CISC 3250 Systems Neuroscience

Matlab

Professor Daniel Leeds dleeds@fordham.edu JMH 328A

Access to Matlab

Laptop/home computer:

- Mathworks link on our course website
- Student license for \$49

Lab computer:

- Open terminal
- Type: matlab

2

Variables

Variables store information

Letters

neuronType='purkinje';

• Single Number

numberOfDendrites=1000;

• Group of numbers, in [] brackets

potentials=[-65 -64 -63.9 -62.8 -61.6];

3

Commands

Symbols and keywords cause actions

- b=2 creates variable b with value 2
- d=b+5 creates variable d with value computed by adding 5 to value of b
- exit *closes program*

= operation

- = assigns value on right to variable on left
- b=5 **valid**
- 5 = b invalid

Variable names

- A variable name is any valid identifier
 - Starts with a letter, contains letters, digits, and underscores (_) only
 - Cannot begin with a digit
 - Case sensitive: username≠userName≠UserName

6

Be careful with variable names

• NumSpikes=10

Variables are case-sensitive

- numspikes-5 error, did not capitalize N and S
- NumSpike-5 error, forgot letter s at end

,

Defining a vector

Vector is a list of numbers

- b = [42, 35, 68, -3]
- $c = [-18 \ 12 \ 14]$

Vector denoted by [] braces Elements separated by commas , or blank spaces

Plotting data

plot(spikeRates)

Multiple plots at once

```
figure plot(vector1,'b')
plot(vector1) hold on
figure plot(vector2,'r')
plot(vector2)
```

9

Semi-colons

• New line or; establishes end-of-command

```
figure; plot(vector1); figure;
plot(vector2)
```

• ; suppresses output of computation result to screen

$$b=10-8;$$

10

Counting in Matlab

```
a:b creates a vector [a a+1 ... b-1 b]
```

• 3:6 -> [3 4 5 6]

a:k:b creates a vector [a a+k a+2k ... b]

• 3:4:15 -> [3 7 11 15]

11

Accessing vector elements

$$a=[2.2 \ 1.4 \ -5 \ 3.5 \ -7.8];$$

- name accesses full vector
- а
- name (index) accesses single element
- a (4) returns 3.5
- name (index1:index2) accesses set of elements
- a(2:4) returns [1.4 -5 3.5]
- name (end) accesses final element

Vector indexing

Assume we have a recording of spike rates for 100 seconds, recorded over non-overlapping 100 ms windows: vector SpikeRate

- SpikeRate(1) contains rate from 1-100ms
- SpikeRate(2) contains rate from 101-200ms

How do we see rates for 4-6s (4001-6000ms)

• SpikeRate (401:600)

13

Standard arithmetic

Operators

- Addition: 5 + 2 evaluates to 7
- Subtraction: 5 2 evaluates to 3
- Multiplication: 5 * 2 evaluates to 10
- Division: 4 / 2 evaluates to 2
- Exponent: 5 ^ 2 evaluates to 25

14

Data

Data can be read from files

- load('classExample.mat');
- save('classExample2.mat','c','d');

List the loaded variables

- who
- whos

Study the variable

- size(spike_record)
- plot(spike_record)

15

Functions

 $c=[0 \ 3 \ -2 \ 4];$

Data are analyzed through functions

function_name(input_variable)

- sum(c) -> 5
- min(c) ->
- max(c) ->
- plot(spike record)

Matrices: rows and columns

 $B=[2.2 \ 1.4; \ -5 \ 3.5; \ -7.8 \ 4.3];$

- name (row, col) accesses single element

B(2,1) returns -5

17

Matrix indexing

Assume we have a 10x500 matrix of spike patterns for 10 neurons spikeMat

- spikeMat(1,:) contains spikes for neuron 1
- spikeMat(4,:) contains spikes for neuron 4
- spikeMat(:,100) contains spikes for all neurons at time t=100

In general:

- name(:,col) accesses all elements in column B(:,2) returns [1.4; 3.5; 4.3]
- name (:) vector of all elements in name

18

Multiple plots

figure -> opens new plotting window

subplot(r,c,i) -> creates grid of plots with

- rrows
- c columns
- fill in position i

19

Taking repeated action

 Assign k each value counting up from start value to finish value, repeating listed actions for each new value of k

```
for k=start:finish,
  action1 to repeat
  action2 to repeat
  action3 to repeat
end;
Example from class:
for k=1:10,
  subplot(5,2,k), plot(spikeMat(k,:));
end;
```

Finding desired values

find(vector<number) find(c<2)
Return indices in vector that are less than number</pre>

Comparisons

• d<2, d>2 strict inequality

• $d \le 2$, $d \ge 2$ semi-inequality

• d==2 equality

Logic combinations

• d>5 & d<8 the AND operation

• d<5 | d>8 the OR operation

21

Saving graphics results

- print -dpng filename.png
- print -djpg filename.jpg

22

Vector arithmetic

- Vector is list of numbers in between []
- Can replace one of operands with a vector

2+[3 4 1] *yields* [5 6 3]

• Can place results into new variable

Variable Name=number*vector;

Both operands can be vectors, but special rules apply