CISC 3250 Systems Neuroscience

Representations in the brain

Professor Daniel Leeds dleeds@fordham.edu JMH 332

How do we represent our world? One sensation, multiple levels

Song

- Meaning of words
- Pitch/melody
- Rhythm
- Language
- Singer identity

Dance

- Body part
 - arms, hands, legs
- Direction
 - forward, to-the-left
- Timing
 - order of moves, speed

How do we represent our world? Diverse sensations

Dog

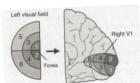
Flower

Smell

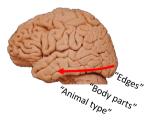
Appearance

- Body parts
 - tail, ears, legs
- Sounds
 - bark, whimper, pant
- Feel
- pant F
- Feel

texture, temperature


color, size, shape

– fur


We call each piece of information a "feature"

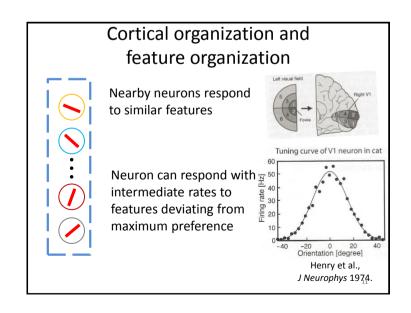
Data in the brain

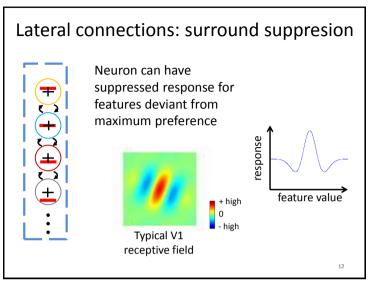
 Neural location related to information encoded

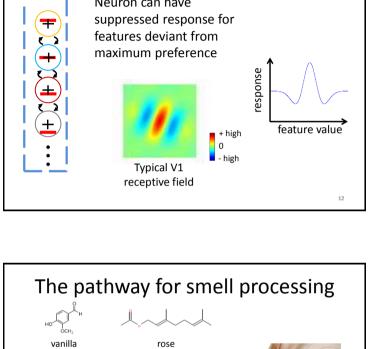
 Progression of encoding for increasingly complex concepts

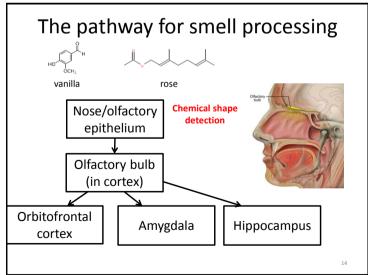
6

Simple outline of vision pathway

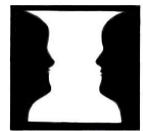

- 1. Retina: pixel detectors
- 2. Primary visual cortex (V1): edge detectors
- 3. Second-cortical layer (V2?): edge combination detectors


. . .


N. Higher-cortical layer: Full-object detectors


Pixel 1
Pixel 2
Pixel 1000

Interacting representations: feedforward network • More-complex information/features computed from simpler information/features $w_1 = -.5$ Pixel 1 $w_2 = -1$ Pixel 2 $w_3 = -.5$ 8 9 w₄=.5 Pixel 8 $w_5=1$ Pixel 9 $w_6 = .5$ $w_7 = -.5$ $w_8 = -1$ $w_0 = -.5$

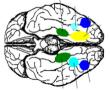

Suppression/competition with interneurons

- In common cortical circuits, there are feedforward excitatory inputs and lateral inhibitory inputs
- Relative weighting achieves balance between activation and suppression

Simplified circuit • Olfactory Epithelium (OE) – input • Mitral – output • PGe – lateral inhibitor Smell B (similar to A) Smell A sSa Olfactory bulb PGe Mi ET Mi Epithelium OE OE

Competition on behavior level

Opposing interpretations of scene

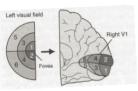


.7

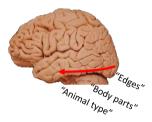
Classes of representation

Local representation

- Neural level: "grandmother" cell
- "Region" level: face region, place region



Parahippocampal place area
Fusiform face area
Visual word form area
Lateral occipital cortex (shapes)


21

Data in the brain

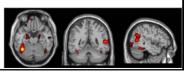
 Neural location related to information encoded

Progression of encoding for increasingly complex concepts

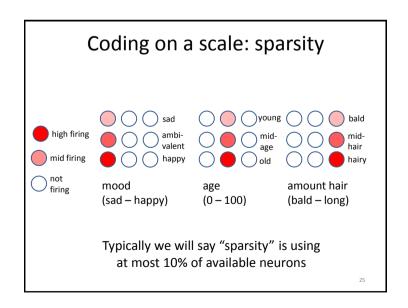


1

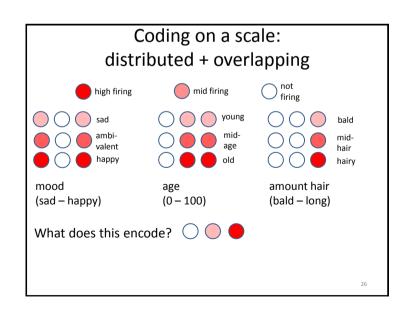
Classes of representation


Fully distributed representation

- Every neuron/region plays a part Sparsely-distributed representation
- Neural level: hyper-column for perceptual feature



Tanaka 2003, columns of neurons for shape types in IT


 "Region" level: face network in medial temporal, lateral temporal, anterior parietal

Principles of information coding: binary How many things can we represent with n binary (gstep activation function) neurons? • Complete sparse coding: n things firing not firing banana apple pear • Complete distributed coding: 2ⁿ things blueberry banana apple orange No fruit

Preserving energy – higher spiking rate requires higher energy • Representational fan-out -~1 million neurons in retina -> ~140 million neurons in V1 (primary visual cortex) -~50,000 neurons in cochlea -> 1.6 million neurons in A1 (primary auditory cortex) http://www.plosbiology.org/article/info:doi/10

Coding on a scale: distributed + overlapping

Responses for each property add together

What does this encode? 0.4.8

What does this encode? 1.5 1.5

27

Coding on a scale:

distributed + overlapping Responses for each property add together

 .1 0 .1 - sad
 0.1.1 - young 00.1 - bald

 .5 0 .5 - neutral
 0.5.5 - middle 00.5 - middle

 .9 0 .9 - happy
 0.9.9 - old 00.9 - full-hair

 mood
 age
 amount hair

 (sad - happy)
 (0 - 100) (bald - long)

How do we encode: happy-ish (.8), young-ish (.2), some-hair (0.5)? $\sum_{i} level_{i} pattern_{i}$

n1 n2 n3 .8 0 .8 0 .2 .2 <u>0 0 .5</u> .9 .2 1.5

29

Coding on a scale:

distributed + overlapping Responses for each property add together

How do we encode: sad (0), mid-age (.5), hairy (1.0)? $\sum_{i} level_{i} pattern_{i}$

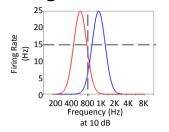
n1 n2 n3 0 0 0 0 .5 .5 <u>0 0 1</u> **0 .5 1.5**

33

Coding on a scale: distributed + overlapping

Responses for each property add together

 $.1 \ 0 \ .1 - sad$ 0.1.1 - young0 0 .1 – bald 0.1.2 - light0 .2 .4 - middle .5 0 .5 – neutral 0 .5 .5 – middle 0 0 .5 - middle 0.9.9 - old0 0 .9 – full-hair 0.4.8 - lots.90.9 - happyamount hair freckles mood age (sad – happy) (0 - 100)(bald - long) (some - lots)


What does this encode? 0.4.8

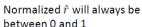
If each of n neurons is coding on a scale, at most n distinguishable concepts can be encoded

6

Decoding with tuning curves

Use spiking rates from multiple neurons to determine encoded feature

- 15 Hz firing rate for red neuron means sound 400 or 800 Hz (at 10 dB)
- 15 Hz for red and 6 Hz for blue requires sound 800 Hz (at 10 dB)


Actual decoding incorporates noise/natural variability in spiking

Population coding to find direction of motion

"Normalized" firing rate

•
$$\hat{r}_i = \frac{r_i - r_i^{min}}{r_i^{max}}$$

If
$$r^{min} = 1$$
, $r^{max} = 6$ for $r^{min} = \frac{4-1}{6} = \frac{3}{6} = 0.5$

$$s^{pref} \begin{bmatrix} x \\ y \end{bmatrix}$$

between 0 and 1

Population coding to find direction of motion

Non-normalized population coding

•
$$s_{dir} = \sum_{i} r_{i} s_{i}^{pref}$$

$$s^{pref} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Normalized firing rates

rmin=0 Hz, rmax=60 Hz

Population coding to find direction of motion

"Normalized" pop'n coding $for \hat{s}_{pop}$, divide normalized rate

•
$$\hat{s}_{pop} = \sum_{i} \frac{\hat{r}_i}{\sum_{j} \hat{r}_j} s_i^{prej}$$

by sum of all rates in neural population: $\sum_{i} \hat{r}_{i}$

•
$$\hat{s}_{pop} = \sum_{i} \frac{\hat{r}_i}{\sum_{j} \hat{r}_j} s_i^{prej}$$

$$S^{pref} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Assume for all neurons Another example rmin=10 Hz, rmax=100 Hz

50

70

10

30

Decoding large neural codes

Information from neuron patterns

- Happy
- Sad
- Angry
- Nervous


• What mood is this?

Decoding large neural codes

Classifier:

- If consistent response, can learn pattern
- If irrelevant response, cannot learn helpful pattern

Method:

- 500 trials measure mood, record brain responses
- Make classifier from neural patterns in trials 1-250
- Find accuracy to predict mood in trials 251-500