Systems Neuroscience Matlab, 3+ dimensional data

Professor Daniel Leeds dleeds@fordham.edu JMH 332

Matrices in *n* dimensions

$$x=[1 \ 2 \ 3; \ 4 \ 5 \ 6]$$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \end{bmatrix}$
 $y(:,:,1)=[1 \ 2; \ 3 \ 4]$
 $y(:,:,2)=[5 \ 6; \ 7 \ 8]$
 $y(:,:,3)=[9 \ 10; \ 11 \ 12]$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 2 \ 3 \ 4 \ 6 \end{bmatrix}$

Typical brain data: location of neuron (x,y,z) + time

Heat-maps

imagesc(Data) – view 2D matrix of scaled data as image

• Red is highest value, blue is lowest value

Visualize a 2D slice of brain data (size(brainData) -> 128x128x88)
slice=squeeze(brainData(:,:,20)) -> slice 20 of brain
imagesc(slice)

Scaling vs. not-scaling

imagesc(Data) - view 2D matrix of scaled data as image

• Red (or yellow) is highest value, blue is lowest value

image (Data) - view 2D matrix of data as image

• Red (or yellow) is 64 or higher, blue is 0 or lower

```
slice=squeeze(brainData(:,:,10));
figure; imagesc(slice);
vs
figure; image(slice)
```

Code for multi-slice plot

```
for i=1:12
   slice=squeeze(S1brain(i*10,:,:));
  subplot(3,4,i), imagesc(slice);
end;
```

Finding desired values

```
find(vector<number)</pre>
                                     find(c<2)
   Return indices in vector that are less than number
Example: vector=[5, -1, 0, 12];
         smallLocations=find(vector<2);</pre>
         smallLocations contains [2 3]
```

Comparisons

- d<2, d>2 strict inequality
- $d \le 2$, $d \ge 2$ semi-inequality
- d==2equality

Data summaries

To be discussed later

Mat(:) - converts matrix to single dimension vector

Say MatVariable is a 5x5x10 matrix

• MatVariable(:) - converts data to single 250x1 vector

Summaries

- mean (MatVariable (:)) average value across all entries
- sort (MatVariable (:)) sort values from low to high
- hist (MatVariable (:)) histogram of values across all entries

Combining searches

earches

continue to the AND operation – all conditions must be true

Logic combinations

- d>5 & d<8
- d<5 | d>8 the OR operation – one or more conditions true

Example: find(vector<2 & vector>-2)

Can combine results from multiple matrices:

vecB=[12 3 8 0]; find(vector<2 | vecB>4)