neuron spikes

Neurotransmitter (NT) released

NT received by post-synaptic
dendrite at time tf

Post-synaptic voltage rises and 
then fades, α(t)

𝐼 𝑡 = 

𝑗

𝑤𝑗𝛼𝑗 (𝑡)

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

37

α(t)

ttf

𝑅𝐼 𝑡 = 

𝑗

𝑤𝑗𝛼𝑗 (𝑡)
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New pre-synaptic 
inputs at

• 34 ms
• 68 ms
• 100 ms
• 135 ms

“Leaky integrate-and-fire” neuron

• Sum inputs from 
dendrites (“integral”)

• Decrease voltage 
towards resting state 
(“leak”)

• Reset after passing 
threshold (“fire”)

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

𝑣 𝑡𝑓 + 𝛿 = 𝑣𝑟𝑒𝑠

𝑅𝐼 𝑡 = 

𝑗

𝑤𝑗𝛼𝑗(𝑡)
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Activation function

Often non-linear relation between dendrite input 
and axon output

𝑔(𝑅𝐼 𝑡 )

Sum inputs

Apply (non-linear?) 
transformation to input

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑔(𝑅𝐼 𝑡 )

𝑅𝐼 𝑡 =  

𝑗

𝑤𝑗𝛼𝑗(𝑡)
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Activation function

Function type

Linear

Step

Threshold-
linear

Sigmoid

Radial-basis

41

An example sigmoid

g(2)=

g(1)=

g(0)=

g(-4)=

42
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Tuning curves

Some single neurons fire in response to 
“perceiving” a quality in the world

Adrian, 
J Physiol 1926.

Henry et al., 
J Neurophys

1974. 43

Variations in activation functions

• Activation function has fixed shape

– Sigmoid is S shape, Radial is Bell shape

• By default, transition between 0 and 1

• Some details of shape may vary

– Smallest and lowest value

– Location of transition between values

44

Neural coding

Perception, action, and other cognitive states 
represented by firing of neurons

• Coding by rate: high rate of pre-synaptic 
spiking causes post-synaptic spiking

• Coding by spike timing: multiple pre-synaptic 
neurons spiking together causes post-synaptic 
spiking

time
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Coding example

46

1

2

3

4

0 100 200 300 400ms

Elevated rate

Synchrony
in time

Inhibition can be informative

Inputs of interest can produce

• Below-normal spike rate

• Decreased synchrony among neurons

47

Computing spike rate

• Add spikes over a period of time

𝑣 𝑡 =
𝑛𝑢𝑚 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 Δ𝑇

Δ𝑇

• Average spikes over a set of neurons

𝐴 𝑡 = lim
Δ𝑇→0

1

Δ𝑇

𝑛𝑢𝑚 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 𝑁 𝑛𝑒𝑢𝑟𝑜𝑛𝑠

𝑁
48


