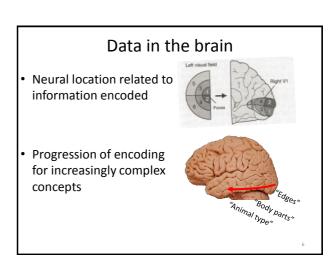
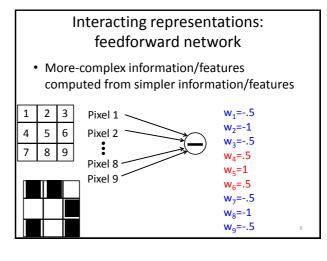


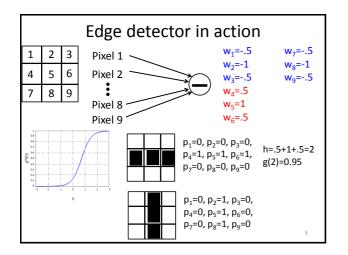
How do we represent our world? One sensation, multiple levels

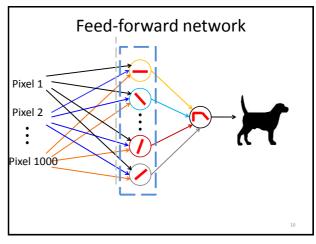

Dance

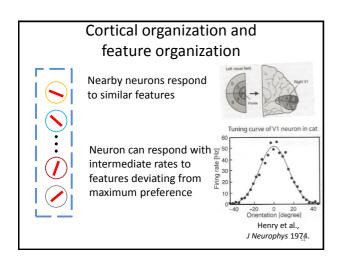
Song

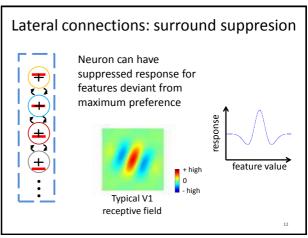
- Meaning of words
- Pitch/melody
- Rhythm
- Language
- Singer identity
- Body part

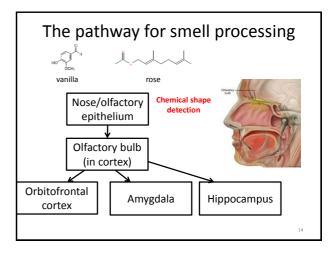

 arms, hands, legs

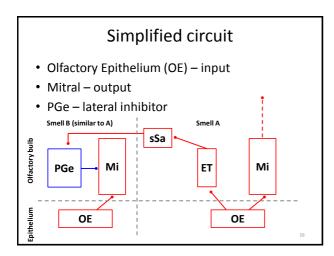

 Direction
 - forward, to-the-left
- Timing
 - order of moves, speed

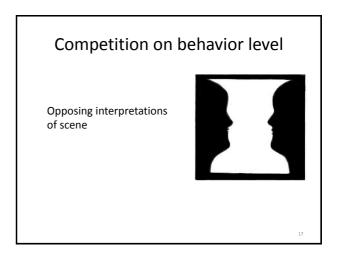


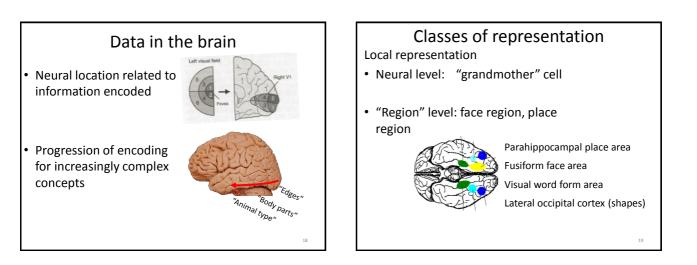

Simple outline of vision pathway

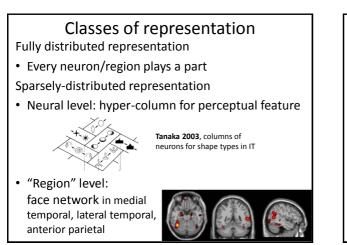

- 1. Retina: pixel detectors
- 2. Primary visual cortex (V1): edge detectors
- 3. Second-cortical layer (V2?): edge combination detectors
- . . .
- N. Higher-cortical layer: Full-object detectors

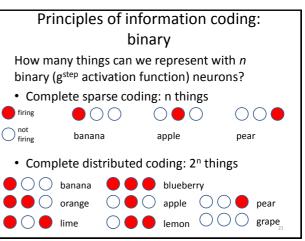


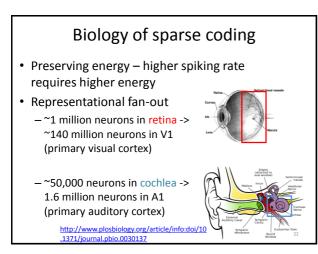


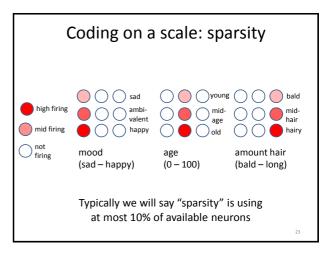


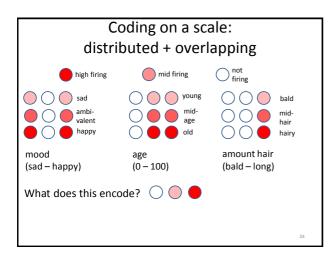

Suppression/competition with interneurons

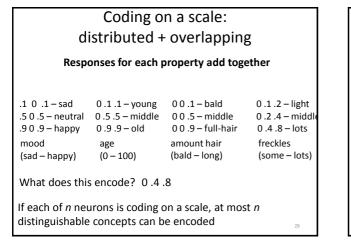

- In common cortical circuits, there are feedforward excitatory inputs and lateral inhibitory inputs
- Relative weighting achieves balance between activation and suppression

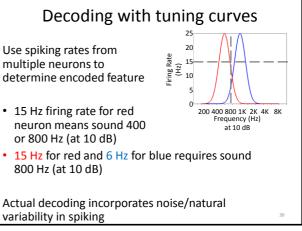


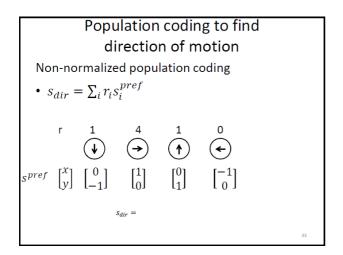


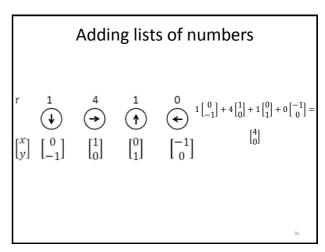


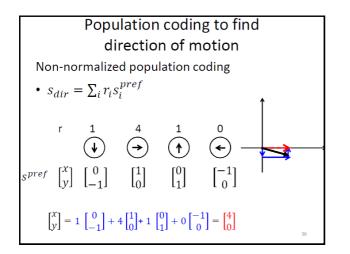


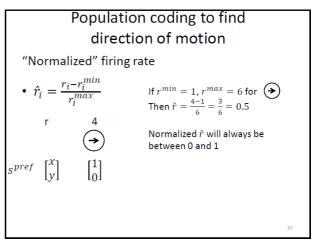


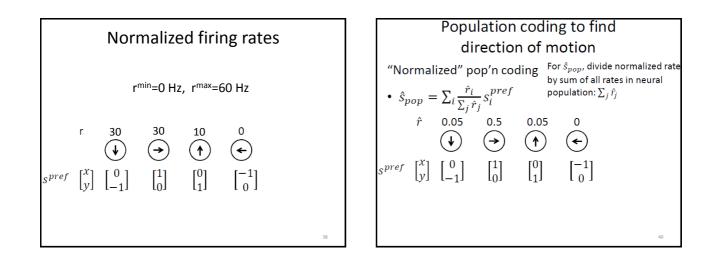

Coding on a scale: distributed + overlapping Responses for each property add together				
.5 0 .5 – neutral .9 0 .9 – happy mood	age	0 0 .5 – middle 0 0 .9 – full-hair amount hair		
(sad – happy) (0 – 100) (bald – long) What does this encode? 0 .4 .8				
What does this encode? 1.51.5				

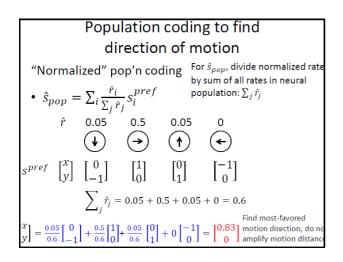

Coding on a scale: distributed + overlapping Responses for each property add together

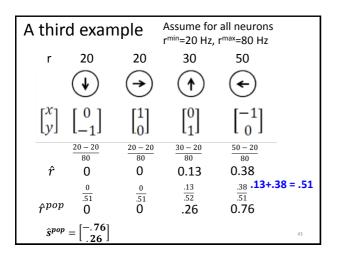

.1 0 .1 – sad	0 .1 .1 – young	0 0 .1 – bald			
.5 0 .5 – neutral	0 .5 .5 – middle	0 0 .5 – middle			
.9 0 .9 – happy	0 .9 .9 – old	0 0 .9 – full-hair			
mood	age	amount hair			
(sad – happy)	(0 – 100)	(bald – long)			
What does this encode? $0.4.8$ vet^{on^2} Wery sad: contributes: $0 \times [101] = 0.00$ Middle-age: contributes. $4 \times [011] = 0.4.4$ Middle-hair: contributes. $4 \times [001] = 0.0.4$ Summing together: $0.4.8$					


Coding on a scale: distributed + overlapping					
Responses for each property add together					
.5 0 .5 – neutral .9 0 .9 – happy mood	0.1.1 - young 0.5.5 - middle 0.9.9 - old age (0 - 100)	0 0 .5 – middle			
What does this encode? $1.51.5$ $verter t = 0$ Very happy: contributes $1 \times [101] = 101$ Middle-age: contributes $.5 \times [011] = 0.5.5$ Bald: contributes $0 \times [001] = 000$ Summing together: $1.51.5$					









Another example Assume for all neurons					
		r ^{min} =10 Hz, r ^{max} =100 Hz			
r	50	70	10	30	
	(1)	(\rightarrow)	(\uparrow)	÷	
$\begin{bmatrix} x \\ y \end{bmatrix}$	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}$	$\begin{bmatrix} -1\\ 0 \end{bmatrix}$	
ŕ	$\frac{50-10}{100}$ 0.4	$\frac{70-10}{100}$ 0.6	$\frac{10-10}{100}$	$\frac{30-10}{100}$ 0.2	-
ŕ ŕpop	$\frac{.4}{1.2}$	$\frac{.6}{1.2}$	$\frac{0}{1.2}$	<u>.2</u> .4+.6	+.2 = 1.2
γ ^{ρορ} ŝ ^{pop}	$0.33 = \begin{bmatrix} .34 \\33 \end{bmatrix}$	0.5	0	0.16	42

